JPH02142891A - Production of raw material pitch for pitch or carbon microballoon - Google Patents

Production of raw material pitch for pitch or carbon microballoon

Info

Publication number
JPH02142891A
JPH02142891A JP63296165A JP29616588A JPH02142891A JP H02142891 A JPH02142891 A JP H02142891A JP 63296165 A JP63296165 A JP 63296165A JP 29616588 A JP29616588 A JP 29616588A JP H02142891 A JPH02142891 A JP H02142891A
Authority
JP
Japan
Prior art keywords
pitch
softening point
quinoline
raw material
infusibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296165A
Other languages
Japanese (ja)
Inventor
Yukihiro Osugi
大杉 幸広
Kazuhiro Hasegawa
和弘 長谷川
Mamoru Kamishita
神下 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63296165A priority Critical patent/JPH02142891A/en
Publication of JPH02142891A publication Critical patent/JPH02142891A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0056Hollow or porous fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To produce a pitch useful as a material for a carbon microballoon and having uniform qualities, high softening point, excellent foaming properties, and infusibility by subjecting a refined pitch freed from quinoline-insolubles to a specified thermal treatment in a vacuum while blowing an inert gas into the pitch. CONSTITUTION:A refined pitch obtd. by subjecting, e.g., a tar pitch to filtration, separation by sedimentation, etc., to substantially remove quinoline-insolubles is thermally treated at 300-380 deg.C in a vacuum while blowing an inert gas into said refined pitch to give a product with a softening point of 150-250 deg.C, benzene- insolubles content of 35-55wt.%, quinoline-insolubles content of 0.01wt.% or lower, and optical isotropy in all directions. The obtd. pitch has uniform qualities, high softening point, excellent foaming properties and infusibility and useful as a raw material for producing a pitch or a carbon microballoon.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ピッチないし炭素微小中空体を製造するため
の原料ピッチの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing raw material pitch for producing pitch or carbon micro hollow bodies.

〈従来の技術〉 炭素微小中空体は、耐熱性、耐薬品性、導電性。<Conventional technology> Carbon microhollow bodies are heat resistant, chemical resistant, and electrically conductive.

軽量性などの緒特性を生かして、電気炉等に用いられる
高温断熱材、原子炉用炉材、N−電性プラスデック用フ
ィラー、金属や無機物との複合材料。
Taking advantage of its light weight and other properties, it is used as a high-temperature insulation material used in electric furnaces, reactor materials for nuclear reactors, fillers for N-electrode plus decks, and composite materials with metals and inorganic materials.

モールディングコンパウンド用フィラー等の多岐にわた
る用途に利用することができる。
It can be used in a wide variety of applications, including as a filler for molding compounds.

通常、ピッチ類を原料として炭素微小中空体を得るには
、まず原料となるピッチを球状化する必要がある。ここ
で得られるピッチ中空体についても、そのまま塗料用の
増量材、低温断熱材、各種複合材の原料等に用いること
ができるが、用途が限られるため、前述したような優れ
た特性を発現するためには、さらに不融化、炭化処理を
施す必要がある。
Normally, in order to obtain carbon microhollow bodies using pitch as a raw material, it is first necessary to spheroidize the raw pitch. The pitch hollow bodies obtained here can also be used as they are as extenders for paints, low-temperature insulation materials, raw materials for various composite materials, etc., but their uses are limited, so they cannot exhibit the excellent properties mentioned above. In order to achieve this, it is necessary to further perform infusibility and carbonization treatments.

しかし、通常市販されているピッチは軟化点が100°
C程度と低いため、そのまま用いると発泡時にピッチ中
空体同士の融着が起こりやすく、さらに不融化処理の際
にも不融化が完了する前にピッチが軟化溶融してしまい
中空形状を維持することが困難であり、またキノリン不
溶分で示される)リーカーボン1石炭、コークス粉、メ
ソフェーズ等の不溶性、あるいは難溶性の不均質物質を
含んでいる□ために、発泡工程において不均一な発泡を
起こし、均質な製品を得ることができない。
However, the softening point of commercially available pitch is 100°.
Since the pitch is as low as C, if used as is, pitch hollow bodies are likely to fuse together during foaming, and even during infusibility treatment, the pitch softens and melts before the infusibility is completed, causing the pitch to maintain its hollow shape. □Contains insoluble or poorly soluble heterogeneous substances such as coal, coke powder, mesophase, etc., which causes non-uniform foaming during the foaming process. , it is not possible to obtain a homogeneous product.

