JPH02141545A - Manufacture of sintered compact of light metal - Google Patents

Manufacture of sintered compact of light metal

Info

Publication number
JPH02141545A
JPH02141545A JP63293708A JP29370888A JPH02141545A JP H02141545 A JPH02141545 A JP H02141545A JP 63293708 A JP63293708 A JP 63293708A JP 29370888 A JP29370888 A JP 29370888A JP H02141545 A JPH02141545 A JP H02141545A
Authority
JP
Japan
Prior art keywords
powder
aluminum
model
sintered compact
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63293708A
Other languages
Japanese (ja)
Inventor
Hiroya Yamamoto
山本 博也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63293708A priority Critical patent/JPH02141545A/en
Publication of JPH02141545A publication Critical patent/JPH02141545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered compact of light metal having dense sintered surfaces with superior transfer characteristics while obviating the necessity of afterworking by mechanically crushing, while temporally dividing, an Al(alloy) powder, mixing the above, compacting the resulting powder mixture and then subjecting the resulting green compact to semimolten sintering and forming. CONSTITUTION:A pulverized black powder prepared by mechanically crushing, while temporally dividing, an Al(alloy) powder or a powder mixture of the above is used, or further, an Al powder which is not mechanically crushed is mixed with the above powder, The resulting powder is filled into a vessel, which is compacted and heated. The Al powder combined with the above Al alloy powder is slowly melted and allowed to penetrate into all the corners of a model. The sintered compact after cooling is drawn out of the model. The surfaces prepared by contact with the model are composed of the sintered compact covered with a metallic film and are subjected to the actions of both casting and sintering. This semimolten sintered compact is easy to be worked and can be suitably used, e.g., as material for low-cost metal mold for engineering plastics.

Description

【発明の詳細な説明】 主肌少且旬 〔産業上の利用分野〕 本発明は、アルミニウム、アルミニウムを主体とする合
金粉末、これらの軽金属粉末の半溶融焼結体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing aluminum, an alloy powder mainly composed of aluminum, and a semi-molten sintered body of these light metal powders.

〔従来の技術〕[Conventional technology]

アルミニウム、アルミニウムを主体とする合金は比重が
小さくて軽く、加工しやすいという利点が・あるものの
、強度や硬度、とくに後者が低いため、用途は限られて
いる。
Aluminum and aluminum-based alloys have the advantage of being light with a low specific gravity and being easy to process, but their uses are limited because their strength and hardness, especially the latter, are low.

近年、粉末冶金技術の進歩につれで、たとえは、アルミ
ニウムを、硅素、鉄、マンガ〉、ジルコニウムなどと複
合した粉末材料の製品が得られろようになってきた。こ
れらは、従来の溶解性もこより平衡状態で得た合金では
達成できない耐熱、耐摩耗性、耐疲労性の高い素材を示
す。
In recent years, with the advancement of powder metallurgy technology, it has become possible to obtain powder material products that combine aluminum with silicon, iron, iron, zirconium, etc. These exhibit materials with high heat resistance, wear resistance, and fatigue resistance that cannot be achieved with conventional alloys obtained at equilibrium conditions due to their solubility.

粉末冶金法によるときはまた、他の金属の繊維、セラミ
ックスの粉末等を複合して、用途に通した物性の材料を
作ることができる。
When using a powder metallurgy method, it is also possible to make a material with physical properties suitable for various uses by combining fibers of other metals, powders of ceramics, etc.

しかし・複雑な形状とこ対しでは従来の粉末冶金法では
、側面の形状や細部にいたるまで成形することは困難を
ともない、また表面仕上げなどの後加工を必要としない
で、転写性がよくしかもち密な表面を持った焼結面を作
ることは難しい等の問題点がある。
However, with conventional powder metallurgy, it is difficult to mold complex shapes down to side shapes and details, and there is no need for post-processing such as surface finishing, which allows for good transferability and compactness. There are problems such as the difficulty of creating a sintered surface with a uniform surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、アルミニウム粉末、アルミニウム合金
粉末を素材とし・た新複合材を開発し、半溶融焼結体で
焼結するものである。
The object of the present invention is to develop a new composite material made of aluminum powder and aluminum alloy powder, and to sinter it into a semi-molten sintered body.

この焼結法の製造技術においては、硬度が常用の鋼のし
l\ル・ショア硬度)1 s =35〜40のものを製
造する方法と、また複雑な形状の型にたいしてもすみま
て焼結体を行き渡らせ、鋳造法と焼結との両者をかねた
方法を提供することしこある。
This sintering method has a hardness of 1 s = 35 to 40 (Shore hardness) of commonly used steel, and also a method that can be used for molds with complex shapes. It is often possible to provide a method for distributing the solids and combining both casting and sintering.

