JPH02141425A - Bismuth-based oxide superconducting material and production thereof - Google Patents

Bismuth-based oxide superconducting material and production thereof

Info

Publication number
JPH02141425A
JPH02141425A JP63273776A JP27377688A JPH02141425A JP H02141425 A JPH02141425 A JP H02141425A JP 63273776 A JP63273776 A JP 63273776A JP 27377688 A JP27377688 A JP 27377688A JP H02141425 A JPH02141425 A JP H02141425A
Authority
JP
Japan
Prior art keywords
bismuth
superconducting material
compounds
based oxide
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63273776A
Other languages
Japanese (ja)
Inventor
Utako Endou
遠藤 歌子
Satoru Koyama
哲 小山
Kazuo Okamura
和夫 岡村
Tomoji Kawai
知二 川合
Koichi Kitazawa
北沢 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63273776A priority Critical patent/JPH02141425A/en
Priority to AT89110957T priority patent/ATE136161T1/en
Priority to EP89110957A priority patent/EP0347770B1/en
Priority to DE68926070T priority patent/DE68926070T2/en
Priority to AU36519/89A priority patent/AU3651989A/en
Priority to KR1019890008449A priority patent/KR910002024A/en
Priority to CN89106281A priority patent/CN1040700A/en
Publication of JPH02141425A publication Critical patent/JPH02141425A/en
Priority to US07/865,637 priority patent/US5352657A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To ensure a high content of Cu-O three-layered structure and 90-100K critical temp. for a Bi-Pb-Sr-Ca-Cu-O superconductor by allowing the superconductor to show a specified X-ray diffraction diagram. CONSTITUTION:This Bi-based oxide superconducting material consists of Bi, Pb, Sr, Ca, Cu and O and has a diffracted ray at 20 of 110K phase, that is, about 4.7 deg. in an X-ray diffraction diagram with CuK alpha-rays. In the diagram, the intensity of a diffracted ray at about 5.7 deg. of 80K phase and that at about 7.2 deg. of semiconductor phase are <=5% of the intensity of the diffracted ray at about 4.7 deg.. The pref. feeding compsn. (molar ratio) of this superconducting material is represented by a formula BixPby(SruCavCuw)zOalpha (where x is 0.150-0.215, y is 0.030-0.09, z is 0.720-0.800, u is 0.200-0.290, v is 0.250-0.355, w is 0.430-0.530, x+y+z=1 and u+v+w=1).

Description

【発明の詳細な説明】 (背景) ビスマス系酸化物超伝導体は1988年2月に前出らに
より見いだされた。この物質は110に付近から急激な
電気抵抗の減少が観測されると同時に、この温度付近で
のマイスナー効果も認められる。ll0Kという温度は
これまで最高の臨界温度を持つとされていたYBa、C
u、O,の9OKを太き(上回り、将来の応用が期待さ
れている。
DETAILED DESCRIPTION OF THE INVENTION (Background) A bismuth-based oxide superconductor was discovered by the aforementioned et al. in February 1988. In this material, a rapid decrease in electrical resistance is observed near 110, and at the same time, the Meissner effect is also observed near this temperature. The temperature of 10K was thought to be the highest critical temperature for YBa, C.
It is thicker than the 9OK of u, O, and is expected to be applied in the future.

110にの臨界温度を持つ相を単結晶として取り出すこ
とが可能であることは知られているが、このようにして
単結晶を取り出しても超伝導材料として利用することは
できない。従って、この時点では110にの臨界温度を
持つ実質的に単独相からなる材料は得られておらず、製
造された材料には必ず80に相あるいは半導体相および
Ca。
Although it is known that it is possible to extract a phase with a critical temperature of 110 °C as a single crystal, even if the single crystal is extracted in this way, it cannot be used as a superconducting material. Therefore, at this point in time, no material has been obtained that consists essentially of a single phase with a critical temperature of 110 degrees Celsius, and the materials produced always contain 80 degrees Celsius phase or semiconducting phase and Ca.

pbo、等の不純物が共存していた。また、化合物は特
定できないが、X線回折図には110に相思外の小さな
回折線が観測される。このようないくつかの相の混合は
超伝導特性を著しく損なうためll0K相のみからなる
材料の出現が望まれていた。鉛の添加によって110に
相の割合を太き(できることが報告されているが、11
0に相単独の材料を得ることは困難を極めた。
Impurities such as pbo were present. Further, although the compound cannot be identified, an unexpectedly small diffraction line is observed at 110 in the X-ray diffraction diagram. Since such a mixture of several phases significantly impairs superconducting properties, it has been desired to develop a material consisting only of the 110K phase. It has been reported that the phase ratio can be increased to 110 by adding lead, but
It was extremely difficult to obtain a material with only phase 0.

この発見以降、構造に関する数多くの研究がなされ、そ
の結果、上記の110に相はBi−0層の間に3枚の、
80に相は2枚の、半導体相は1枚のCu−0層をそれ
ぞれ有していることが明らかとなった。
Since this discovery, numerous studies have been conducted on the structure, and as a result, the above 110 phase has three layers between the Bi-0 layers.
It became clear that the phase had two Cu-0 layers and the semiconductor phase had one Cu-0 layer.

(本発明の目的と発明にいたった経緯)本発明の目的は
実質的に110に相のみからなる超伝導材料およびその
製造方法を提供することにある。この目的を達成するた
め種々検討した結果、いくつかの限られた条件下、限ら
れた仕込み組成において実質的に80に相および半導体
相を含まないBi系超超伝導材料得ることに成功した。
(Object of the present invention and background of the invention) An object of the present invention is to provide a superconducting material consisting essentially of only the 110 phase and a method for producing the same. As a result of various studies to achieve this objective, we succeeded in obtaining a Bi-based superconducting material substantially free of 80 phase and semiconductor phase under some limited conditions and with a limited charging composition.