そこで、従来、ピッチ系炭素中空体を得る方法について
、いくつかの提案がなされているが、いずれもピッチを
中空化する方法についての提案であり、用いる原料ピッ
チの製造方法や性状について詳しく説明されたものはな
い。
Therefore, several proposals have been made regarding methods for obtaining pitch-based carbon hollow bodies, but all of them are proposals for methods for hollowing pitch, and the manufacturing method and properties of the raw material pitch used have not been explained in detail. There's nothing left.

例えば、特公昭49−30253号公報では、軟化点1
00〜350°C,ニトロヘンゼン不溶分O〜25%。
For example, in Japanese Patent Publication No. 49-30253, a softening point of 1
00-350°C, nitrohenzene insoluble content O-25%.

H/C=0.2〜1.0の高芳香族性硬ピツチを原料と
する提案がなされζいるが、低軟化点(150°C未満
)のピッチでは発泡処理後の空気酸化による不融化処理
に長時間を要し、工業的に製造するには適していない。
Proposals have been made to use highly aromatic hard pitch with H/C = 0.2 to 1.0 as a raw material, but pitch with a low softening point (less than 150°C) becomes infusible due to air oxidation after foaming. It takes a long time to process and is not suitable for industrial production.

〈発明が解決しようとする課題〉 本発明の目的は以−ヒの問題点を考慮して、均質性、不
融化性に優れたピッチないし炭素微小中空体用の原料と
なるピッチの製造方法を提案するものである。
<Problems to be Solved by the Invention> The purpose of the present invention is to provide a method for producing pitch that is excellent in homogeneity and infusibility or as a raw material for carbon microhollow bodies, taking into account the following problems. This is a proposal.

く課題を解決するための手段〉 本発明者らは、前記問題点を解決すべく鋭意検討した結
果、クールピッチ類に濾過、沈腎分離等を施して、キノ
リン不溶分(Q l )を実質上除去して得られた精製
ピッチを原料として所定の熱処理を施すことにより、4
1れた均質性、不融化性を有する微小中空体用ピンチを
製造できることを見出し、本発明を完成するに至った。
Means for Solving the Problems> As a result of intensive studies to solve the above problems, the present inventors subjected cool pitches to filtration, kidney precipitate separation, etc. to substantially remove the quinoline insoluble content (Q l ). By using the purified pitch obtained by removing the top as a raw material and subjecting it to a prescribed heat treatment, 4
The present inventors have discovered that it is possible to produce pinches for micro hollow bodies that have excellent homogeneity and infusibility, and have completed the present invention.

すなわち本発明は、実質的にキノリン不溶分を含まない
精製ピッチを準備し、次いで該精製ピンチに不活性ガス
を吹込みながら減圧下で300〜380°Cの熱処理を
施し、軟化点が150〜250℃、ベンゼン不溶分が3
5〜55重量%、かつキノリン不溶分が0.01重量%
未満の光学的等方性ピッチになるように調製することを
特徴とするピッチ乃至炭素微小中空体用原料ピッチの製
造方法である。
That is, in the present invention, a purified pitch containing substantially no quinoline insoluble matter is prepared, and then heat treatment is performed at 300 to 380°C under reduced pressure while blowing an inert gas into the purified pitch to obtain a softening point of 150 to 380°C. 250℃, benzene insoluble content is 3
5 to 55% by weight, and quinoline insoluble content is 0.01% by weight
This is a method for producing pitch or raw material pitch for carbon microhollow bodies, which is characterized in that the pitch is prepared to have an optically isotropic pitch of less than or equal to.

ここで、ヘンガン不溶分。キノリン不溶分は、日本工業
標準のタールピンチ試験方法により得られるものであり
、軟化点は6°(: / manの昇温速度でピッチを
加熱しながら0.5mmのノズルから圧)月Okg/C
l1lの荷重で押し出した時に、ピッチがノズルから吐
出し始める温度のことである。
Here, the insoluble matter. The quinoline insoluble content is obtained by the Japanese industrial standard tar pinch test method, and the softening point is 6° (pressure from a 0.5 mm nozzle while heating the pitch at a temperature increase rate of 0 kg/man). C
This is the temperature at which the pitch starts to be discharged from the nozzle when extruding with a load of 11 l.

〈作 用〉 以下、本発明について具体的に説明する。<For production> The present invention will be specifically explained below.