また、上述の新複合材と金属膜との絹合せ乙こより、普
通の粉末冶金法での焼結では難し・いとされている焼結
面の表面の仕上げなど、後加工を必要としないで転写性
よくち密な表面を提供するものである。
In addition, the above-mentioned bonding of the new composite material and metal film enables transfer without the need for post-processing, such as finishing the surface of the sintered surface, which is difficult to do with sintering using ordinary powder metallurgy. It provides a soft and dense surface.

このようここ軽金属の焼結体で高い硬度と転写性よくち
密な表面を持ったものは、たとえはプラスチックの成形
金型、特にエンジニアリング・プラスチックの成形金型
に有効であり、その他(ここの半溶融焼結体は射出成形
機等で成形し・た場合、ダイカスト法と同様OA機器な
どの機械部品にも役立つものである。
Such light metal sintered bodies with high hardness, good transferability, and a dense surface are effective for example, plastic molding molds, especially engineering plastic molding molds, and other (such as When the molten sintered body is molded using an injection molding machine or the like, it is useful for making mechanical parts such as OA equipment, similar to the die casting method.

光肌辺購戒 〔課題を解決するための手段〕 、本発明の金属半溶融焼結体の製造方法は、アルミニウ
ム、アルミニウム合金粉末を時間的に区分して機械的t
こ粉砕した黒色微粉末、すなわちボールミル、自動乳鉢
で時間的区分、たとえは5時間、10時間、15時間、
20時間、25時間と混練し、各種の微粉末を造り粒度
は350メ・ンシュを通過するぐらいの微粉末が好まし
・い。
[Means for Solving the Problem] The method for producing a semi-molten metal sintered body of the present invention involves temporally dividing aluminum and aluminum alloy powder into mechanical t
The pulverized black fine powder is divided by time in a ball mill or automatic mortar, for example, 5 hours, 10 hours, 15 hours,
The mixture is kneaded for 20 or 25 hours to produce various types of fine powder, and preferably has a particle size of about 350 mesh.

この方法で製造した粉末の表面は黒色を帯び練り時間の
増加するほど黒が淵くなる。これ等の各種を1種または
2種以上の混合物を硅@塩類の複合溶液(特許昭和6O
−62665)またはその複合液を活性炭で濾過した濾
液を希釈しpH7〜12とした乳白色ゾル状態の硅酸塩
類の複合)夜に数時間接触させ、後濾過し濾過物を再び
アルコール液中に浸して後濾過・乾燥しさらさらの粉末
とする。
The surface of the powder produced by this method has a black color and becomes more black as the kneading time increases. A complex solution of silicon@salts (patented in Showa 60
-62665) or a composite of silicates in the form of a milky white sol by filtering the filtrate with activated carbon and diluting the filtrate to pH 7 to 12).Then, the mixture was left in contact for several hours at night, then filtered, and the filtrate was immersed in the alcohol solution again. After that, it is filtered and dried to make a smooth powder.

この粉末は柔らかく圧扮しやすい粉末となる。This powder becomes a soft powder that is easy to press.

この黒色混合物をホットプレス或は射出成形機で加熱・
加圧の方法で成形すると、一部溶解がおこり、しかもこ
れ等の混合物は急激に溶けることはなく徐々に溶けてい
くので、加熱・加圧の程度に応じて細かいところまで進
入していく。しかも、途中混合物は分離を起こさない。
This black mixture is heated in a hot press or injection molding machine.
When molded by pressurization, some melting occurs, and since these mixtures do not melt suddenly but gradually, they penetrate into fine parts depending on the degree of heating and pressurization. Moreover, the mixture does not undergo separation during the process.

この溶融体の核となる焼結体はアルミニウム合金粉末で
、たとえはアルミニウム:硅素=80: 20の重量の
割合で、アルミニウム:鉄=80: 20の重量割合等
の合金粉末の新素材があげられ、従って硅酸塩類複合液
と相伴って、この半溶融焼結体は鋼材なみの高い硬度と
高い強度を得ることができる。
The sintered body that forms the core of this molten body is aluminum alloy powder.For example, new alloy powder materials with a weight ratio of aluminum: silicon = 80: 20, aluminum: iron = 80: 20, etc. Therefore, together with the silicate compound liquid, this semi-molten sintered body can obtain high hardness and high strength comparable to steel.

