JPH02141283A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH02141283A
JPH02141283A JP63295570A JP29557088A JPH02141283A JP H02141283 A JPH02141283 A JP H02141283A JP 63295570 A JP63295570 A JP 63295570A JP 29557088 A JP29557088 A JP 29557088A JP H02141283 A JPH02141283 A JP H02141283A
Authority
JP
Japan
Prior art keywords
recording
recording film
film
pit
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63295570A
Other languages
Japanese (ja)
Inventor
Koji Ono
浩司 小野
Nobuyuki Miyake
信行 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63295570A priority Critical patent/JPH02141283A/en
Publication of JPH02141283A publication Critical patent/JPH02141283A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2572Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To perform high contrast recording by a method wherein a metal or alloy having high ductility is contained in a recording film and the recording film is expanded and deformed so as to exceed the elastic limit thereof by the irradiation with light and the top of the deformed part exceeds a breaking limit to be broken to record data. CONSTITUTION:When an optical recording medium is irradiated with laser beam for recording, the recording film of said recording medium is heated. Since a metal or alloy having ductility is contained in the recording film, the recording film forms a gap 6 by thermal expansion due to heating to protrude and exceeds its elastic limit to be plastically deformed. When the top part of the protruding part exceeds the breaking limit of the recording film, the recording film is broken to form a pit 7. Herein, since the recording film is plastically deformed, the skirt part 8 of the pit 7 remains in a caldera shape. By this method, when the recorded pit 7 is reproduced by reproduction laser beam applied on the side of a substrate, the edge of the pit 7 is detected on the basis of the contact part 9 of the skirt part and the substrate. By this method, the pit edge is stabilized and a good zitter value can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光(たとえばレーザ光)を照射することにより
情報の記録および再生を行う光学記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical recording medium that records and reproduces information by irradiating it with light (eg, laser light).

[従来の技術〕 レーザ光によって情報の記録および再生を行う光学記録
媒体は、半導体レーザ、記録材料および成膜方法などの
基本技術の向上と、大容量記録が可能であるという特徴
により、最近急速に実用化の道が開かれてきた。上記光
学記録媒体の記録方法としては、レーザ光の照射による
熱エネルギーによって、(1)記録膜を変形してビット
(穴または凹部)またはバブル(***部)を形成する方
法、(2)記録膜の相変化により反射率等の光学的性質
を変化させる方法などが提案されている。
[Prior Art] Optical recording media, which record and reproduce information using laser light, have been rapidly increasing in recent years due to improvements in basic technologies such as semiconductor lasers, recording materials, and film-forming methods, as well as the ability to record large amounts of data. The path to practical application has been opened. Recording methods for the above-mentioned optical recording medium include (1) a method of deforming the recording film to form bits (holes or recesses) or bubbles (protrusions) using thermal energy generated by laser beam irradiation; Methods have been proposed in which optical properties such as reflectance are changed by phase change.

略構成を第6図に示す。第6図において、プラスデック
等の基板11の表面に、TeやSe等を主成分とした記
録膜12を設け、集束レーザ光により局部的に上記記録
膜を溶融除去してピット13を形成し、これにより情報
の記録を行い、再生時には、このピットの有無をレーザ
光の反射強度の違いによって検出する。
A schematic configuration is shown in FIG. In FIG. 6, a recording film 12 mainly composed of Te, Se, etc. is provided on the surface of a substrate 11 such as a Plus Deck, and pits 13 are formed by locally melting and removing the recording film using a focused laser beam. This records information, and during reproduction, the presence or absence of these pits is detected by the difference in the reflected intensity of the laser beam.

ここで、上記集束レーザ光が当たった記録膜のごく一部
に熱運動による穴かあき、表面張力によれて、上記ピッ
トは形成される。
Here, the pits are formed due to hole formation due to thermal movement and surface tension in a small portion of the recording film that is irradiated with the focused laser beam.

一方、記録膜が変形してバブルが形成されることにより
記録される光学記録媒体には、(イ)分解ガス発生層を
積層するもの(たとえば特開昭56−127937号)
、(ロ)金属層がガス発生層となるもの(たとえば特開
昭58−71194号、特開昭61−178742号)
、(八)基板がガス発生層となるもの等がある。
On the other hand, optical recording media in which recording is performed by deforming the recording film and forming bubbles include (a) those in which a decomposed gas generating layer is laminated (for example, JP-A-56-127937);
, (b) Those in which the metal layer serves as a gas generating layer (for example, JP-A-58-71194, JP-A-61-178742)
(8) The substrate serves as a gas generating layer.

特開昭56−127937号の光学記録媒体は、基板上
に有機中間層、金属質光吸収層を順に形成しており、金
属質光吸収層の局部加熱により有機中間層も加熱し、有
機中間層から発生するガスにより金属質光吸収層を***
させバブルを形成する。
The optical recording medium disclosed in JP-A-56-127937 has an organic intermediate layer and a metallic light-absorbing layer formed in this order on a substrate, and the organic intermediate layer is also heated by local heating of the metallic light-absorbing layer. The gas generated from the layer causes the metallic light absorption layer to bulge and form bubbles.