−Illuに、コールクール類は石炭の高温乾留により
得られるため原料石炭由来の灰分等の無機質、フリーカ
ーボン及びわ〕状コークス等のキノリンネ溶の固形分を
数%含んでいる。このため、このようなタールをそのま
ま蒸留してピンチにすると、ピッチ中にこれら固形分が
残留し、球状化する時不均質な発泡を起ごし、欠陥とな
るため好ましくない。従ってこれらの固形分はあらかじ
め分離除去しておく必要があるが、この方法としては濾
過沈陵分離等、公知の方法が採用できる。
In addition, since coal cours are obtained by high-temperature carbonization of coal, they contain several percent of inorganic substances such as ash derived from raw coal, free carbon, and quinoline-soluble solids such as warp coke. Therefore, if such tar is directly distilled into a pinch, these solid contents remain in the pitch, causing non-uniform foaming when spheroidizing, resulting in defects, which is not preferable. Therefore, it is necessary to separate and remove these solid contents in advance, and known methods such as filtration and sedimentation separation can be used for this purpose.

次に、精製されたタールピンチ類から軽質油分を蒸留し
て、キノリン不溶分を実質」1含まない精製ピッチを得
る。このようにして得られた精製ピッチは、固形物を含
まないため非常に均質なピ・ンチとなる。
Next, light oil components are distilled from the purified tar pinches to obtain purified pitch substantially free of quinoline-insoluble components. The purified pitch obtained in this way does not contain any solid matter, so it becomes a very homogeneous pitch.

次に、ピッチの不融化性を向上さゼるために、熱処理を
施してピッチの軟化点を上昇させる必要があるが、一般
に熱処理を施してピンチの軟化点を高めようとすると、
ピッチを高温士で処理しなければならない。このため、
通常の処理方法ではピッチ中の重質成分が急速な重縮合
反応によりメソフェーズ化するためピッチ中に不均質な
Q+(キノリン不溶分)成分が生成する。このメソフェ
ーズは初期過程では微小球体として発生し、熱処理の進
行に伴い成長1合体を経てピンチ全体に広がりバルクメ
ソフェーズを経て最終的にはコークスとなるが光学的等
方性のピッチマトリックス中に光学的異方性のメソフェ
ーズが発生したピッチはメソフェーズが難溶性、不融性
を示すために均質性が悪い。従ってこのようなメソフェ
ーズの生成したピッチを原料として発泡を行うと不均質
な発泡を起こし、変形したピッチ中空体しか得ることが
できない。
Next, in order to improve the infusibility of the pitch, it is necessary to perform heat treatment to raise the softening point of the pitch, but generally speaking, when heat treatment is applied to raise the softening point of the pitch,
The pitch must be treated with a high-temperature technician. For this reason,
In normal processing methods, the heavy components in the pitch undergo a rapid polycondensation reaction to form a mesophase, resulting in the formation of a heterogeneous Q+ (quinoline insoluble) component in the pitch. This mesophase is generated as microspheres in the initial process, and as the heat treatment progresses, it grows and coalesces and spreads over the entire pinch, passing through the bulk mesophase and finally becoming coke. The pitch in which an anisotropic mesophase is generated has poor homogeneity because the mesophase is poorly soluble and infusible. Therefore, when foaming is performed using pitch produced in such a mesophase as a raw material, non-uniform foaming occurs and only a deformed pitch hollow body can be obtained.

しかしながら、このメソフェーズの生成を抑えて軽度の
熱処理を行ったピッチでは、揮発性の軽質成分がピッチ
に残留するため、軟化点が十分に」二がらず発泡時、不
用(化時の融着の原因となりやすい。
However, with pitch that has been lightly heat-treated to suppress the formation of mesophase, volatile light components remain in the pitch, so the softening point does not decrease sufficiently and is unnecessary during foaming. This is likely to be the cause.

本発明はこれらの問題に、+=J して、精製ピッチを
熱処理して微小中空体用ピンチを調製する際、熱処理温
度を高めて軟化点を−にげろのではなく、熱処理時にピ
ッチ中に不活性ガスを流通させながら減圧下でピンチ中
の揮発性軽質成分を除去することにより、メソフェーズ
の生成しない均質で、かつ高軟化点のピンチを製造づ−
るごとに成功した。
The present invention solves these problems by heat-treating purified pitch to prepare pinches for micro hollow bodies. By removing the volatile light components in the pinch under reduced pressure while flowing an inert gas, a homogeneous pinch with a high softening point that does not generate mesophase can be produced.
I was successful every time.