この混合物には金属粉末の他、アルミナ、シリカ、炭化
硅素等のセラミ・ツクス物質の粉末や繊維を配合するこ
とも、半溶融焼結体製品の硬さや耐摩耗性の向上にとっ
て有効である。
In addition to metal powder, it is also effective to incorporate powders and fibers of ceramic materials such as alumina, silica, and silicon carbide into this mixture to improve the hardness and wear resistance of the semi-molten sintered product.

圧粉成形および焼結はアルミニウム合金の粉末冶金の技
術(こおいて知られているところに従って実施すれはよ
い。圧縮を容易にするためのステアリン酸亜鉛のような
滑剤を適量使用することはその一例である。圧粉の圧力
は比較的低くて単位あたり1000 kg/ car’
以内ですみ、焼結は真空下または不活性ガス雰囲気下で
、材料に用いた金属の融点との関連で適切にえらんだ温
度に加熱して行なう。通常、450〜650℃範囲であ
る。
Compacting and sintering may be carried out in accordance with known techniques of powder metallurgy for aluminum alloys. For example, the pressure of powder compaction is relatively low, 1000 kg/car' per unit.
Sintering is carried out under vacuum or in an inert gas atmosphere by heating to a temperature appropriately selected in relation to the melting point of the metal used as the material. Usually, it is in the range of 450 to 650°C.

時間は温度と圧力に応するもので大体10〜30分ぐら
いが適当である。
The time depends on the temperature and pressure, and approximately 10 to 30 minutes is appropriate.

〔作 用〕[For production]

時間的に区分し、機械的粉砕方法によって得たアルミニ
ウム、それを主体とする合金粉末(黒色粉末)の1種ま
たは2種以上の混合物、またはそれに機械的に粉砕して
いないアルミニウム、またはそれを主体とする合金の粉
末(銀灰白色)の混合物の焼結は半溶融焼結、すなわち
鋳造法と焼結注の両者をかねた焼結法で行なう。装置と
して、ホ・ントプレスまたは射出成形機を用いる。
Aluminum obtained by mechanical pulverization, a mixture of one or more of alloy powders (black powder) mainly composed of aluminum, or aluminum that has not been mechanically pulverized, or aluminum that has not been mechanically pulverized. Sintering of the mixture of the main alloy powder (silver grayish white) is carried out by semi-melting sintering, that is, a sintering method that combines both casting and sintering. A printer press or an injection molding machine is used as the device.

また根株的粉砕方法により得た黒色粉末アルミニウム、
またはその合金粉末との混合物を硅酸塩類の複合液(特
願昭6O−62665)を活性炭で濾過した濾液を希釈
したI) 87〜12の溶液に数時間浸した後、これを
濾過し、濾過物を再びアルコール1夜に浸した後、これ
を濾過し、濾・過物を乾燥しさらざらの粉末とする。こ
れ等混合物の凝固開始温度と凝固終了温度との間に50
〜80℃位の差を生じ、しかも同じアルミニウム類に属
するので溶融の際分離を生じない。また加熱、加圧する
とき急激にiα化しないで、徐々に液化し、同時に硬度
増進作用も兼ね物性的な面及び成形操作上非常に有利な
作用をする。また、半溶融状態で焼結するので、加熱・
加圧tこより複雑な形状にも焼結が流れ込み、通常の粉
末冶金法では無理とされる側面の溝など細部にまで充填
可能となり、鋳造−粉末焼結法の両作用を有することと
なる。
In addition, black powder aluminum obtained by root-based crushing method,
Or, the mixture with the alloy powder is immersed in the solution of I) 87 to 12 for several hours, which is obtained by diluting the filtrate obtained by filtering the composite liquid of silicates (Japanese Patent Application No. 6O-62665) with activated carbon, and then filtering it. The filtrate is again soaked in alcohol overnight, filtered, and the filtrate is dried to form a smooth powder. 50% between the solidification start temperature and solidification end temperature of these mixtures.
There is a difference of about ~80°C, and since they belong to the same aluminum class, no separation occurs during melting. Moreover, when heated and pressurized, it does not rapidly turn into iα, but gradually liquefies, and at the same time, it also has a hardness-enhancing effect, which is very advantageous in terms of physical properties and molding operations. In addition, since it is sintered in a semi-molten state, heating and
Due to the pressure, sinter flows into complex shapes, making it possible to fill details such as side grooves that are impossible with ordinary powder metallurgy methods, and having both the effects of casting and powder sintering methods.