さらに本願発明者らは上記110に相のみよりなる超伝
導体の作製法の検討過程において、X線回折図にはll
0K相の回折線のみしか現れていないにもかかわらず磁
化率の測定を行った場合、110に付近および90から
I OOK付近の両方て大きな変化が現れるという現象
を確認した。このようにしてCu−03層の構造をもつ
ものの中に110−に相思外に90から100K付近に
超伝導転移温度をもつ物質が存在することを知るにいた
り本発明を完成した。
Furthermore, in the process of studying the method for producing a superconductor consisting only of phases in 110 above, the inventors of the present application discovered that the X-ray diffraction diagram
When the magnetic susceptibility was measured even though only the 0K phase diffraction line appeared, a phenomenon was confirmed in which large changes appeared both near 110 and from 90 to near IOOK. In this way, the present invention was completed by discovering that among materials having a Cu-03 layer structure, there existed a substance having a superconducting transition temperature in the vicinity of 90 to 100K.

(本発明の構成) 本発明はビスマス系酸化物超伝導材料およびその製造方
法に関するものである。
(Structure of the present invention) The present invention relates to a bismuth-based oxide superconducting material and a method for producing the same.

前述のごと<Bi系超超伝導体は110に相、80に相
および半導体相の3つの相が知られており、CuK、線
によるX線回折図において20約4.7°にll0K相
の回折線が、約5.7°に80に相の回折線が、約7.
2°に半導体相の回折線が現れる。また、不純物として
含まれるCa、pb○4は17.8°に現れ、そのほか
に165°などに不純物と思われる小さな回折線が認め
られることがある。本発明の超伝導材料の特徴は約5,
7°および約7.2°の回折線の強度が約4.7°の回
折線の強度の5%以下であり、CuO3層構造の割合が
極めて高い。ここでいう回折線の強度とはベースライン
から回折線の頂点までの距離をいう。
As mentioned above, Bi-based superconductors are known to have three phases: a 110 phase, an 80 phase, and a semiconductor phase. The diffraction line is at about 5.7 degrees, the phase at 80 degrees, and the diffraction line at about 7 degrees.
A diffraction line of the semiconductor phase appears at 2°. Further, Ca and pb○4 contained as impurities appear at 17.8°, and in addition, small diffraction lines that are thought to be impurities may be observed at 165° and so on. The superconducting material of the present invention has approximately 5 characteristics:
The intensity of the diffraction lines at 7° and about 7.2° is 5% or less of the intensity of the diffraction line at about 4.7°, and the proportion of the CuO three-layer structure is extremely high. The intensity of a diffraction line here refers to the distance from the baseline to the apex of the diffraction line.

本発明の超伝導材料のもうひとつの特徴は90〜100
にで超伝導体に転移する相を含んでいるという点である
。この場合、約5.7°および約7.2°に回折線が認
められてもよい。また多少の他の不純物を含んでもよい
。いずれにしても90〜100K付近の臨界温度を有す
る超伝導体(以下95に相と呼ぶ)を含んでいる必要が
ある。この95に相は2θ約4.7°に回折線を示し、
X線回折図から見るかぎり110に相と同一である。
Another feature of the superconducting material of the present invention is 90-100
The point is that it contains a phase that transforms into a superconductor. In this case, diffraction lines may be observed at about 5.7° and about 7.2°. It may also contain some other impurities. In any case, it is necessary to contain a superconductor (hereinafter referred to as phase 95) having a critical temperature in the vicinity of 90 to 100K. This 95 phase shows a diffraction line at about 4.7° 2θ,
As seen from the X-ray diffraction diagram, the phase is the same as 110.

110に相は高い臨界温度を持つが、臨界電流は比較的
低く、このため臨界温度を測定する場合微弱な電流で行
わないと低温側にすそをひき、見掛は上臨界温度が低(
観測されるほどである。
Although the phase 110 has a high critical temperature, the critical current is relatively low. Therefore, when measuring the critical temperature, unless it is done with a weak current, it will draw its tail to the low temperature side, and the upper critical temperature will appear to be low (
So much so that it has been observed.

方、95に相は臨界温度こそ110に相より低いものの
、後述の実施例に示されるように強いビン止め力を有し
、従って高い臨界電流Jcを示す。
On the other hand, although the critical temperature of the phase 95 is lower than that of the phase 110, it has a strong bottle-holding force as shown in the examples described later, and therefore exhibits a high critical current Jc.

このため特に線材として非常に有望である。Therefore, it is very promising especially as a wire rod.

ビスマス系酸化物超伝導材料はBi、5rSCaSCu
、Oからなり、Biの一部をpbで置換すると110に
相の割合が増えるといわれている。
Bismuth-based oxide superconducting materials include Bi, 5rSCaSCu
, O, and it is said that when a part of Bi is replaced with pb, the phase ratio increases to 110.

これら元素の組成により異なった特性を示す事が知られ
ており、鉛を含まない系の場合Bi:Sr:Ca:Cu
=1:1:1:2の時に最も110に相の割合が多くな
ると言われており、一方Bi:Sr:Ca:Cu=2:
2:1:2の場合、80に相がほとんどとなる。pbは
Bjのうちモル比で0.1から0.4の範囲で置換され
る。本発明の超伝導材料はpbを含む系であり、約5.
70および約7.2°の回折強度を約4.7°のそれの
5%以下にするにはB i、Pby(S ruCavC
u w) 20 aなる仕込み組成が好適に用いられる
It is known that these elements exhibit different properties depending on their composition, and in the case of lead-free systems, Bi:Sr:Ca:Cu
It is said that the phase ratio is highest at 110 when = 1:1:1:2, while Bi:Sr:Ca:Cu = 2:
In the case of 2:1:2, most of the phases are at 80. pb is substituted with Bj in a molar ratio of 0.1 to 0.4. The superconducting material of the present invention is a system containing pb, and about 5%.
In order to make the diffraction intensity at about 70° and about 7.2° less than 5% of that at about 4.7°, B i, Pby (S ruCavC
A charging composition of u w) 20 a is preferably used.