ここで、熱処理温度を300〜380°〔:としている
が、ごれGよ300°C,k f+”Aのl晶度では1
分に軟化点を高めるのは困テ1Fであり、また熱処理温
度が380°Cを超えると、メソフェーズの生成する確
立が高くなり均質なピンチの歩¥!Iりが低ト″づるか
らである。
Here, the heat treatment temperature is set to 300 to 380° [:, but the dirt G is 300°C, and the l crystallinity of kf+”A is 1
It is difficult to raise the softening point to 1F, and if the heat treatment temperature exceeds 380°C, there is a high probability that mesophase will be generated, resulting in a homogeneous pinch layer! This is because the I resistance is low.

また、ごの熱処理時の真空度と不活性ガス流通量は任意
に選択するごとができるが、通常は比較的低温域で処理
する場合は真空度を下げ、不活性ガス流量を増大し、比
較的高温域で処理する場合は真空度は高めで、不4も1
テ1ガス流通甲を少なく設定するのが好ましい。
In addition, the degree of vacuum and the flow rate of inert gas during heat treatment can be selected arbitrarily, but normally when processing at a relatively low temperature range, the degree of vacuum is lowered and the flow rate of inert gas is increased. When processing at a high temperature range, the degree of vacuum should be high, and
It is preferable to set the gas distribution A to a small value.

次に、熱処理の程度は得られるピッチが微小中空体用に
通した、ずなわらJIS規格に基づく1業分析(、Bl
、Qll、 〕17−テスターによる軟化点、偏光顕微
鏡によるピンチ組織の観察により、ベンゼン不溶分(B
l)が35〜55重型%、キノリン不溶分(Ql)が0
.01重量%未ン1vj、軟化点が150〜250“C
1かつ全面光学的等方性の条(’Iを満足するように決
定される。
Next, the degree of heat treatment is determined by an analysis based on the Zunawara JIS standard (Bl.
, Qll, ]17-By observing the softening point with a tester and the pinch structure with a polarizing microscope, the benzene insoluble matter (B
l) is 35-55% heavy type, quinoline insoluble content (Ql) is 0
.. 01% by weight less than 1vj, softening point 150~250"C
1 and the entire optically isotropic condition ('I).

すなわち、Bl<35%、軟化点<150°Cの場合は
、いずれもピッチの重質化、揮発1f1.軽質成分の除
去が十分に行われていないことを示しており、後工程の
発泡、不融化が困難となる。
That is, when Bl<35% and softening point<150°C, pitch becomes heavier and volatilization 1f1. This indicates that light components are not sufficiently removed, making foaming and infusibility in subsequent steps difficult.

一方、Bl>55%、軟化点〉250°Cのピッチは、
粘度が高いため発泡温度を高くしなりればならず、その
結果ピッチの熱変質等が起こり均一・な発泡が困難とな
るため好ましくない。
On the other hand, the pitch with Bl>55% and softening point>250°C is
Since the viscosity is high, the foaming temperature must be raised, which is not preferable because it causes thermal deterioration of the pitch and makes uniform foaming difficult.

さらに、Ql≧0.01%ではピッチ中に超重質な難溶
性、不融性成分の存在が認められるため、ピンチは不均
質となり均一な発泡をすることが困難となる。
Furthermore, when Ql≧0.01%, the existence of extremely heavy, poorly soluble and infusible components is recognized in the pitch, so the pinch becomes heterogeneous and it becomes difficult to foam uniformly.

また、偏光顕微鏡下、光学的異方性のメソフエズが観察
されたピンチは明らかに不均質物質が含まれるため不均
一な発泡を起こし、最終的には製品欠陥となる。
In addition, pinches in which optically anisotropic mesophores were observed under a polarizing microscope clearly contain non-uniform substances, causing non-uniform foaming and ultimately resulting in product defects.

これらの理由から、微小中空体用ピンチの原料としては
、B l : 35〜55−L%、軟化点;150〜2
50°C1Q I <0.01wt%、全面光学的等方
性のものに限定される。
For these reasons, as raw materials for the pinch for micro hollow bodies, Bl: 35-55-L%, softening point: 150-2
Limited to 50° C1Q I <0.01wt% and optically isotropic over the entire surface.