また半溶融焼結体と金属膜との絹合せでは、モデル(マ
スター)を汚すことはないので、−個のモデルで何回の
使用も可能となり、金型の多数個取りの場合は経済的に
有利である。
Furthermore, since the mating of the semi-molten sintered body and the metal film does not contaminate the model (master), it is possible to use - one model many times, making it economical when molding multiple pieces. advantageous to

〔実施例1〕 アルミニウムを生体とする合金粉末(アルミニウム:硅
素=80: 20の重量割合)は、急冷凝固粉末法で作
った合金粉末で、これを150g、さらにアルミニウム
の粉末30gと炭化硅素の微粉末3gの混合粉末を自動
乳鉢で25時間混練すると黒色微粉末となる。・・・・
(I)(1)の混合物を硅酸塩類の複合溶液(特願昭6
O−62665)、あるいはこれを活性炭で濾過した黄
赤色の透明−の濾液を希釈してpH9〜10前後とした
乳濁溶液に2時間〜3時間浸し、時々攪拌する。このあ
と濾過し、再び濾過物をアルコール液中に浸す。この混
合物はだんだん粘っこくなってくる。これを濾過し、濾
過物を乾燥してさらさらの粉末とする。・・・・(n) この混合物(IF)180gここ機械的に粉砕しないア
トマイズ装置でつくった銀灰白色アルミニウムの金属粉
末25gを混合し、滑り材ステアリン酸亜鉛0.5重量
%添加し、自動乳鉢で約30分位混合する。・・・・ 
(III) この混合物(I[[)を図1の充填容器に充填し、プレ
スで圧力0〜1000kg/cW12の範囲で、常温圧
粉体をつくる。この充填容器は図1のようにモデル(マ
スター)は無電解メツキ、クロメート化(酸化膜)、電
着メツキ膜で包まれていて、従ってモデルの外側は金属
膜で包まれ、さらにその外側は鋼材の充填容器で囲まれ
ている。たとえば、容器の寸法は内径34 nu++・
外径44mm・長さは35mmで、この充填容器中の圧
粉体は半密閉のN2雰囲気下、加圧0〜200kg/c
T112の範囲で、温度630℃位で10〜15分加熱
する。加熱・加圧上こ応じて、アルミニウム合金粉末と
結合したアルミニウム粉末が徐々に溶解しつつ、モデル
の細部にまでいきわたる。冷却後この焼結体はモデルか
ら抜かれる。従ってモデルに接触し、た面は金属膜(5
0〜100μ)で包まれた焼結体で(特願昭6O−62
666)鋳造法と焼結法の両作用を受ける。この半溶融
焼結体を旋盤で削ると、切り屑はつながっており、断面
は金属光沢があり、比重は約2.9位で図1の側面の溝
に一様に充填されており、その外側は金属膜で包まれニ
ッケルの金属光沢を有しち密であった。この半溶融焼結
体のショア硬度Hs=35前後、555C鋼材の硬度以
上にあたる。
[Example 1] 150g of aluminum-based alloy powder (aluminum:silicon = 80:20 weight ratio) was made by a rapid solidification powder method, and then 150g of this was mixed with 30g of aluminum powder and silicon carbide. When a mixed powder containing 3 g of fine powder is kneaded in an automatic mortar for 25 hours, it becomes a black fine powder.・・・・・・
(I) The mixture of (1) was added to a composite solution of silicates (patent application 1986).
0-62665) or filtered through activated carbon, the yellow-red transparent filtrate is diluted and immersed in an emulsion solution to a pH of around 9 to 10 for 2 to 3 hours, with occasional stirring. After this, it is filtered and the filtered product is immersed in alcohol solution again. This mixture will become thicker and thicker. This is filtered and the filtrate is dried to form a smooth powder. ...(n) 180 g of this mixture (IF) was mixed with 25 g of silvery-gray white aluminum metal powder made with an atomizing device that does not mechanically crush it, 0.5% by weight of zinc stearate was added as a slipping material, and the mixture was placed in an automatic mortar. Mix for about 30 minutes.・・・・・・
(III) This mixture (I[[) is filled into the filling container shown in FIG. 1, and pressed at a pressure in the range of 0 to 1000 kg/cW12 to produce a room-temperature green compact. In this filling container, as shown in Figure 1, the model (master) is covered with electroless plating, chromate (oxide film), and electrodeposition plating film, so the outside of the model is wrapped with a metal film, and the outside of that Surrounded by a steel filling container. For example, the dimensions of the container are an inner diameter of 34 nu++.
The powder compact in this filling container has an outer diameter of 44 mm and a length of 35 mm, and is pressurized at 0 to 200 kg/c in a semi-closed N2 atmosphere.
Heat in the range of T112 at a temperature of about 630°C for 10 to 15 minutes. As the heat and pressure are applied, the aluminum powder combined with the aluminum alloy powder gradually melts and spreads to the details of the model. After cooling, this sintered body is removed from the model. Therefore, the surface in contact with the model is a metal film (5
0~100μ)
666) It is affected by both casting method and sintering method. When this semi-molten sintered body is cut with a lathe, the chips are connected, the cross section has a metallic luster, the specific gravity is approximately 2.9, and the grooves on the side of Fig. 1 are uniformly filled. The outside was covered with a metal film and had a nickel metallic luster and was dense. The Shore hardness Hs of this semi-molten sintered body is around 35, which is higher than the hardness of 555C steel.