ここでXは0.150から0.215、yは0゜030
から0.090.2は0.720から0゜800(但し
x+y+z=1) 、uを0.200から0.290、
■を0.250から0.355、Wを0.430から0
.530 (但しu+v+w−1)の範囲である。特に
、微量の不純物をも含まない超伝導材料を得るためには
BixPby(Sr uCa vC13w) zo a
なる仕込み組成において、Xは0.185から0210
、yは0.030から0.050、Zは0.750から
0.770(イ旦しx十y+z−1)、uは0゜255
から0゜290、Vは0.275から0.3]0.wは
0゜430から0.455(但しu+v+w=l)の範
囲が好適に用いられる。
Here, X is 0.150 to 0.215, y is 0°030
From 0.090.2 is 0.720 to 0°800 (x+y+z=1), u is 0.200 to 0.290,
■ from 0.250 to 0.355, W from 0.430 to 0
.. 530 (however, the range is u+v+w-1). In particular, in order to obtain a superconducting material that does not contain even a trace amount of impurities, BixPby (Sr uCa vC13w) zo a
In the charging composition, X is 0.185 to 0210
, y is 0.030 to 0.050, Z is 0.750 to 0.770 (Idanshixy+z-1), u is 0°255
to 0°290, V is 0.275 to 0.3]0. The range of w from 0°430 to 0.455 (where u+v+w=l) is preferably used.

原料は水酸化物、酸化物、炭酸塩、硝酸塩、しゅう酸塩
、酢酸塩など焼成により分解あるいは反応して酸化物に
変化するものなら何でも用いることができる。
Any raw material that can be decomposed or reacted and converted into an oxide upon firing, such as hydroxide, oxide, carbonate, nitrate, oxalate, and acetate, can be used.

製造にあたり、これら原料は均一に混合される。During production, these raw materials are mixed uniformly.

混合はどのような方法で行ってもよい。例えば各原料を
メノウ乳鉢で粉砕しながら混合してもよいし、ボールミ
ルを用いてもよい。各金属化合物のうち少なくともCu
の化合物として硝酸塩を用いることが望ましい。この場
合、水などの溶媒に溶解または分散させる。この溶液を
撹拌しながら加熱乾燥させることが望ましく、スプレー
ドライ法で乾燥しながら混合することもできる。各金属
化合物としてそれぞれの硝酸塩を用いてもよいことは勿
論である。また、炭酸塩や酸化物を硝酸に溶解させても
よい。これとは別に、スパッタリング法等により形成さ
れた薄膜も均一に混合するのに良い方法である。
Mixing may be performed by any method. For example, each raw material may be mixed while being ground in an agate mortar, or a ball mill may be used. Of each metal compound, at least Cu
It is desirable to use nitrate as the compound. In this case, it is dissolved or dispersed in a solvent such as water. It is desirable to heat and dry this solution while stirring, and it is also possible to mix while drying using a spray drying method. Of course, each nitrate may be used as each metal compound. Further, carbonates and oxides may be dissolved in nitric acid. Apart from this, a thin film formed by sputtering or the like is also a good method for uniformly mixing.

このようにして得られた混合物あるいは生成物は仮焼せ
ずにそのまま本焼成を行らてもよいが、通常仮焼を行う
。つまり、酸化物以外の化合物の混合物は通常800°
C前後の温度で仮焼される。
Although the mixture or product thus obtained may be subjected to main firing as it is without being calcined, calcining is usually performed. In other words, mixtures of compounds other than oxides are usually 800°
It is calcined at a temperature around C.

しかし、仮焼は必須ではない。酸化物の混合物あるいは
スパッタリング法等により、形成された酸化物薄膜ある
いは金属薄膜については仮焼をする必要はない。仮焼雰
囲気は空気、酸素、あるいは不活性ガスと酸素の混合物
のいずれでもよい。
However, calcination is not essential. There is no need to calcinate an oxide thin film or a metal thin film formed by a mixture of oxides, a sputtering method, or the like. The calcination atmosphere may be air, oxygen, or a mixture of inert gas and oxygen.

次に焼成を行う。焼成前の原料が粉末状態であればあら
かじめ成型を行う。その大きさ、形状はどのようなもの
でもかまわない。例えば、ペレットでもよいし線状のも
のでもよい。焼成は通常空気中で行われるが、酸素分圧
をOから0.15気圧、好ましくは0.03から0.1
気圧に保つことが望ましい。このために酸素を窒素、ア
ルゴン、等の不活性ガスで希釈してもよいし、空気を上
記不活性ガスで希釈してもよい。温度は酸素分圧や組成
によって異なるがいずれの場合も融点直下から融点の下
50℃の範囲が望ましい。ビスマス系酸化物超伝導体の
場合、融点を越える温度で反応させることができない。
Next, firing is performed. If the raw material before firing is in a powder state, it is molded in advance. It can be of any size or shape. For example, it may be a pellet or a linear one. Firing is usually carried out in air, but the oxygen partial pressure is adjusted from O to 0.15 atm, preferably from 0.03 to 0.1.
It is desirable to maintain the pressure at atmospheric pressure. For this purpose, oxygen may be diluted with an inert gas such as nitrogen or argon, or air may be diluted with the above-mentioned inert gas. The temperature varies depending on the oxygen partial pressure and composition, but in any case it is preferably in the range from just below the melting point to 50° C. below the melting point. In the case of bismuth-based oxide superconductors, they cannot be reacted at temperatures exceeding their melting point.

−度融解した試料は超伝導性を示さなくなるからである
。本発明における超伝導材料の融点は酸素分圧0.2気
圧のとき約845℃となる。酸素分圧を下げることによ
り、広い温度範囲で、比較的短時間で生成物を得ること
ができる。
This is because a sample that has been melted to a certain degree no longer exhibits superconductivity. The melting point of the superconducting material in the present invention is approximately 845° C. when the oxygen partial pressure is 0.2 atm. By lowering the oxygen partial pressure, products can be obtained over a wide temperature range and in a relatively short time.

焼成時間は概ね12時間以上を必要とする。冷却過程は
焼成時と同じ酸素分圧で行ってもよいがより高い酸素分
圧で行ってもよい。むしろ高い酸素分圧のほうが、生成
した超伝導材料に流すことのできる電流が太き(なる。
The firing time generally requires 12 hours or more. The cooling process may be performed at the same oxygen partial pressure as during firing, or may be performed at a higher oxygen partial pressure. In fact, the higher the oxygen partial pressure, the thicker the current that can be passed through the generated superconducting material.