特開昭58−71194号には、低融点金属を含むエネ
ルギー吸収膜が基板上に設けられており、上記エネルギ
ー吸収膜が記録のための光を吸収して***することによ
りバブルか形成される光学記録媒体が示されている。
In JP-A-58-71194, an energy absorbing film containing a low melting point metal is provided on a substrate, and bubbles are formed when the energy absorbing film absorbs recording light and bulges. An optical recording medium is shown.

まr二特開昭61−1787.42号の光学記録媒体は
、基板上に金属炭化物マトリクス中に金属微粒子及び有
機物を分散させた記録膜を有しており、金属微粒子の吸
収熱により有機物が加熱されてガスを発生し、上記記録
膜にバブルが形成される。
The optical recording medium disclosed in JP-A-61-1787.42 has a recording film on a substrate in which fine metal particles and organic matter are dispersed in a metal carbide matrix, and the organic matter is absorbed by the heat absorbed by the fine metal particles. When heated, gas is generated and bubbles are formed in the recording film.

し発明か解決しようとする課題] ところが、上記ピットを形成する光学記録媒体では、ピ
ットの形成がリムと称されろピット周辺の肉盛り14の
生成を伴い再生信号のCNR(キャリア・ノイズ比)を
低下させる問題がある。しかも上記リム形状は必ずしも
一様ではなく、記録膜が不均一に凝固したiリムか形成
されろとCNRはさらに低下する。このためPb、 B
i等の元素を添カ目してピットの形状を改善する試みが
なされているが、やはりビットエツジは不鮮明になりや
すく、マーク長5己録(こは適さない。
However, in the optical recording medium in which the pits are formed, the formation of the pits is accompanied by the generation of a build-up 14 around the pits, which reduces the CNR (carrier-to-noise ratio) of the reproduced signal. There is a problem that reduces the Moreover, the shape of the rim is not necessarily uniform, and if an i-rim is formed in which the recording film is non-uniformly solidified, the CNR will further decrease. Therefore, Pb, B
Attempts have been made to improve the shape of pits by adding elements such as i, but the bit edges tend to become unclear, and a mark length of 5 mm is not suitable.

一方、上記バブルを形成する光学記録媒体は、ピットを
形成するものに比べて記録部のエツジは安定するが、記
録感度は劣っていた。また記録部の反射率が上昇するも
のが多く、高反射率を有する光学記録媒体に高コントラ
ストで記録ずろことは困難であった。
On the other hand, in the optical recording medium in which bubbles are formed, the edges of the recording portion are more stable than those in which pits are formed, but the recording sensitivity is inferior. In addition, in many cases, the reflectance of the recording portion increases, making it difficult to record with high contrast on an optical recording medium having a high reflectance.

この発明は、上記課題に鑑みてなされたしので、基板に
記録膜が形成され、所定の波長領域の光を強く吸収して
、該先によって、記録膜に反射率の低いピットを形成す
ることによってデータが書き込まれる光学記録媒体にお
いて、高コントラストの記録が行われ、かつ、ピットエ
ツジが安定しており、マーク長記録の行える光学記録媒
体を提供することを目的としている。
This invention has been made in view of the above-mentioned problems.The present invention has been developed by forming a recording film on a substrate, strongly absorbing light in a predetermined wavelength range, and forming pits with low reflectance on the recording film. An object of the present invention is to provide an optical recording medium on which data is written by a method, on which high-contrast recording is performed, pit edges are stable, and mark length recording is possible.

[課題を解決するための手段] 上記の目的を達成するために、この出願の請求項(1)
の光学記録媒体は、基板と記録膜とを有し、上記記録膜
に光を照射することによって記録膜を変形して情報を記
録する光学記録媒体において、上記記録膜が延性の大き
な金属あるいは合金を含み、上記光照射によって上記記
録膜は弾性限度を超えて膨張変形し、かつ、変形部の頂
上は破壊限度を超えて欠損することにより情報が記録さ
れていることを特徴とする 請求項(2)の発明は請求項(1)において、上記基板
上にフロロカーボンを含む中間層が形成されており、上
記記録膜は上記フロロカーボン中間層上に形成されてい
ることを特徴とする光学記録媒体である。
[Means for solving the problem] In order to achieve the above object, claim (1) of this application
The optical recording medium has a substrate and a recording film, and records information by deforming the recording film by irradiating the recording film with light, in which the recording film is made of a highly ductile metal or alloy. Claim characterized in that the recording film expands and deforms beyond its elastic limit due to the light irradiation, and information is recorded by the top of the deformed portion being damaged beyond its destructive limit ( The invention of 2) is an optical recording medium according to claim 1, wherein an intermediate layer containing fluorocarbon is formed on the substrate, and the recording film is formed on the fluorocarbon intermediate layer. be.

請求項(3)の光学記録媒体は上記記録膜にAuを含ん
でいろ。
In the optical recording medium according to claim (3), the recording film may contain Au.