〔実施例2〕 アルミニウム合金粉末(アルミニウム:硅素=80: 
20の重量比)、これは急冷凝固粉末の複合材で、この
合金粉末100gにアルミニウム金属粉末(MA灰白色
)の粉末50gと炭化硅素の微粉末4gの混合粉末を自
動乳鉢で時間割り、5時間、15時間、25時間と3種
類に分類して各々混練した。各時間毎に5時間−110
g、15時間−110g、25時間−110gとの混合
物をボールミル中で60分位混合する。・・・(1)(
I)の混合物を硅酸塩類の複合溶液(特願昭6O−62
665)を実施例1と同様にした乳濁液pH9位の溶液
中に約2時間〜3時間位浸し時々攪拌する。このあと濾
過し濾過物を再びアルコール1夜中に浸す。この混合物
は粘っこくなってくる。
[Example 2] Aluminum alloy powder (aluminum: silicon = 80:
20), this is a composite material of rapidly solidified powder. A mixed powder of 100 g of this alloy powder, 50 g of aluminum metal powder (MA grayish white) powder and 4 g of fine silicon carbide powder was mixed in an automatic mortar for 5 hours. The mixture was classified into three types: 15 hours, 25 hours, and kneaded. 5 hours for each hour - 110
g, 110 g for 15 hours, and 110 g for 25 hours are mixed in a ball mill for about 60 minutes. ...(1)(
The mixture of I) was prepared as a composite solution of silicates (Japanese Patent Application No. 60-62
665) was immersed in an emulsion solution having a pH of about 9 as in Example 1 for about 2 to 3 hours and stirred occasionally. After that, it is filtered and the filtered material is soaked again in alcohol overnight. This mixture will become sticky.

これを濾過、乾燥し・さらさらの粉末とする。・・・・
(n) (II)の混合物300gに滑り剤としてステアリン酸
塩の微粉末0. 5wt%添加し、ボールミル中で約3
0分位混合する。・・・・ (m)この混合物(m)を
図1の充填容器に充填し、圧力O〜1000 kg/ 
cm2の範囲で常温圧粉体をつくる。この充填容器は実
施例1と同様にモデル(マスター)は無電解メツキ、酸
化膜、電着メツキ膜でカバーしたもので、外側は鋼材の
充填容器で囲ったものである。この充填容器中の圧粉体
を0〜200kg70m2の範囲の圧力を加えながら、
半密閉N2雰囲気下で630℃前後で10分位加熱し、
断続的加圧する。この間アルミ合金粉末と結合したアル
ミニウムが加熱・加圧に応じて徐々に溶解しながらモデ
ルの細部にまでいきわたる。
This is filtered and dried to form a smooth powder.・・・・・・
(n) 300 g of the mixture of (II) and 0.0 g of fine powder of stearate as a slip agent. Added 5wt% and milled about 3% in a ball mill.
Mix about 0 minutes. ... (m) This mixture (m) is filled into the filling container shown in Fig. 1, and the pressure is O ~ 1000 kg/
Make room-temperature compacted powder in the cm2 range. Similar to Example 1, this filling container had a model (master) covered with electroless plating, an oxide film, and an electrodeposition plating film, and the outside was surrounded by a steel filling container. While applying pressure in the range of 0 to 200 kg and 70 m2 to the green compact in this filling container,
Heat at around 630℃ for about 10 minutes in a semi-closed N2 atmosphere,
Apply intermittent pressure. During this time, the aluminum combined with the aluminum alloy powder gradually melts as it is heated and pressurized, spreading to every detail of the model.