また、高圧酸素処理により磁化率測定における110に
相と95に相の分離を明確にする効果もある。もちろん
焼成時と同じ酸素分圧のままで冷却し、その後焼成温度
以下の温度に再加熱し、高圧力酸素処理を行ってもよい
Furthermore, the high-pressure oxygen treatment has the effect of clarifying the separation of the 110 phase and the 95 phase in magnetic susceptibility measurements. Of course, high-pressure oxygen treatment may be performed by cooling with the same oxygen partial pressure as during firing, and then reheating to a temperature below the firing temperature.

以下に実施例により更に詳細に説明する。This will be explained in more detail with reference to Examples below.

実施例I Bi、03、PbO,,5rCo3、CaCo、1、C
UOをBi:Pb:Sr:Ca:Cuの比がO9s:o
、15:0.86:0.86:1.33になるように秤
り取った。この組成はB r x p b y (sr
 1.Ca vCu w) zo aという組成式にお
いてX−0,2、y=0.038、Z=0.763、U
−0281、■=0.28]、w−・0.438に相当
する。これらを加熱しながら過剰の硝酸に完全に溶解さ
せた。この溶液を白金の蒸発皿にいれ、絶えず撹拌しな
がら加熱蒸発させ、溶媒である水を除いた。このとき、
過剰の硝酸も同時に除かれる。生成した硝酸塩の混合物
をアルミナ製のルツボにいれ、更に加熱を続けた。硝酸
塩が分解しNO7が発生する。最終的に800°CでN
o、が生成しなくなるまで加熱した。これをメノウ乳鉢
で粉砕し直径13mm、厚さ約1mmのペレットに成型
した。焼成には内径100mm、長さ600mmの管状
炉を用いた。ペレットをアルミナ製のボートに置き、こ
れを炉の中心部分に設置した。アルゴンと酸素の比を1
2=1に調整し、毎分250ccの流通下、835°C
で12時間反応させた。
Example I Bi,03,PbO,,5rCo3,CaCo,1,C
The ratio of UO to Bi:Pb:Sr:Ca:Cu is O9s:o
, 15:0.86:0.86:1.33. This composition is B r x p b y (sr
1. In the composition formula Ca vCu w) zo a, X-0,2, y=0.038, Z=0.763, U
−0281, ■=0.28], w−·0.438. These were completely dissolved in excess nitric acid while heating. This solution was placed in a platinum evaporating dish and heated and evaporated with constant stirring to remove water as a solvent. At this time,
Excess nitric acid is also removed at the same time. The resulting nitrate mixture was placed in an alumina crucible, and heating was continued. Nitrate decomposes and NO7 is generated. Finally, at 800°C, N
The mixture was heated until o was no longer produced. This was crushed in an agate mortar and molded into pellets with a diameter of 13 mm and a thickness of about 1 mm. A tubular furnace with an inner diameter of 100 mm and a length of 600 mm was used for firing. The pellets were placed in an alumina boat, which was placed in the center of the furnace. The ratio of argon and oxygen is 1
Adjusted to 2=1, flowed at 250cc/min, 835°C
The mixture was allowed to react for 12 hours.

反応後、室温まで冷却した後、これを再度粉砕し、上記
と同じ大きさのペレットに成型し、同条件で更に72時
間反応させた。その後、約2℃/minで徐冷した。温
度が750 ’Cに達した時点から酸素分圧を1気圧と
し、そのまま室温まで冷却することにより実施例1の試
料を得た。
After the reaction, it was cooled to room temperature, and then ground again, molded into pellets of the same size as above, and reacted for an additional 72 hours under the same conditions. Thereafter, it was slowly cooled at a rate of about 2° C./min. When the temperature reached 750'C, the oxygen partial pressure was set to 1 atm, and the sample of Example 1 was obtained by cooling to room temperature.

このもののX線回折測定を行い、抵抗の温度依存性およ
び磁化率の温度依存性を調べた。結果をそれぞれ図1、
図2および図3に示す。図1に示されるように20約4
.7°の回折線が現れ、約5.7°および約7.2°の
回折線は全く認められない。また、図2に示されるよう
に抵抗測定からは110に相のみの存在が示唆される。
This material was subjected to X-ray diffraction measurement to examine the temperature dependence of resistance and the temperature dependence of magnetic susceptibility. The results are shown in Figure 1 and
Shown in FIGS. 2 and 3. 20 approx. 4 as shown in Figure 1
.. A 7° diffraction line appears, and no diffraction lines at about 5.7° and about 7.2° are observed. Furthermore, as shown in FIG. 2, resistance measurements suggest the presence of only a phase at 110.

一方、図3のマイスナー効果を表す曲線には明らかに1
10に相と95に相のシグナルが認められる。両者の体
積分率の比はほぼ1:1であり、これらの和は全体積の
約92%を占める。従って本実施例の試料はほとんど同
一の構造すなわちCu−03層構造を持つ2種類の超伝
導体の1:1の混合物であると結論できる。
On the other hand, the curve representing the Meissner effect in Figure 3 clearly shows 1
Phase signals are observed at 10 and 95. The ratio of their volume fractions is approximately 1:1, and the sum of these accounts for approximately 92% of the total volume. Therefore, it can be concluded that the sample of this example is a 1:1 mixture of two types of superconductors having almost the same structure, that is, the Cu-03 layer structure.

図3において注目されるのはシールディング効果を示す
曲線である。この測定によればシールディング効果によ
る磁化率の変化はマイスナー効果によるそれの3倍以上
であり、しかもそれが90に以下で顕著である。つまり
、95に相が大きなシールディング効果を示している。
What is noteworthy in FIG. 3 is the curve showing the shielding effect. According to this measurement, the change in magnetic susceptibility due to the shielding effect is more than three times that due to the Meissner effect, and moreover, it is noticeable below 90. In other words, phase 95 shows a large shielding effect.

このことは95に相では110に相に比べて磁束量子線
のピン止め力が非常に大きいことを示しており、従って
、臨界電流が大きいことを意味している。
This shows that the pinning force of the magnetic flux quantum line is much larger in the 95th phase than in the 110th phase, and therefore means that the critical current is large.