〈実施例〉 以下、本発明を実施例により具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 コールタール(B l −2,4,Q + = 0.2
)を濾過して精製クールを得た。ごのクールの分析値は
[3+ −2,2%、 Q + <0.01%であった
。次にこのタールを常圧蒸留(360“C)して、表1
に示す精製ピッチΔを得た。このピッチの分析値はB1
−146%、 Q l <0.01%、軟化点90°C
であった。
Example coal tar (B l −2,4, Q + = 0.2
) was filtered to obtain purified cool. The analytical value of the coolant was [3+ -2.2%, Q + <0.01%. Next, this tar was distilled under atmospheric pressure (360"C), and Table 1
A purified pitch Δ shown in was obtained. The analysis value of this pitch is B1
-146%, Q l <0.01%, softening point 90°C
Met.

次に、この精製ピンチを表1に示ず熱処理温度280 
300 380、400’Cの各温度及び真空度ならび
に窒素ガス流量で熱処理して、各々硬ピツチBC,D、
Eを調製した。得られたピッチの分析結果を表1にまと
めて示す。
Next, this refining pinch is not shown in Table 1, and heat treatment temperature is 280.
After heat treatment at temperatures of 300, 380, and 400'C, vacuum degrees, and nitrogen gas flow rates, hard pitches BC, D, and
E was prepared. The results of the pitch analysis obtained are summarized in Table 1.

また、このうちり、 Eのピッチを研磨後、偏光顕微鏡
(200倍)で写真撮影した結果をそれぞれ第1図(a
)、 (b)に示した。ピッチDは全面が光学的等方性
を示しているがピッチEでは微小メソフェーズが発生し
ていることがわかる。
In addition, after polishing the pitches of this part and E, the results of taking photographs with a polarizing microscope (200x magnification) are shown in Figure 1 (a).
) and (b). It can be seen that at pitch D, the entire surface exhibits optical isotropy, but at pitch E, a minute mesophase occurs.

次にこれらのピ・ンチA−Eにトルエンをピンチに対し
10重量%になるように加えて耐圧容器に仕込み各りの
ピッチの軟化点の温度で2時間’fA拌混合して、含溶
剤ピッチA1〜Elを製造した。各ピッチの溶剤含有率
は表2に示′づ通りであった。
Next, toluene was added to these pinches A-E so that the amount was 10% by weight based on the pinch, and the mixture was charged into a pressure-resistant container and stirred and mixed for 2 hours at the temperature of the softening point of each pitch. Pitches A1 to El were produced. The solvent content of each pitch was as shown in Table 2.

引き続き、これらのピッチをもとのピッチの軟化点+6
0〜80°Cの温度で溶融し、窒素圧5kg/Cll1
で加圧して気相中にスプレーすることにより、ピッチ微
小中空体を製造した。しかしながら、ピッチAを原料と
したものはほとんどが中空体同士が融着したものであっ
た。またピッチ13を原料としたものにも一部融着した
ものが見られた。本発明を満足するピッチC及びDは均
一で融着の殆どない微小中空球状体が得られた。
Continue to increase the softening point of these pitches by +6
Melts at a temperature of 0 to 80°C, nitrogen pressure 5kg/Cl1
Pitch micro hollow bodies were manufactured by spraying into the gas phase under pressure. However, most of those made from Pitch A were hollow bodies fused together. In addition, some fusion was observed in products made from Pitch 13 as a raw material. Pitches C and D satisfying the present invention were uniform, and micro hollow spheres with almost no fusion were obtained.

さらにこれらの微小中空体のうち、融着したAlを除い
た81〜E1について不融化、炭化処理を行った。
Further, among these micro hollow bodies, 81 to E1 excluding the fused Al were subjected to infusibility and carbonization treatment.

不融化条件は空気流通下で150’Cまで30分かけて
昇温し150°Cから300°Cまで3時間かけて昇温
することにより行った。次に、炭化は不融化後、空気を
アルゴンに切り換え300〜1000°Cまで4時間か
けて昇温後、1000°Cで1時間保持することにより
行ったところ、B1では融着したがCI、Dlでは粒径
約200〜700μmの均一な炭素微小中空体を製造す
ることができた。またElは粒径が200pm〜2mm
にばらつき、均一なものが得られなかった。また球状化
率は50%以下であった。
The infusibility was achieved by raising the temperature to 150'C over 30 minutes under air circulation, and then raising the temperature from 150°C to 300°C over 3 hours. Next, carbonization was carried out by switching the air to argon after making it infusible, raising the temperature from 300 to 1000°C over 4 hours, and then holding it at 1000°C for 1 hour. With Dl, it was possible to produce uniform carbon microhollow bodies with a particle size of about 200 to 700 μm. Also, El has a particle size of 200pm to 2mm.
It was not possible to obtain a uniform product. Moreover, the spheroidization rate was 50% or less.