冷却後乙の焼結体はモデルから抜かれる。従ってモデル
に接触した面は金属膜で包まれた焼結体と=12− なる。冷却後、この焼結体を旋盤で削ったところ、断面
は金属光沢があり、比重は約2.9位で図1の側面の溝
に一様に充填されており、その外側は金属膜で包まれ二
・ンケルの金属光沢を有し、焼結体の耐力は30 kg
/mm2位で、ショア硬度Hs=35〜40で555C
鋼材以上の値である。また、この半溶融焼結体をつくる
場合も、射出成形機であらかじめ加熱◆加圧で半溶融焼
結体の状態にして注入してもよい。
After cooling, the sintered body B is removed from the model. Therefore, the surface in contact with the model becomes a sintered body wrapped in a metal film. After cooling, when this sintered body was cut with a lathe, the cross section had a metallic luster, the specific gravity was about 2.9, and the grooves on the side of Fig. 1 were uniformly filled, and the outside was covered with a metal film. The sintered body has a metallic luster of 2.5 kg, and the yield strength of the sintered body is 30 kg.
/mm2, Shore hardness Hs = 35-40, 555C
This value is higher than that of steel materials. Also, when producing this semi-molten sintered body, it may be heated and pressurized in an injection molding machine in advance to form a semi-molten sintered body and then injected.

〔実施例3〕 アルミニウム金属粉末<m灰白色)の粉末150gに炭
化硅素3gの割合の混合粉末を自動乳鉢で時間割りで、
5時間、10時間、15時間、20時間、25時間と5
種類に分割して各々別々に混練した。混錬時間の長い程
、黒の色は澗くなってくる。各時間毎に5時間−100
g、10時間−100g、15時間−100g、20時
間−100g、25時間−100g、との混合物をボー
ルミル中で60分位混合する。・・・・(I)(I)の
混合溶液を硅酸塩類の複合溶液(特願昭6O−6266
5)を実施例1と同様にした乳濁ン夜pH9〜10位の
溶液中に約2時間〜3時間位浸し時々攪拌する。このあ
と濾過し、濾過物を再びアルコール液中に浸す。この混
合物は粘っこくなってくる。これを濾過、乾燥しさらさ
らの粉末とする。 ・ 中 令 ◆ (n) (n)の混合物200gをとり、この混合物の核となる
アルミニウム合金粉末(アルミニウム:鉄=80: 2
0重量割合)を60gとステアリン酸亜鉛の微粉末0.
 5wt%添加し、ボールミル中で約20〜30分位混
合する。・・・・ (In)この混合物(m)を充填用
成形容器(材質がSF3の鋼材で、長さ45 mm、直
径30 mms 肉厚5mmの中空円筒と直径20mm
の円形上下ラムからなる)に0〜1000kg/cW1
2の範囲で加圧しながら、半密閉N2雰囲気下で630
℃前後で10分位加熱し、断続的に0〜200 kg/
 cm”の範囲で加圧する。アルミ合金粉末と結合した
アルミニウムが加熱・加圧に応じて徐々に溶解していき
、核はアルミニウム合金でその周りを硬度が鋼材なみに
高められたアルミニウム金属で包まれた型となる。
[Example 3] A mixed powder of 150 g of aluminum metal powder (grayish white) powder and 3 g of silicon carbide was mixed in an automatic mortar at regular intervals.
5 hours, 10 hours, 15 hours, 20 hours, 25 hours and 5
It was divided into different types and kneaded separately. The longer the kneading time, the darker the black color becomes. 5 hours - 100 for each hour
g, 100 g at 10 hours, 100 g at 15 hours, 100 g at 20 hours, and 100 g at 25 hours are mixed in a ball mill for about 60 minutes. ...(I) A mixed solution of (I) is prepared as a composite solution of silicates (patent application 1986-6266).
5) The emulsion prepared in the same manner as in Example 1 was immersed in a solution having a pH of 9 to 10 for about 2 to 3 hours and stirred occasionally. After that, it is filtered and the filtered product is immersed in the alcohol solution again. This mixture will become sticky. This is filtered and dried to form a smooth powder.・ Medium Rei ◆ (n) Take 200 g of the mixture of (n) and add aluminum alloy powder (aluminum: iron = 80: 2) to form the core of this mixture.
0.0% by weight) and 60g of fine powder of zinc stearate.
Add 5 wt% and mix in a ball mill for about 20 to 30 minutes. (In) A molded container for filling this mixture (m) (made of SF3 steel, length 45 mm, diameter 30 mm, wall thickness 5 mm hollow cylinder and diameter 20 mm)
consisting of circular upper and lower rams) from 0 to 1000 kg/cW1
630 in a semi-closed N2 atmosphere while pressurizing in the range of 2.
Heat at around ℃ for about 10 minutes and intermittently weigh 0 to 200 kg/
The aluminum combined with the aluminum alloy powder gradually melts as it is heated and pressurized, forming an aluminum alloy core surrounded by aluminum metal whose hardness is as high as that of steel. It becomes a mold.