第1図ないし第3図、第4図および第5図はこの発明の
光学記録媒体にピットが形成される様子を示す概略断面
図である。上記光学記録媒体では基板1上に記録膜2が
形成されている。なお、ここではフロロカーボン中間層
5を設けた光学記録媒体を示している。この光学記録媒
体に基板側から記録のための光(レーザ光)を照射する
と記録膜2が加熱されて塑性変形し、第2図または第4
図に示す空隙6が形成される。記録時にさらに加熱され
ると上記空隙6の頂上が吹き飛び、第3図または第5図
に示すようにピット(穴部)7が形成される。
1 to 3, FIG. 4, and FIG. 5 are schematic cross-sectional views showing how pits are formed in the optical recording medium of the present invention. In the above optical recording medium, a recording film 2 is formed on a substrate 1. Note that an optical recording medium provided with a fluorocarbon intermediate layer 5 is shown here. When this optical recording medium is irradiated with recording light (laser light) from the substrate side, the recording film 2 is heated and plastically deformed, as shown in FIG.
A void 6 shown in the figure is formed. When the recording material is further heated during recording, the top of the void 6 is blown off, and a pit (hole) 7 is formed as shown in FIG. 3 or FIG. 5.

この発明の光学記録媒体において上記記録膜は第1図な
いし第3図の概略断面図に示すように多層膜であってら
、第4図または第5図の概略断面図に示すように単層膜
であっても良い。ここで、記録膜が多層である場合は、
記録のための光の照射側である基板側にある第1の層3
に延性の大きな金属あるいは合金を含むことが好ましい
。この場合、第1の層上に積層された第2の層4は低融
点物質であると書き込み感度が高くなるので好適である
。上記低融点物質としてはTe、 Se等の単金属、T
e−3eまたはこれらとBiとの合金が好ましい。
In the optical recording medium of the present invention, the recording film is a multilayer film as shown in the schematic cross-sectional views of FIGS. 1 to 3, and a single-layer film as shown in the schematic cross-sectional views of FIGS. It may be. Here, if the recording film is multilayer,
A first layer 3 on the substrate side, which is the side on which light is irradiated for recording.
It is preferable that the metal or alloy contains a highly ductile metal or alloy. In this case, it is preferable that the second layer 4 laminated on the first layer is made of a low melting point material because the writing sensitivity will be high. The above-mentioned low melting point substances include single metals such as Te and Se, T
e-3e or an alloy of these and Bi is preferred.

なお上記延性の大きな金属としてはAu、 PtSAg
およびCu等が挙げられる。
Note that the metals with high ductility include Au and PtSAg.
and Cu.

一方、記録膜が単層である場合は、上記延性の大きな金
属あるいはその合金からなる記録膜であってら良(、ま
たは上記低融点物質等の膜中に上記延性の大きな金属を
分散させてら良い。この場合は延性の大きな金属の濃度
は記録のための光の照射側である基板側が高く、記録膜
の深さ方向に向かって低くなるような濃度勾配をらっで
分散されていることが好ましい。ここで、上記延性の大
きな金属の濃度は、基板側表面では30原子数パ一セン
ト以上であるのが良い。そして、基板側から記録膜表面
側に向かって膜厚が増加するにつれて上記濃度は急激に
低下し、記録膜の全膜厚の略l/2よりも記録膜表面側
では上記濃度はOであるのが良い。なお、この出願にお
ける濃度とは、ESCA法により上記記録膜の深さ方向
の組成分析を行った結果書られる値である。
On the other hand, when the recording film is a single layer, it is preferable that the recording film is made of the above-mentioned highly ductile metal or its alloy (or it is preferable that the above-mentioned highly ductile metal is dispersed in the film of the above-mentioned low melting point substance, etc.). In this case, the concentration of the highly ductile metal is high on the substrate side, which is the side irradiated with light for recording, and is dispersed through a concentration gradient that decreases toward the depth of the recording film. Preferably. Here, the concentration of the highly ductile metal is preferably 30 atomic percent or more on the substrate side surface.Then, as the film thickness increases from the substrate side to the recording film surface side, the above-mentioned concentration increases. The concentration rapidly decreases, and it is preferable that the above concentration is O at the surface side of the recording film from approximately 1/2 of the total film thickness of the recording film. This is the value written as a result of the composition analysis in the depth direction.