次に、前述のコールクールを濾過しないで蒸留し、ピッ
チI?を得た。次いでこのピッチを380°Cの温度で
真空度10mm1lB、窒素ガス流量0.1ffi/飾
・kgで熱処理し硬ピンチGを得た。これらの分析値を
表1に示す。さらにこのピッチGにトルエンをピッチに
対し10重量%になるように加えて耐圧容器に仕込み、
ビッヂの軟化点の温度で2時間撹拌混合しピッチG1を
得た。ピッチG1の溶剤含有率は表2に示すとおりであ
る。
Next, the aforementioned Coal Coeur is distilled without filtration and pitch I? I got it. Next, this pitch was heat-treated at a temperature of 380°C, a degree of vacuum of 10 mm, 11 B, and a nitrogen gas flow rate of 0.1 ffi/kg to obtain a hard pinch G. Table 1 shows these analytical values. Furthermore, toluene was added to this pitch G so that the amount was 10% by weight based on the pitch, and the mixture was placed in a pressure container.
Pitch G1 was obtained by stirring and mixing for 2 hours at a temperature of the softening point of pitch. The solvent content of pitch G1 is as shown in Table 2.

次に、含溶剤ピッチGlを、ピッチの軟化点+60〜8
0°Cの温度で溶融し、窒素圧5kg/cJで加圧して
気相中にスプレーすることにより、ピッチ微小中空体G
2を製造した。この結果を表2に示す。
Next, the solvent-containing pitch Gl was added to the pitch with a softening point of +60 to 8
Pitch micro hollow bodies G are melted at a temperature of 0°C and sprayed into the gas phase under a nitrogen pressure of 5 kg/cJ.
2 was manufactured. The results are shown in Table 2.

62発泡状況はElと同様に不均一であり、球状化率は
50%以下であった。
Similar to El, the foaming condition of No. 62 was non-uniform, and the spheroidization rate was less than 50%.

表1 表2 〈発明の効果〉 以上の実施例からもわかるように、本発明の方法により
精製されたピッチに不活性ガスを流通させながら減圧下
で所定の熱処理を行うことにより、均質で高軟化点のピ
ッチを得ることができ、このピッチはピッチないし炭素
微小中空体を製造するための原料ピッチとして、優れた
発泡性、不融化性を有している。
Table 1 Table 2 <Effects of the Invention> As can be seen from the above examples, pitch refined by the method of the present invention is subjected to a prescribed heat treatment under reduced pressure while flowing an inert gas, resulting in a homogeneous and high-quality pitch. A pitch with a softening point can be obtained, and this pitch has excellent foamability and infusibility as a raw material pitch for producing pitch or carbon microhollow bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明のピッチD中の、(b)はピッチ
E中の粒子の構造を示す、それぞれ偏光顕微鏡組織図で
ある。
FIG. 1(a) is a polarizing microscopic structure diagram showing the structure of particles in pitch D and FIG. 1(b) is a structure of particles in pitch E of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 実質的にキノリン不溶分を含まない精製ピッチを準備し
、次いで該精製ピッチに不活性ガスを吹込みながら減圧
下で300〜380℃の熱処理を施し、軟化点が150
〜250℃、ベンゼン不溶分が35〜55重量%、キノ
リン不溶分が0.01重量%未満、かつ全面光学的等方
性になるように調製することを特徴とするピッチないし
炭素微小中空体用原料ピッチの製造方法。
Purified pitch containing substantially no quinoline-insoluble matter is prepared, and then heat treated at 300 to 380°C under reduced pressure while blowing an inert gas into the purified pitch to achieve a softening point of 150.
~250°C, for pitch or carbon microhollow bodies prepared to have a benzene insoluble content of 35 to 55% by weight, a quinoline insoluble content of less than 0.01% by weight, and to be optically isotropic over the entire surface. A method for producing raw material pitch.
JP63296165A 1988-11-25 1988-11-25 Production of raw material pitch for pitch or carbon microballoon Pending JPH02142891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296165A JPH02142891A (en) 1988-11-25 1988-11-25 Production of raw material pitch for pitch or carbon microballoon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296165A JPH02142891A (en) 1988-11-25 1988-11-25 Production of raw material pitch for pitch or carbon microballoon