この半溶融焼結体の硬度は実施例1とほぼ変わりなく、
硬さについてはHs=35前後で銀材なみの値を示し、
比重3.1位で軽い。
The hardness of this semi-molten sintered body is almost the same as in Example 1,
Regarding hardness, Hs = around 35, which is equivalent to that of silver.
It is light with a specific gravity of 3.1.

また、このp=台物を半溶融状態にする場合、射出成形
機であらかじめ加熱・加圧で半溶融焼結体の状態にして
、金型内に射出成形させることができる。
In addition, when this p=base is to be made into a semi-molten state, it can be heated and pressurized in advance in an injection molding machine to make it into a semi-molten sintered state, and then injection molded into a mold.

〔発明の効用〕[Efficacy of invention]

成形用に使用するモデルの表面を金属膜で包むことは、
金属の溶出物等によってモデルが汚れなくてすみ、繰り
返し使用が可能であると同時に金属の無電解N1−P 
メツキによって耐薬品製、耐摩耗性が太いしこ向上する
Wrapping the surface of the model used for molding with a metal film is
The model does not need to be contaminated by metal eluates, etc., and can be used repeatedly.
The plating improves chemical resistance and wear resistance.

モデルの加工に関しては、最近放電加工力が発達し、表
面の粗さは小さい電極では0.8μR111aX程度ま
で加工ができるようになった。しかしこの機械は相当高
価であり、加工工数も大きいので、モデルの加工費は相
当高くつく。通常同じモデルを数個作り、多数個どりの
成形を行なうので、1個のモデルを使用して数個の型が
とれると経済的に有利となる。しかも多品種小量生産に
おいては特に有効である。
Regarding machining of models, electric discharge machining power has recently been developed, and it is now possible to process electrodes with small surface roughness of about 0.8μR111aX. However, this machine is quite expensive and requires a large number of machining steps, so the cost of machining the model is quite high. Usually, several identical models are made and molded in large numbers, so it is economically advantageous to be able to make several molds using one model. Moreover, it is particularly effective in high-mix, low-volume production.

従ってモデル数個つくる代わりに1個つくり、これをメ
ツキ等の金属膜で包み、本発明による半溶融焼結法を用
いれは、細かい形状の細部にまで焼結体がいきわたると
同時に電着の特徴をいかし、モデルの精度に応じて転写
が可能であり、しかもち密な表面を提供するものである
Therefore, instead of making several models, we make one model, wrap it in a metal film such as plating, and use the semi-molten sintering method according to the present invention.At the same time, the sintered body spreads to the fine details of the shape, and at the same time, it has the characteristics of electrodeposition. Taking advantage of this, it is possible to transfer according to the accuracy of the model, and it also provides a dense surface.

また本発明の方法に従って製造した半溶融焼結体は硬度
がショアHs=30以上であり、常用の構造用鋼の硬度
に匹敵する値である。主体がアルミニウムであるから軽
量である上、加工が容易である。
Further, the semi-molten sintered body produced according to the method of the present invention has a hardness of Shore Hs=30 or more, which is comparable to the hardness of ordinary structural steel. Since the main body is aluminum, it is lightweight and easy to process.

この焼結体組成物はプラスチック特に金属膜との總合せ
はエンジニアリング・プラスチックの簡易金型用材料に
適し、また射出成形機を用いての機械部品(OA機器等
)の材料に好適である。
This sintered body composition is suitable for use as a material for simple molds of engineering plastics, especially when combined with a metal film, and is also suitable as a material for mechanical parts (OA equipment, etc.) using an injection molding machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はダイスを含んだホ・ソトブレッス装置の縦断面
図、第2図はダイス(モデル)の横断面図である。 ダイスのモデル4の下地はN1−Pの無電解メツキを施
し、その上をクローム酸で酸化処理した酸化膜7(一種
の剥離剤)、更にこの上にNiメツキ膜(50μ〜15
0)l)8を電気メツキで電着する。この酸化膜7を境
にして、モデルとNiメツキ膜は必要に応して剥離され
る。 1・・・充填容器、2・・・支持脚、3・・(モデルの
)受は台、4・・・モデル(マスター)5・・・(モデ
ルの)側の溝(前後)2ケ所、6・・・N1−P無電解
メツキ膜、7・・・酸化膜、8・・・N1メッギ電着膜
、9・・・充填体(圧粉体)
FIG. 1 is a longitudinal cross-sectional view of the HoSotobreath device including the die, and FIG. 2 is a cross-sectional view of the die (model). The base of model 4 of the die is electroless plated with N1-P, and on top of that is an oxide film 7 (a type of stripping agent) oxidized with chromic acid, and on top of this is a Ni plating film (50 μ to 15 μm).
0) l) Electrodeposit 8 by electroplating. The model and the Ni plating film are peeled off, if necessary, with this oxide film 7 as a boundary. 1...Filling container, 2...Support legs, 3...(Model's) receiver is a stand, 4...Model (master) 5...(Model) side grooves (front and back) in 2 places, 6... N1-P electroless plating film, 7... Oxide film, 8... N1 Meggi electrodeposition film, 9... Filler (green compact)