この出願の光学記録媒体はフロロカーボン中間層5を設
けることができる。上記フロロカーホン中間層を設ける
と記録ピット形状かさらに均一化し、記録の際の高感度
化が達成されろ。ESCA法による分析から得られる、
上記フロロカーホン層におけるFの含有量は、F/(F
十C)X100で表されるFの原子数パーセントか40
%以上65%以下であれば良い。この範囲を越え、Fが
少なすぎると、記録ピットの均一化および記録の際の高
感度化といつに効果が薄れ、逆に多すぎると、中間層と
記録膜との密着性が悪くなり、記録膜がはがれ易く、ま
た記録ピットの形状制御か困難になるといった問題か生
じる。
The optical recording medium of this application can be provided with a fluorocarbon intermediate layer 5. By providing the fluorocarbon intermediate layer, the shape of the recording pits becomes more uniform, and higher sensitivity during recording can be achieved. Obtained from analysis using the ESCA method,
The F content in the fluorocarbon layer is F/(F
10C) Number of atoms of F expressed in X100 percent or 40
% or more and 65% or less. If F exceeds this range and is too small, the effect of making recording pits uniform and increasing sensitivity during recording will be diminished, while if it is too large, the adhesion between the intermediate layer and the recording film will deteriorate. Problems arise in that the recording film is likely to peel off and it becomes difficult to control the shape of the recording pits.

上記延性の大きな金属としてAu元素を用いると、Au
元素は合成樹脂基板やフロロカーボン中間層との密着性
が低いために、高い記録感度が得られるので好ましい。
When Au element is used as the metal with high ductility, Au
Elements are preferable because they have low adhesion to the synthetic resin substrate and the fluorocarbon intermediate layer, so high recording sensitivity can be obtained.

フロロカーボン中間層を設け、上記中間層上にAuを含
む記録膜を設けた場合、フロロカーボン中間層と上記記
録膜との界面部分におけるAuの濃度が30原子数パ一
セント以上、より好ましくは70原子数パ一セント以上
であるのが良い。
When a fluorocarbon intermediate layer is provided and a recording film containing Au is provided on the intermediate layer, the concentration of Au at the interface between the fluorocarbon intermediate layer and the recording film is 30 atomic percent or more, more preferably 70 atoms. It is better if it is more than a few percentage points.

上記Auの濃度が30原子数パ一セント未満であると、
記録膜が溶融して表面張力によって広がることにより、
ピットが形成されてしまうので好ましくない。なお上記
Auを含む記録膜は多層記録膜の上記第1の層がAuを
含んでいても良く、Au元素が分散された単層記録膜で
あってもよい。
When the concentration of Au is less than 30 atomic percent,
When the recording film melts and spreads due to surface tension,
This is not preferable because pits will be formed. Note that the recording film containing Au may be such that the first layer of a multilayer recording film contains Au, or may be a single layer recording film in which Au elements are dispersed.

この発明の光学記録媒体の記録膜には上記低融点物質等
を含むことができろが、特に高反射率を資するものがよ
く、レーザ光を入射したときの記録前の反射率が40%
以上であるしのが好ましい。
Although the recording film of the optical recording medium of the present invention can contain the above-mentioned low melting point substance, it is particularly preferable to use a material that contributes to high reflectance, and the reflectance before recording when laser light is incident is 40%.
The above is preferable.

特にコンパクトディスク(CD) 、レーザーディスク
(LD)等のプレーヤーで再生するためには上記反射率
が60%以上であることか好ましい。
In particular, for playback on a player such as a compact disc (CD) or a laser disc (LD), it is preferable that the reflectance is 60% or more.

上記記録膜がこの様な反射率を何するためには元素配合
によって差はあるが、一般に5〜200nmの@厚であ
る。
In order for the recording film to have such a reflectance, it generally has a thickness of 5 to 200 nm, although it varies depending on the element composition.

本発明において記録膜の成膜方法は特に限定されろもの
ではなく、スパッタリング法、真空蒸着法、イオンブレ
ーティング法等既存の成膜方法で行うことができる。そ
して、真空蒸着法にょぢ成膜時には延性の大きな金属の
蒸着源に印加する直流パワーを徐々に小さくする、また
は、スパッタリング法によるときには延性の大きな金属
のターゲットへの印加電力パワーを徐々に小さくする等
によって、所望の濃度勾配を得ることができる。
In the present invention, the method of forming the recording film is not particularly limited, and existing film forming methods such as sputtering, vacuum evaporation, and ion blating may be used. Then, when forming a film using the vacuum evaporation method, the DC power applied to the evaporation source of a highly ductile metal is gradually reduced, or when using the sputtering method, the power applied to the target of a highly ductile metal is gradually reduced. etc., a desired concentration gradient can be obtained.

また、上記フロロカーボン中間層はスパッタリング法等
を用いて形成することができる。上記フロロカーホン層
の厚さは5〜loonm/+(適当である。
Furthermore, the fluorocarbon intermediate layer can be formed using a sputtering method or the like. The thickness of the fluorocarbon layer is 5 to 10 m/+ (appropriate).