Publications (1)

Publication Number Publication Date
JPH02142891A true JPH02142891A (en) 1990-05-31

Family

ID=17829999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296165A Pending JPH02142891A (en) 1988-11-25 1988-11-25 Production of raw material pitch for pitch or carbon microballoon

Country Status (1)

Country Link
JP (1) JPH02142891A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206127A (en) * 1989-12-28 1991-09-09 Nkk Corp Pitch composition
WO1999011585A1 (en) * 1997-09-02 1999-03-11 Lockheed Martin Energy Research Corporation Pitch-based carbon foam and composites
WO1999061549A1 (en) * 1998-05-22 1999-12-02 Alliedsignal Inc. Methods for making a pitch-based carbon foam
CN1076011C (en) * 1998-01-13 2001-12-12 南通碳素厂 Porous carbon material producing process
CN109250716A (en) * 2018-12-05 2019-01-22 宁波设会物联网科技有限公司 A kind of preparation method of asphaltic base hollow ball shape active carbon

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03206127A (en) * 1989-12-28 1991-09-09 Nkk Corp Pitch composition
WO1999011585A1 (en) * 1997-09-02 1999-03-11 Lockheed Martin Energy Research Corporation Pitch-based carbon foam and composites
US6261485B1 (en) 1997-09-02 2001-07-17 Ut-Battelle, Llc Pitch-based carbon foam and composites
US6387343B1 (en) 1997-09-02 2002-05-14 Ut-Battelle, Llc Pitch-based carbon foam and composites
AU757545B2 (en) * 1997-09-02 2003-02-27 Ut-Battelle, Llc Pitch-based carbon foam and composites
US6656443B2 (en) 1997-09-02 2003-12-02 Ut-Battelle, Llc Pitch-based carbon foam and composites
US6663842B2 (en) 1997-09-02 2003-12-16 James W. Klett Pitch-based carbon foam and composites
US6315974B1 (en) 1997-11-14 2001-11-13 Alliedsignal Inc. Method for making a pitch-based foam
CN1076011C (en) * 1998-01-13 2001-12-12 南通碳素厂 Porous carbon material producing process
WO1999061549A1 (en) * 1998-05-22 1999-12-02 Alliedsignal Inc. Methods for making a pitch-based carbon foam
CN109250716A (en) * 2018-12-05 2019-01-22 宁波设会物联网科技有限公司 A kind of preparation method of asphaltic base hollow ball shape active carbon

Similar Documents

Publication Publication Date Title
US4472265A (en) Dormant mesophase pitch
CA1164384A (en) Process for producing mesophase pitch
JPS61238885A (en) Method of refining raw material used for production of carbon product
EP1518825B1 (en) Process for producing spherical activated carbon
JPS5917043B2 (en) Method for producing mesocarbon microbeads with uniform particle size
JPH03212489A (en) Manufacture of purified pitch and/or mesophase pitch for manufacturing carbon fiber
JPH02142891A (en) Production of raw material pitch for pitch or carbon microballoon
JPS5845281A (en) Manufacture of carbon article raw material
JPS6030365B2 (en) Method for producing high strength, high modulus carbon fiber
KR100653929B1 (en) Product method for matrix pitch using carbon complex material reinforced carbon fiber
JPS6147826A (en) Manufacture of pitch-based carbon fiber
JPS6256198B2 (en)
CA2238024C (en) Self-stabilizing pitch for carbon fiber manufacture
JPS61215718A (en) Production of carbon fiber
JPS58101191A (en) Preparation of mesophase pitch and carbon fiber from said pitch
JPH03206127A (en) Pitch composition
KR910003476B1 (en) Production process of mesophase pitch for spinning
JP3018660B2 (en) Spinning pitch for carbon fiber and method for producing the same
JPS63258982A (en) Production of optically anisotropic pitch suitable for producing high-performance carbon fiber
JPH05345666A (en) Production of formed carbon material
JPS60103011A (en) Manufacture of easily-graphitizable high-density carbonaceous material
JPH0320431B2 (en)
JPS623195B2 (en)
JPS59145285A (en) Meso-phase pitch suitable as raw material for high-strength carbon fiber
JP2004182508A (en) Method of producing carbon material for electric double layer capacitor electrode