Claims (4)

【特許請求の範囲】[Claims] (1)アルミニウムもしくはアルミニウムを主体とする
合金粉末を時間的に区分けして機械的粉粉砕方法により
粉砕し、黒色化した微粉末を各種つくり、これの1種ま
たは2種以上の混合粉末、またはこの混合粉末に機械的
に粉砕しないアルミニウムもしくはアルミニウムを主体
とする合金粉末とを1種または2種以上とを混合し、圧
粉、焼結、成形からなる半溶融焼結体の製造方法。
(1) Aluminum or aluminum-based alloy powder is divided in time and pulverized using a mechanical pulverization method to produce various types of blackened fine powder, and one or more types of these are mixed powder, or A method for producing a semi-molten sintered body, which comprises mixing this mixed powder with one or more types of aluminum or aluminum-based alloy powder that is not mechanically crushed, and then compacting, sintering, and molding.
(2)pH7〜12の硅酸塩類複合液に浸し処理した上
記混合物による特許請求範囲第1項の製造方法。
(2) The manufacturing method according to claim 1, in which the above-mentioned mixture is immersed in a silicate complex solution having a pH of 7 to 12.
(3)圧粉成形に至るまでのいずれかの工程でセラミッ
クス物質の粉末を添加して実施する特許請求の範囲第1
項の製造方法。
(3) Claim 1, which is carried out by adding ceramic material powder in any of the steps up to powder compaction.
Manufacturing method of section.
(4)上記焼結体と金属膜とを共存させて実施する特許
請求の範囲第1項の製造方法。
(4) The manufacturing method according to claim 1, wherein the sintered body and the metal film coexist.
JP63293708A 1988-11-22 1988-11-22 Manufacture of sintered compact of light metal Pending JPH02141545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293708A JPH02141545A (en) 1988-11-22 1988-11-22 Manufacture of sintered compact of light metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293708A JPH02141545A (en) 1988-11-22 1988-11-22 Manufacture of sintered compact of light metal

Publications (1)

Publication Number Publication Date
JPH02141545A true JPH02141545A (en) 1990-05-30

Family

ID=17798207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293708A Pending JPH02141545A (en) 1988-11-22 1988-11-22 Manufacture of sintered compact of light metal

Country Status (1)

Country Link
JP (1) JPH02141545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213499A (en) * 2007-02-28 2008-09-18 Mazda Motor Corp Accommodating structure for instrument panel of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008213499A (en) * 2007-02-28 2008-09-18 Mazda Motor Corp Accommodating structure for instrument panel of vehicle

Similar Documents

Publication Publication Date Title
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
CA2454000A1 (en) Lubricant system for use in powdered metals
CN107790729A (en) A kind of method that high-performance aluminium alloy is prepared using Powder Injection Molding Technology
JPH02141545A (en) Manufacture of sintered compact of light metal
JPS6354056B2 (en)
US3552955A (en) Method of making tools from metal particles
JPH0456702A (en) Raw material powder for powder metallurgy and manufacture thereof
JPH0196353A (en) Material for electric discharge machining and its manufacture
RU2269586C1 (en) Method of preparation of master alloys and deoxidizers
JP2599284B2 (en) Manufacturing method of soft sintered magnetic material
JP2000129307A (en) Method for molding amorphous alloy powder
JPH0551650B2 (en)
JPS63252613A (en) Manufacture of metal based composite material
JPS609089B2 (en) Manufacturing method of fine particle dispersed metal composite material
JPH04365824A (en) Production of slider for current collector
JPS596339A (en) Preparation of aluminum alloy
JPH04365823A (en) Production of slider for current collector
JPS61220809A (en) Mold
JPH02251353A (en) High temperature pressurizing forming method for metal base composite material
JPH05245609A (en) Production of high strength structural member with use of rapid solidified alloy powder
JP2002144020A (en) Method for forming composite material of metal and inorganic particle
JPH0649507A (en) Production of compact infiltrated with metal powder
JPH079002B2 (en) Method for manufacturing low-melting-point metal sintered body
JPS62161931A (en) Manufacture of metal-base composite material
JPH04136133A (en) Manufacture of particle dispersed composite