用いられる基板としては、レーザ光を透過するのに十分
透明であれば何でも使用できる。例えば、ガラス、ポリ
エステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、
ポリカーボネイト樹脂およびポリメタクリル樹脂等の透
明性にすぐれた基板材料が使用できる。上記透明性基板
上に記録膜を形成するか、または中間層を積層して記録
膜を形成し、この記録膜上に任意の不透明性部材を貼り
合わせても良い。また、上記記録膜上に任意の透明保護
層を積層することもできる。基板の影状は円形、方形等
であっても良く、ティスフ状、カード状等であってもよ
い。上記基板は例えばトラッキング等のための案内溝の
ような凹凸を有していても良い。
Any substrate can be used as long as it is transparent enough to transmit laser light. For example, glass, polyester resin, polyolefin resin, polyamide resin,
Substrate materials with excellent transparency such as polycarbonate resin and polymethacrylic resin can be used. A recording film may be formed on the transparent substrate, or a recording film may be formed by laminating an intermediate layer, and an arbitrary opaque member may be bonded onto this recording film. Furthermore, an arbitrary transparent protective layer can be laminated on the recording film. The shape of the shadow on the substrate may be circular, rectangular, etc., or may be tissue-shaped, card-shaped, etc. The substrate may have irregularities such as guide grooves for tracking and the like.

記録等のために用いるレーザ光の波長は特に限定するも
のではないが、1QQOnI!1以下のものが使用に適
している。したがって現在の半導体レーザで、波長か7
50〜85Qnm領域のものが、有効に使われる。
The wavelength of the laser beam used for recording etc. is not particularly limited, but 1QQOnI! 1 or less are suitable for use. Therefore, with current semiconductor lasers, the wavelength is
Those in the 50-85 Qnm range are effectively used.

この場合記録時のパワーとしては、一般に1=15to
w程度の範囲が用いられろ。
In this case, the recording power is generally 1=15to
A range of about w should be used.

[作 用] この出願の光学記録媒体に記録のためのレーザ光を照射
すると記録膜は加熱されろ。上記記録膜には延性の大き
な金属あるいは合金が含まれているので、加熱による熱
膨張(およびガス発生等)により記録膜は空隙6を形成
して***し、弾性限度を越えて塑性変形する。そして、
***部の頂上部で記録膜の破壊限界を超えると記録膜が
欠損し、ピット(穴部)7が形成する。ここで上記記録
膜は塑性変形しているので、上記ピットの裾部8(第3
図、第5図)はカルデラ状に残存する。上記により記録
されたピットを基板側から照射する再生レーザ光により
再生するときには、裾部と基板(あるいはフロロカーボ
ン中間層)との接点部9(第3図、第5図)によりピッ
トのエツジが検出されろ。
[Function] When the optical recording medium of this application is irradiated with laser light for recording, the recording film is heated. Since the recording film contains a highly ductile metal or alloy, the recording film forms voids 6 and bulges due to thermal expansion due to heating (and gas generation, etc.), and is plastically deformed beyond its elastic limit. and,
When the destruction limit of the recording film is exceeded at the top of the raised portion, the recording film is damaged and pits (holes) 7 are formed. Here, since the recording film is plastically deformed, the bottom part 8 of the pit (the third
Figure 5) remains in the shape of a caldera. When reproducing the pits recorded in the above manner using a reproducing laser beam irradiated from the substrate side, the edges of the pits are detected by the contact portion 9 (Fig. 3, Fig. 5) between the skirt and the substrate (or fluorocarbon intermediate layer). Be it.

[実施例] 以下、実施例により本発明をより詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) 記録部であるグループ部およびトラック案内溝てめろラ
ンド部を有するポリカーボネイト製透明円板上にフロロ
カーボン中間層と、Au層とTe−Se合金膜とを積層
した記録膜とをスパッタリング法によって成膜した。以
下にその成膜条件を示す。
(Example 1) A recording film was prepared by laminating a fluorocarbon intermediate layer, an Au layer, and a Te-Se alloy film on a polycarbonate transparent disk having a group part, which is a recording part, a track guide groove, and a land part. The film was formed by a sputtering method. The film forming conditions are shown below.

チャンバー内を5x 10−’Torrまで真空引きし
、そののちArガスを導入し、Arガス圧を5x to
−’Torrに設定した。ターゲットとしては、ポリテ
トラフロロエチレンのターゲット、Tea。Set。組
成(原子数比)の合金ターゲットおよびAuのターゲッ
トを用いた。まずポリテトラフロロエチレンのターゲッ
トに高周波パワーを印加し、厚さが20nmのフロロカ
ーボン薄膜を形成した。なお同じ条件で成膜したフロロ
カーボン薄膜をES CA法によって組成分析すると、
Fの含有量は、F/(F+−C)xlooで表わされる
Fの原子数パーセントか48%であった。上記70口カ
ーボン中間層を形成したのち、Auターゲットに直流パ
ワーを印加してAu層(膜厚110人)を形成した。さ
らにTe−Se合金ターゲットに高周波パワーを印加し
てTea。Set。組成(原子数比)の合金@(450
人)を積層して光ディスクを得た。
The inside of the chamber was evacuated to 5x 10-'Torr, then Ar gas was introduced, and the Ar gas pressure was increased to 5x to
−'Torr. As a target, a polytetrafluoroethylene target, Tea. Set. An alloy target having the same composition (atomic ratio) and an Au target were used. First, high frequency power was applied to a polytetrafluoroethylene target to form a fluorocarbon thin film with a thickness of 20 nm. Furthermore, when a fluorocarbon thin film formed under the same conditions was analyzed for its composition using the ES CA method,
The F content was 48%, which is the number percent of F atoms expressed as F/(F+-C)xloo. After forming the 70-hole carbon intermediate layer, DC power was applied to the Au target to form an Au layer (thickness: 110). Furthermore, high frequency power is applied to the Te-Se alloy target to produce Tea. Set. Alloy of composition (atomic ratio) @ (450
An optical disc was obtained by laminating the discs.