実施例2 B  I  203、 PbO、SrCO3、CaCO
2、CUOをBi:Pb:Sr:Ca:Cuの比がOo
ago、2:0.8: 1.0:2.Oになるように秤
り取った。この組成はB + x P b y (S 
r uCa vCu w) zo #という組成式にお
いてx=0.167、y=0.042、z=0.792
、U=0゜211、V=0.263、w=0.526に
相当する。これをメノウ乳鉢で十分混合した。これを空
気の流通下、810°Cで10時間仮焼した。その後、
粉砕および3時間の仮焼を2回繰り返した。
Example 2 B I 203, PbO, SrCO3, CaCO
2. CUO with a Bi:Pb:Sr:Ca:Cu ratio of Oo
ago, 2:0.8: 1.0:2. I weighed it so that it was O. This composition is B + x P b y (S
r uCa vCu w) zo In the composition formula #, x = 0.167, y = 0.042, z = 0.792
, U=0°211, V=0.263, w=0.526. This was thoroughly mixed in an agate mortar. This was calcined at 810°C for 10 hours under air circulation. after that,
Grinding and 3-hour calcination were repeated twice.

得られた生成物を再度粉砕し、直径13mm、厚さ約1
mmのペレットに成型した。焼成には内径100mm、
長さ600mmの管状炉を用いた。
The obtained product was ground again to a diameter of 13 mm and a thickness of about 1
It was molded into pellets of mm. For firing, the inner diameter is 100 mm,
A tube furnace with a length of 600 mm was used.

ペレットをアルミナ製のポートに置き、これを炉の中心
部分に設置した。アルゴンと酸素の比を12:1に調整
し、毎分250CCの流通下、842°Cで80時間反
応させた。その後、酸素分圧を1/13に保ったまま約
2℃/ m i nで徐冷した。
The pellets were placed in an alumina port, which was placed in the center of the furnace. The ratio of argon and oxygen was adjusted to 12:1, and the reaction was carried out at 842°C for 80 hours under a flow of 250 CC per minute. Thereafter, it was slowly cooled at about 2° C./min while keeping the oxygen partial pressure at 1/13.

生成物はやや反った形に変形しており、融点直下である
ことを示している。このもののX線回折測定、抵抗測定
およびマイスナー効果の測定を行つた。マイスナー効果
については室温でのインダクタンスが約1.7mHのコ
イル中に試料を置き、インダクタンスの変化を調べた。
The product was deformed into a slightly warped shape, indicating that it was just below the melting point. This product was subjected to X-ray diffraction measurements, resistance measurements, and Meissner effect measurements. Regarding the Meissner effect, a sample was placed in a coil with an inductance of approximately 1.7 mH at room temperature, and changes in inductance were examined.

結果をそれぞれ図4、図5および図6に示す。図4に示
されるように20約4.7°の回折線が現れ、゛約5.
7゜および約7,2°の回折線は全く認められない(2
θ約4.7°の回折線に対する約5.7°および約7.
2°の回折線の強度はそれぞれ0%)。また、120に
付近から抵抗の急激な低下が見られ107にで抵抗Oと
なる。これと対応して、コイルのインダクタンスも極め
てシャープに低下している。従って本実施例の場合11
0に相の割合が極めて高いと考えられる。
The results are shown in FIGS. 4, 5 and 6, respectively. As shown in FIG. 4, a diffraction line of about 4.7 degrees appears, and a diffraction line of about 5 degrees appears.
The diffraction lines at 7° and about 7.2° are not observed at all (2
about 5.7° and about 7.0° for the diffraction line at θ about 4.7°.
The intensity of each 2° diffraction line is 0%). Further, a sudden drop in resistance is seen from around 120, and the resistance reaches O at 107. Corresponding to this, the inductance of the coil also drops extremely sharply. Therefore, in this example, 11
It is considered that the ratio of the phase to 0 is extremely high.

実施例3〜5 Bi、03、PbO,S rco、、CaC0,、CU
OをBi:Pb:Sr:Ca:Cuの比が0゜8:0.
2:0.8: 1.Q: i、4になるように秤り取っ
た。この組成はB i、Pb、(S ruCa vCu
 w) 20 aという組成式においてx=0.190
、y=0.048、z=0.762、u=Q。
Examples 3 to 5 Bi, 03, PbO, S rco,, CaC0,, CU
The ratio of O to Bi:Pb:Sr:Ca:Cu is 0°8:0.
2:0.8:1. Q: I, I weighed it so that it was 4. This composition is B i, Pb, (S ruCa vCu
w) In the composition formula 20 a, x = 0.190
, y=0.048, z=0.762, u=Q.

250、V=0.3]3、w=Q、43Bに相当する。250, V=0.3]3, w=Q, corresponds to 43B.

焼成温度、焼成時間および酸素分圧を表1に示される値
としたこと、および冷却時にも酸素分圧をそのままに保
ったこと以外は実施例1と同様にして焼成を行いそれぞ
れの試料を得た。
Firing was performed in the same manner as in Example 1, except that the firing temperature, firing time, and oxygen partial pressure were set to the values shown in Table 1, and the oxygen partial pressure was kept unchanged during cooling, and each sample was obtained. Ta.

以下、実施例4および5についても表1に示した条件以
外は同様にして焼成を行い、それぞれ生成物を得た。こ
れらのX線回折図を図7に示す。
Hereinafter, in Examples 4 and 5, firing was performed in the same manner except for the conditions shown in Table 1, and products were obtained respectively. These X-ray diffraction patterns are shown in FIG.

2θ約4.7°の回折線が現れ、約5.7°および約7
゜2°の回折線は全く認められないか、あってもごくわ
ずかであり、いずれのサンプルも110に相あるいは9
5に相の割合が極めて高いことを示している。
Diffraction lines of about 4.7° 2θ appear, and diffraction lines of about 5.7° and about 7
The diffraction line at ゜2° is either not observed at all, or is very slight, and all samples have a phase of 110 or 9.
5 shows that the phase ratio is extremely high.

実施例6 Bi、03、PbO1SrCO,、Ca CO!]、C
UOをBi:Pb:Sr:Ca:Cuの比がOs:o、
15:0.83:0.89:1.33になるように秤り
取った。この組成はB + x P b y (Sr 
uCa vCu w) so aという組成式において
X=0.2、y=0.0375、z=0.7625、u
=0.272、V−0,292、w=0.436に相当
する。これを、冷却時に酸素分圧を変化させなかったこ
と以外は実施例1と同様にして焼成を行い、実施例6の
試料を得た。
Example 6 Bi, 03, PbO1SrCO,, Ca CO! ],C
UO has a Bi:Pb:Sr:Ca:Cu ratio of Os:o,
It was weighed out so that the ratio was 15:0.83:0.89:1.33. This composition is B + x P b y (Sr
In the composition formula uCa vCu w) so a, X=0.2, y=0.0375, z=0.7625, u
=0.272, V-0,292, w=0.436. This was fired in the same manner as in Example 1, except that the oxygen partial pressure was not changed during cooling, to obtain a sample of Example 6.

X線回折の結果を図8に示す。2θ約4.7゜の回折線
が大きく現れ、約5.7°および約7゜2°の回折線は
全く認められない(2θ約4.70の回折線に対する約
5.7°および約7.2゜の回折線の強度はそれぞれ0
%)。′上記実施例2〜5においては2θ17°から1
8″にかけて僅かながら不純物の回折線が現れているが
、本実施例においては17.8°、16.5°および2
9゜8°の不純物の回折線も認められない。従ってCu
−03層構造のみの超伝導材料であると考えられる。
The results of X-ray diffraction are shown in FIG. The diffraction line at about 2θ of about 4.7° appears largely, and the diffraction lines at about 5.7° and about 7°2 are not observed at all (about 5.7° and about 7° for the diffraction line at about 4.70 2θ). The intensity of each diffraction line at .2° is 0.
%). 'In Examples 2 to 5 above, 2θ17° to 1
Although a slight diffraction line of impurities appears toward 8", in this example, it
Diffraction lines of impurities at 9° and 8° are also not observed. Therefore, Cu
It is considered to be a superconducting material with only -03 layer structure.

実施例7および8 B 1xPby(S rucavCu、)、O,という
組成式においてx=0.200.y=0.037.2−
O,763、u=0.259、y=Q、303、z=0
.438としたこと以外は実施例1と同様にして焼成を
行い、実施例7の試料を得た。
Examples 7 and 8 B In the composition formula of 1xPby(SrucavCu,),O, x=0.200. y=0.037.2-
O,763, u=0.259, y=Q, 303, z=0
.. A sample of Example 7 was obtained by firing in the same manner as in Example 1 except that the sample was changed to 438.

実施例8についてもx=0.200、y−0゜037、
z=0.763、LI=0.245、■−〇、330、
w=0.425としたこと以外は同様に焼成を行って生
成物を得た。ただし、冷却時にも1/13の酸素分圧を
維持した。
Also for Example 8, x=0.200, y-0°037,
z=0.763, LI=0.245, ■-〇, 330,
A product was obtained by calcination in the same manner except that w=0.425. However, even during cooling, the oxygen partial pressure was maintained at 1/13.

これらの電気抵抗の温度依存性を調べた。(図9)実施
例1では現れなかったが明らかに95に相による抵抗の
低下が認められる。なお、実施例7.8の試料にはそれ
ぞれ約5.7°の回折線力(、約4.7°の回折線に対
して2%および9%の割合で認められる。それにもかか
わらず抵抗−温度曲線に80に相が認められないのは、
試料中の110に相および95に相が途切れることなく
連なっているからと考えられる。
The temperature dependence of these electrical resistances was investigated. (FIG. 9) Although it did not appear in Example 1, a decrease in resistance depending on the phase is clearly observed in 95. It should be noted that in the sample of Example 7.8, the diffraction line force of about 5.7° is observed at a rate of 2% and 9% for the diffraction line of about 4.7°. -The reason why no phase is observed at 80 in the temperature curve is because
This is thought to be because the phase at 110 and the phase at 95 in the sample are continuous without interruption.

比較例1〜5 Bi203、PbO,SrCO3、Ca CO*、CU
Oの比をそれぞれ表2の値になるように秤り取ったこと
、および冷却時に酸素分圧を変化させなめAつたこと以
外は実施例1と同様にして生成物・をi専、X線回折の
測定を行った。
Comparative Examples 1 to 5 Bi203, PbO, SrCO3, Ca CO*, CU
The product was exposed to X-rays in the same manner as in Example 1, except that the O ratio was measured to the values shown in Table 2, and the oxygen partial pressure was changed during cooling. Diffraction measurements were taken.

これらのX線回折図を図10に示す。2θ約4゜7°の
回折線が強く現れるが、約5.7°の80に相および不
純物の回折線が現れており、CuO3層構造単独の超伝
導材料は得られな(X0
These X-ray diffraction patterns are shown in FIG. Diffraction lines at about 4° 7° of 2θ appear strongly, but diffraction lines of phases and impurities appear at 80° at about 5.7°, making it impossible to obtain a superconducting material with a CuO three-layer structure alone (X0

【図面の簡単な説明】[Brief explanation of the drawing]

図1〜3はそれぞれ実施例1で得られた試料のX線回折
図、電気抵抗の温度依存性、および磁イヒ率の温度依存
性を示す。 図4〜6は実施例2で得られた試料のX線回折図、電気
抵抗の温度依存性、およびコイルのインダクタンス変化
の温度依存性を示す。 図7は実施例3から5で得られた試料のX線回折図であ
る。 図8は実施例6で得られた試料のX線回折図である。 図9は実施例7および8で得られた試料の電気抵抗の温
度依存性を示す。 図10は比較例1〜5で得られた試料のX線回折図であ
る。 以上
1 to 3 show the X-ray diffraction diagram, the temperature dependence of electrical resistance, and the temperature dependence of magnetic Ich ratio of the sample obtained in Example 1, respectively. 4 to 6 show the X-ray diffraction diagram of the sample obtained in Example 2, the temperature dependence of electrical resistance, and the temperature dependence of change in inductance of the coil. FIG. 7 is an X-ray diffraction diagram of the samples obtained in Examples 3 to 5. FIG. 8 is an X-ray diffraction diagram of the sample obtained in Example 6. FIG. 9 shows the temperature dependence of the electrical resistance of the samples obtained in Examples 7 and 8. FIG. 10 is an X-ray diffraction diagram of samples obtained in Comparative Examples 1 to 5. that's all