上述の方法で作成した光ディスクは高反射率を有してお
り、波1780nn+の光で基板側から測定した反射率
はディスクミラ一部で65%であった。そして、5mV
からCNFLが45dBで書き込み可能であり、最高C
NRは50dBに達した。上記ディスクに線速1.4m
/s、書き込みパワー9mWでEF’M変調記録(マー
ク長記録)を行ったところ、ジッターは30nsecで
あり、非常に良好な記録再生特性を得ることができた。
The optical disk produced by the above method has a high reflectance, and the reflectance measured from the substrate side using 1780 nn+ light was 65% at a portion of the disk mirror. And 5mV
CNFL can be written at 45 dB from
NR reached 50dB. Linear speed 1.4m on the above disk
When EF'M modulation recording (mark length recording) was performed at a write power of 9 mW and a writing power of 9 mW, the jitter was 30 nsec, and very good recording and reproducing characteristics could be obtained.

この光ディスクは市販のCDプレーヤで再生可能であっ
た。なお、この実施例の光(実施例2) 実施例1と同じポリカーボネイト製透明円板上にフロロ
カーボン中間層とTe−Se合金中にAu元素を濃度勾
配をつけて分散させた記録膜とをスパックリング法によ
って成膜した。以下にその成膜条件を示す。実施例1と
同様にチャンバー内を真空引きし、そののちArガスを
導入し、Arガス圧を5X 10−’Torrに設定し
た。ターゲットとしては、ポリテトラフロロエチレンの
ターゲット、Tea。Se、。
This optical disc could be played on a commercially available CD player. The light of this example (Example 2) was spun on the same polycarbonate transparent disk as in Example 1, with a fluorocarbon intermediate layer and a recording film in which Au elements were dispersed in a Te-Se alloy with a concentration gradient. The film was formed by the ring method. The film forming conditions are shown below. The inside of the chamber was evacuated in the same manner as in Example 1, and then Ar gas was introduced, and the Ar gas pressure was set at 5×10 −′ Torr. As a target, a polytetrafluoroethylene target, Tea. Se,.

組成(原子数比)の合金ターゲットおよびAuのターゲ
ットを用いた。まずポリテトラフロロエチレンのターゲ
ットに高周波パワーを印加し、厚さが20nmのフロロ
カーボン薄膜を形成した。なお同じ条件で成膜したフロ
ロカーボン薄膜では、F/(F+C)XIOIIで表わ
される上記Fの原子数パーセントが57%であった。上
記フロロカーボン中間層を形成したのちTe−5e合金
ターゲットに高周波パワー、Auターゲットに直流パワ
ーをそれぞれ印加してTe−3e層中にAu元素が分散
された記録膜を得た(膜厚50nm)。ここでAuター
ゲットに印加する直流パワーを徐々に小さくする条件で
成膜をで成膜した薄膜をESCA法によって深さ方向の
Au元素の濃度分布を測定したところ、記録再生のため
の先ビーム照射側である基板側表面におけるAu元素の
濃度は90原子数パーセントで、それから膜厚方向に向
かって濃度は急激に減少し、記録膜の膜厚の半分のとこ
ろでAu元素濃度は0%であった。
An alloy target having the same composition (atomic ratio) and an Au target were used. First, high frequency power was applied to a polytetrafluoroethylene target to form a fluorocarbon thin film with a thickness of 20 nm. In addition, in the fluorocarbon thin film formed under the same conditions, the above atomic percentage of F expressed as F/(F+C)XIOII was 57%. After forming the fluorocarbon intermediate layer, high frequency power was applied to the Te-5e alloy target and DC power was applied to the Au target to obtain a recording film in which Au elements were dispersed in the Te-3e layer (film thickness: 50 nm). Here, we measured the concentration distribution of the Au element in the depth direction using the ESCA method on a thin film that was deposited under the condition of gradually decreasing the DC power applied to the Au target. The concentration of Au element on the substrate side surface was 90 atomic percent, and then the concentration decreased rapidly in the direction of the film thickness, and at half the thickness of the recording film, the Au element concentration was 0%. .