Claims (11)

【特許請求の範囲】[Claims] (1)CuK_α線によるX線回折図において2θ約4
.7゜に回折線が現れ、かつ、約5.7゜および約7.
2゜の回折線の強度のいずれもが約4.7゜の回折線の
強度の5%以下であることを特徴とするビスマス、鉛、
ストロンチウム、カルシウム、銅および酸素からなるビ
スマス系酸化物超伝導材料。
(1) 2θ approximately 4 in the X-ray diffraction diagram by CuK_α rays
.. A diffraction line appears at 7°, and at about 5.7° and about 7.7°.
Bismuth, lead, characterized in that the intensity of the 2° diffraction line is 5% or less of the intensity of the approximately 4.7° diffraction line,
A bismuth-based oxide superconducting material consisting of strontium, calcium, copper, and oxygen.
(2)CuK_α線によるX線回折図における2θ約5
.7゜あるいは約7.2゜またはその両方の回折線の強
度が2θ約4.7゜の回折線の強度の5%を越え、かつ
2θ約4.7゜の回折線を示し約90から100Kの超
伝導転移温度をもつ超伝導体を少なくとも一部含んでい
ることを特徴とするビスマス、鉛、ストロンチウム、カ
ルシウム、銅および酸素からなるビスマス系酸化物超伝
導材料。
(2) 2θ approximately 5 in the X-ray diffraction diagram by CuK_α rays
.. The intensity of the diffraction line at 7° or about 7.2° or both exceeds 5% of the intensity of the diffraction line at about 2θ about 4.7°, and the diffraction line is about 2θ about 4.7° and is about 90 to 100K. A bismuth-based oxide superconducting material comprising bismuth, lead, strontium, calcium, copper, and oxygen, characterized in that it contains at least a portion of a superconductor having a superconducting transition temperature of .
(3)CuK_α線によるX線回折図において2θ約5
.7゜および約7.2゜に回折線が現れないことを特徴
とする特許請求の範囲第(1)項に記載の超伝導材料。
(3) 2θ approximately 5 in the X-ray diffraction diagram by CuK_α rays
.. The superconducting material according to claim 1, characterized in that no diffraction lines appear at angles of 7° and about 7.2°.
(4)モル比でBi_xPb_y(Sr_uCa_vC
u_w)_zO_αなる仕込み組成を持つことを特徴と
する特許請求の範囲第(1)項または第(3)項に記載
の超伝導材料。 ここで、x、y、z、u、vおよびwは以下の範囲であ
る。 x=0.150〜0.215 y=0.030〜0.090 z=0.720〜0.800 u=0.200〜0.290 v=0.250〜0.355 w=0.430〜0.530 但し、x+y+z=1であり、かつu+v+w=1であ
る。
(4) Bi_xPb_y(Sr_uCa_vC
The superconducting material according to claim 1 or claim 3, having a charging composition of u_w)_zO_α. Here, x, y, z, u, v and w are in the following ranges. x=0.150~0.215 y=0.030~0.090 z=0.720~0.800 u=0.200~0.290 v=0.250~0.355 w=0.430 ~0.530 However, x+y+z=1 and u+v+w=1.
(5)CuK_α線によるX線回折図において実質的に
不純物の回折線が現れないことを特徴とする特許請求の
範囲第(1)項または第(3)項に記載の超伝導材料。
(5) The superconducting material according to claim (1) or (3), wherein substantially no diffraction lines of impurities appear in an X-ray diffraction diagram using CuK_α rays.
(6)モル比でBi_xPb_y(Sr_uCa_vC
u_w)_zO_αなる仕込み組成を持つことを特徴と
する特許請求の範囲第(5)項に記載の超伝導材料。 ここで、x,y,z,u,vおよびwは以下の範囲であ
る。 x=0.185〜0.210 y=0.030〜0.050 z=0.750〜0.770 u=0.255〜0.290 v=0.275〜0.310 w=0.430〜0.455 但し、x+y+z=1であり、かつu+v+w=1であ
る。
(6) Bi_xPb_y(Sr_uCa_vC
The superconducting material according to claim (5), having a charging composition of u_w)_zO_α. Here, x, y, z, u, v and w are in the following ranges. x=0.185~0.210 y=0.030~0.050 z=0.750~0.770 u=0.255~0.290 v=0.275~0.310 w=0.430 ~0.455 However, x+y+z=1 and u+v+w=1.
(7)CuK_α線によるX線回折図において2θ約4
.7゜の回折線を示し90Kから100Kの超伝導転移
温度をもつ超伝導体を少なくとも一部含んでいることを
特徴とする特許請求の範囲第(1)項、第(3)項また
は第(5)項に記載のビスマス系酸化物超伝導材料。
(7) 2θ approximately 4 in the X-ray diffraction diagram by CuK_α ray
.. Claims (1), (3), or (2), characterized in that they contain at least a portion of a superconductor that exhibits a diffraction line of 7° and has a superconducting transition temperature of 90K to 100K. The bismuth-based oxide superconducting material described in item 5).
(8)原料としてビスマス化合物、鉛化合物、ストロン
チウム化合物、カルシウム化合物および銅化合物を均一
に混合し、仮焼したのち、あるいは仮焼せずに焼成する
ことを特徴とする特許請求の範囲第(1)〜(3)項、
第(5)項または第(7)項に記載のビスマス系酸化物
超伝導材料の製造方法。
(8) Claim No. 1, characterized in that a bismuth compound, a lead compound, a strontium compound, a calcium compound, and a copper compound are uniformly mixed as raw materials and fired after calcining or without calcining. ) to (3),
The method for producing a bismuth-based oxide superconducting material according to item (5) or item (7).
(9)ビスマス化合物、鉛化合物、ストロンチウム化合
物、カルシウム化合物および銅化合物のうち少なくとも
銅化合物が硝酸塩であり、これらの化合物を溶媒に溶解
または分散させた後、溶媒を除去し、更に加熱により硝
酸塩を分解することによって均一に混合することを特徴
とする特許請求の範囲第(8)項に記載のビスマス系酸
化物超伝導材料の製造方法。
(9) Among bismuth compounds, lead compounds, strontium compounds, calcium compounds, and copper compounds, at least the copper compound is a nitrate, and after dissolving or dispersing these compounds in a solvent, the solvent is removed and the nitrate is further heated. The method for producing a bismuth-based oxide superconducting material according to claim (8), wherein the bismuth-based oxide superconducting material is uniformly mixed by decomposition.
(10)ビスマス化合物、鉛化合物、ストロンチウム化
合物、カルシウム化合物および銅化合物としてそれぞれ
の硝酸塩を用い、これらを溶媒に溶解させた後、溶媒を
除去し、更に加熱により硝酸塩を分解することによって
均一に混合することを特徴とする特許請求の範囲第(8
)項に記載のビスマス系酸化物超伝導材料の製造方法。
(10) Use nitrates of each of the bismuth compounds, lead compounds, strontium compounds, calcium compounds, and copper compounds, dissolve them in a solvent, remove the solvent, and further decompose the nitrates by heating to mix uniformly. Claim No. 8 (8)
) A method for producing a bismuth-based oxide superconducting material according to item 1.
(11)焼成時の酸素分圧が0.15気圧以下であるこ
とを特徴とする特許請求の範囲第(8)項、第(9)項
または第(10)項に記載のビスマス系酸化物超伝導材
料の製造方法。
(11) The bismuth-based oxide according to claim (8), (9) or (10), wherein the oxygen partial pressure during firing is 0.15 atm or less. Method for manufacturing superconducting materials.
JP63273776A 1988-06-20 1988-10-28 Bismuth-based oxide superconducting material and production thereof Pending JPH02141425A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63273776A JPH02141425A (en) 1988-06-20 1988-10-28 Bismuth-based oxide superconducting material and production thereof
AT89110957T ATE136161T1 (en) 1988-06-20 1989-06-16 PRODUCTION OF AN OXIDE SUPERCONDUCTOR OF THE BISMUTH SYSTEM
EP89110957A EP0347770B1 (en) 1988-06-20 1989-06-16 Process of producing a bismuth system oxide superconductor
DE68926070T DE68926070T2 (en) 1988-06-20 1989-06-16 Production of an oxide superconductor of the bismuth system
AU36519/89A AU3651989A (en) 1988-06-20 1989-06-16 Bismuth system oxide superconductors and preparation thereof
KR1019890008449A KR910002024A (en) 1988-06-20 1989-06-19 Bismuth-based oxide superconductor and its manufacturing method
CN89106281A CN1040700A (en) 1988-06-20 1989-06-20 Bismuth system oxide superconductors and manufacture method thereof
US07/865,637 US5352657A (en) 1988-06-20 1992-04-09 Bismuth system oxide superconductors and preparation thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-152507 1988-06-20
JP15250788 1988-06-20
JP63-218188 1988-08-30
JP63273776A JPH02141425A (en) 1988-06-20 1988-10-28 Bismuth-based oxide superconducting material and production thereof