上述の方法で作成した光ディスクら同様に高反射率を有
しており、波長7g0nmの光で基板側から測定した反
射率はディスクミラ一部で71%であった。上記ディス
クに線速1.4m/s、書き込みパワー9aYでEFM
変調記録を行ったところ、CNRは55dB、ジッター
は25ngecであり、非常に良好な記録再生特性を得
ることができた。この光ディスクは市販のCDプレーヤ
で再生可能であった。また上記記録膜上に、ウレタン系
接着剤でPETフィルムを貼り付けて保護層を形成した
。この光ディスクでは書き込みパワーにlo+alを要
するようになったか、その他の特性は特に変化しなかっ
た。なお、この実施例の光ディスクの記録ピットをSE
ピットになっており、ピットエツジの形状は安定(均一
)であった。
Like the optical disks prepared by the above-described method, it had a high reflectance, and the reflectance measured from the substrate side using light with a wavelength of 7g0 nm was 71% at a portion of the disk mirror. EFM on the above disk at a linear velocity of 1.4 m/s and a writing power of 9aY.
When modulated recording was performed, the CNR was 55 dB and the jitter was 25 ngec, and very good recording and reproducing characteristics could be obtained. This optical disc could be played on a commercially available CD player. A protective layer was also formed on the recording film by pasting a PET film with a urethane adhesive. In this optical disk, the writing power required lo+al, and other characteristics did not change. Note that the recording pits of the optical disc in this example are SE
The shape of the pit edge was stable (uniform).

(比較例) 上記実施例のポリカーボネイト製透明円板上に実進例2
と同し条件てフロロカーボン中間層(膜厚20nm)を
成膜し、上記フロロカーボン層上にTe−5e−Pb合
金からなる記録膜(膜厚50nm)を形成した。上記各
層の成膜は、ポリテトラフロロエチレンのターゲットお
よびTea。5e1spbs (原子数比)の合金ター
ゲットを用いたスパッタリング法により行った。なお上
記記録膜の組成比も原子数でTegoSe+5Pbsで
あった。
(Comparative example) Practical example 2 was placed on the polycarbonate transparent disk of the above example.
A fluorocarbon intermediate layer (thickness: 20 nm) was formed under the same conditions as above, and a recording film (thickness: 50 nm) made of a Te-5e-Pb alloy was formed on the fluorocarbon layer. The above layers were formed using a polytetrafluoroethylene target and Tea. The sputtering method was performed using an alloy target of 5e1spbs (atomic ratio). The composition ratio of the recording film was also TegoSe+5Pbs in terms of number of atoms.

上記方法で作成した光ディスクの反射率は上記実施例よ
りも低く、波長780naの光で基板側から測定した反
射率はディスクミラ一部で45%であった。また上記光
ディスクの記録感度は高(,3mlから書き込みが可能
であった。この光ディスクの記録部をSEM観察すると
、第6図に示すようなリムを有するピットが形成されて
おり、ピット形状は不均一であった。そして線速1.4
鳳/S、書き込みパワー9mWでEPM変調記録を行っ
たところ、ジッターは50nsecであり上記実施例に
比べて劣っていた。
The reflectance of the optical disk produced by the above method was lower than that of the above example, and the reflectance measured from the substrate side using light with a wavelength of 780 na was 45% at a portion of the disk mirror. Furthermore, the recording sensitivity of the above-mentioned optical disc was high (writing was possible from 3 ml). When the recording section of this optical disc was observed with a SEM, pits with rims as shown in Fig. 6 were formed, and the pit shape was irregular. It was uniform, and the linear velocity was 1.4.
When EPM modulation recording was performed using Otori/S and a writing power of 9 mW, the jitter was 50 nsec, which was inferior to the above example.

[発明の効果] この出願の請求項(1)の光学記録媒体は、基板上に延
性の大きな金属または合金を含む記録膜が形成されてお
り、上記記録膜は弾性限度を超えて膨張変形し、変形部
の頂上は破壊されてピット(穴部)が形成されているの
で、高コントラストで記録が行われる。上記ピットを基
板側から照射する再生レーザ光で再生するときは、カル
デラ状に形成されたピットの裾部と基板との接点部でピ
ットエツジが検出されるので、ピットエツジが安定し、
良好なジッター値が得られる。
[Effect of the invention] The optical recording medium of claim (1) of this application has a recording film containing a highly ductile metal or alloy formed on a substrate, and the recording film expands and deforms beyond its elastic limit. Since the top of the deformed part is destroyed and a pit is formed, recording is performed with high contrast. When reproducing the above-mentioned pits with a reproducing laser beam irradiated from the substrate side, the pit edges are detected at the contact points between the base of the pits formed in a caldera shape and the substrate, so the pit edges are stabilized.
A good jitter value can be obtained.

請求項(2)の発明では請求項(1)においてフロロカ
ーボン中間層を設けているので、記録ピット形状をさら
に均一化し、また高感度化が達成される。
In the invention of claim (2), since a fluorocarbon intermediate layer is provided in claim (1), the shape of the recording pits can be made more uniform, and higher sensitivity can be achieved.