Publications (1)

Publication Number Publication Date
JPH02141425A true JPH02141425A (en) 1990-05-30

Family

ID=26481412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63273776A Pending JPH02141425A (en) 1988-06-20 1988-10-28 Bismuth-based oxide superconducting material and production thereof

Country Status (1)

Country Link
JP (1) JPH02141425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219319A (en) * 1990-03-23 1992-08-10 Rhone Poulenc Chim Preparation of super-conducting phase based on bismuth, strontium, calcium, copper and stabilizing element
US11911053B2 (en) 2020-08-14 2024-02-27 Gyrus Acmi, Inc. Stone fragment capture systems for lithotripsy systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219319A (en) * 1990-03-23 1992-08-10 Rhone Poulenc Chim Preparation of super-conducting phase based on bismuth, strontium, calcium, copper and stabilizing element
US11911053B2 (en) 2020-08-14 2024-02-27 Gyrus Acmi, Inc. Stone fragment capture systems for lithotripsy systems

Similar Documents

Publication Publication Date Title
US4898851A (en) Process for making 90 k superconductors using a spray dried oxalate precursor
US4861753A (en) Process for making superconductors using barium nitrate
JPH11139825A (en) Superconductor and its production
US5324712A (en) Formation of the high TC 2223 phase in BI-SR-CA-CU-O by seeding
US5352657A (en) Bismuth system oxide superconductors and preparation thereof
US5028585A (en) Superconducting oxide FCC oxide composite compositions and method of making such compositions
JPH02141425A (en) Bismuth-based oxide superconducting material and production thereof
KR100633671B1 (en) A pb-bi-sr-ca-cu-oxide powder mix with enhanced reactivity and process for its manufacture
EP0371453A2 (en) Bismuth system oxide superconductors and preparation thereof
EP0452423B1 (en) Preparation of a uniform mixed metal oxide
Primo et al. A new improved synthesis of the 110 K bismuth superconducting phase: freeze-drying of acetic solutions
JPH02133322A (en) Bi-pb-sr-ba-ca-cu-o superconducting material
EP0366721A4 (en) Improved process for making 90 k superconductors
EP0590929B1 (en) Method of manufacturing metallic oxide and metallic oxide manufactured by the same
US5036043A (en) Process for making 90 K superconductors
JPH02149426A (en) Oxide superconducting material and its production
JPH02149425A (en) Oxide superconducting material and its production
US4835136A (en) Lanthanum: sodium copper superconducting metal oxide compositions and process for manufacture
US5418214A (en) Cuprate-titanate superconductor and method for making
JPH01320226A (en) Production of bismuth-containing oxide superconducting material
JP2831755B2 (en) Oxide superconductor
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
EP0357683A1 (en) Improved process for making 90 k superconductors
JPH01320227A (en) Production of bismuth-containing oxide superconducting material
Fischer et al. Evolution of the microstructure in (Bi, Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x//Ag wires and its influence on the critical current density