請求項(3)の光学記録媒体では、上記延性の大きな金
属として、基板あるいはフロロカーボン中間層との密着
性の低いAu元素を用いているので、記録のための光ビ
ームを照射した際、空隙が形成されやすく、ピットが容
易に形成され、記録感度がより高い光学記録媒体が得ら
れる。
In the optical recording medium of claim (3), as the highly ductile metal, Au element is used, which has low adhesion to the substrate or the fluorocarbon intermediate layer. An optical recording medium in which pits are easily formed and has higher recording sensitivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はこの発明の1つの実施例の光学記
録媒体の概略断面図、第4図または第5図はこの発明の
他の実施例の光学記録媒体の概略断面図、第6図はピッ
ト形成により記録される従来の光学記録媒体の概略断面
図である。 ■・・・・・基 坂、   2・・・・・記録膜、5・
・・・・フロロカーボン中間層、 6・・・・・空 隙、   7・・・・・ピット。 特許出願人 株式会社 り ラ し
1 to 3 are schematic cross-sectional views of an optical recording medium according to one embodiment of the present invention, FIG. 4 or 5 is a schematic cross-sectional view of an optical recording medium according to another embodiment of the present invention, and FIG. The figure is a schematic cross-sectional view of a conventional optical recording medium recorded by pit formation. ■...Motosaka, 2...Recording film, 5.
...Fluorocarbon intermediate layer, 6...Void, 7...Pit. Patent applicant RiRa Shi Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)基板と記録膜とを有し、上記記録膜に光を照射す
ることによつて記録膜を変形して情報を記録する光学記
録媒体において、上記記録膜が延性の大きな金属あるい
は合金を含み、上記光照射によつて上記記録膜は弾性限
度を超えて膨張変形し、かつ、変形部の頂上は破壊限度
を超えて欠損することにより情報が記録されていること
を特徴とする光学記録媒体。
(1) In an optical recording medium that has a substrate and a recording film, and records information by deforming the recording film by irradiating the recording film with light, the recording film is made of a highly ductile metal or alloy. An optical recording characterized in that the recording film expands and deforms beyond its elastic limit by the light irradiation, and information is recorded by the top of the deformed portion being damaged beyond the breaking limit. Medium.
(2)上記基板上にフロロカーボンを含む中間層が形成
されており、上記記録膜は上記フロロカーボン中間層上
に形成されていることを特徴とする請求項1記載の光学
記録媒体。(3)上記記録膜がAuを含むことを特徴と
する請求項1または2記載の光学記録媒体。
(2) The optical recording medium according to claim 1, wherein an intermediate layer containing fluorocarbon is formed on the substrate, and the recording film is formed on the fluorocarbon intermediate layer. (3) The optical recording medium according to claim 1 or 2, wherein the recording film contains Au.
JP63295570A 1988-11-22 1988-11-22 Optical recording medium Pending JPH02141283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63295570A JPH02141283A (en) 1988-11-22 1988-11-22 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63295570A JPH02141283A (en) 1988-11-22 1988-11-22 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH02141283A true JPH02141283A (en) 1990-05-30

Family

ID=17822350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63295570A Pending JPH02141283A (en) 1988-11-22 1988-11-22 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH02141283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028604A1 (en) * 1998-11-06 2000-05-18 Pacific Solar Pty. Limited Indirect laser patterning of resist

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028604A1 (en) * 1998-11-06 2000-05-18 Pacific Solar Pty. Limited Indirect laser patterning of resist

Similar Documents

Publication Publication Date Title
US4650742A (en) Recording media with recording layer of two metal layers sandwiching sublimable organic substance layer
EP0033667A1 (en) Reversible memory structure for thermo-optical recording and optical reading, and recording and erasing process for this structure
US7534480B2 (en) Multi-layer super resolution optical disc
JPS61289553A (en) Information recording medium
JP2005025900A (en) Optical recording medium, optical recording and reproducing device, optical recording device, optical reproducing device, and data recording and reproducing method, data recording method, and data reproducing method on optical recording medium
JP2005044450A (en) Optical recording medium and method for manufacturing same, and data recording method and data reproducing method for optical recording medium
US7232598B2 (en) Super resolution optical disc
JP2002133712A (en) Optical information recording medium, its manufacturing method, recording/reproducing method and recording/ reproducing device
WO2004093066A1 (en) Optical recording medium, optical recording medium manufacturing method, and optical recording medium reproducing method
JPH04149834A (en) Phase transition type optical information recording medium
JPH02141283A (en) Optical recording medium
US20020072010A1 (en) Method of manufacturing dielectric layer for use in phase change type optical disk
JP2516890B2 (en) Optical information recording medium
Bell Recording mechanisms in antireflection trilayer structures
JPH0823940B2 (en) Optical information recording medium
JPH02122985A (en) Optical recording medium
JPH0793806A (en) Information recording medium and information recording method
JP2998845B2 (en) Optical information recording medium
JPH02146120A (en) Optical recording medium
JPH0342275A (en) Optical information recording medium
JP4217270B1 (en) Optical recording medium
JP2004276337A (en) Optical recording medium
JPH05262040A (en) Optical data recording medium
JPH02178086A (en) Optical recording medium
JPS62114133A (en) Additional writing type disk for information recording