JPH0213877A - System for observing under water shape of floating ice - Google Patents

System for observing under water shape of floating ice

Info

Publication number
JPH0213877A
JPH0213877A JP63164347A JP16434788A JPH0213877A JP H0213877 A JPH0213877 A JP H0213877A JP 63164347 A JP63164347 A JP 63164347A JP 16434788 A JP16434788 A JP 16434788A JP H0213877 A JPH0213877 A JP H0213877A
Authority
JP
Japan
Prior art keywords
observation
sonar
underwater
upside
drift ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63164347A
Other languages
Japanese (ja)
Inventor
Nobu Shida
志田 展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63164347A priority Critical patent/JPH0213877A/en
Publication of JPH0213877A publication Critical patent/JPH0213877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To judge the possibility of safe navigation by taking the underwater shape profile of a floating ice by lateral observation sonar while monitoring the front and upside of a submerged navigator. CONSTITUTION:Lateral observation sonar 1 observes the lateral region over a predetermined range in the directions right angled from the left and right just above directions with respect to the advance direction of a submerged navigator such as a submarine navigating in water while the scanning by acoustic fan beam is performed. In the same way, front observation sonar 2 sends out acoustic beam in the advance direction to observe the front. Upside observation sonar 3 sends out acoustic beam in a vertical upward direction to observe the upside and catches a ship navigating on the sea inclusive of generated noise. The underwater shape profile of a floating ice is taken by lateral observation sonar while the front and upside are monitored to judge the possibility of the safe navigation of a ship.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流氷水中形状観測方式に関し、特に水上を航行
する船舶ならびに水中を航行する潜水船等の水中航行体
の航行の安全ならびに通信の確保を図るため、近傍に存
在する流氷を探知しその水中形状を観測する流氷水中形
状観測方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an underwater shape observation method for drift ice, and in particular, to ensuring safe navigation and communication of underwater vehicles such as ships navigating on water and submersible vessels navigating underwater. In order to achieve this, this paper relates to an underwater shape observation method for drift ice that detects nearby drift ice and observes its underwater shape.

〔従来の技術〕[Conventional technology]

流氷が存在する海域を一般船舶が海上航行するか、もし
くは潜水船、潜水艦等の水中航行体が種種の運用目的に
もとづいて水中航行する場合、海面下にある流氷部分が
水上航行船舶を含め航行の安全に対して極めて大きい危
険性をもたらす。また、潜水船等これら水中航行体の一
部のものは、海面下において超長波(VLF)電波によ
る基地局の通信を受ける機会もしばしば発生するが、上
方に流氷が存在するときは、その厚さがある程度以上と
なるとVLFが氷に遮ぎられて受信不能となってしまう
When general ships navigate sea areas where drift ice exists, or when submersible vessels, submarines, and other underwater vehicles navigate underwater based on various operational purposes, the drift ice below the sea surface may be used for navigation, including surface-going ships. poses an extremely high risk to safety. In addition, some of these underwater vehicles, such as submarines, often have the opportunity to receive base station communications using very long wave (VLF) radio waves below the sea surface, but when there is drift ice above, the thickness of the ice When the temperature exceeds a certain level, the VLF is blocked by ice and becomes unreceivable.

この問題に対し、従来は、支援航空機からの目視、レー
ダ、写真による観測で対応している。
Conventionally, this problem has been addressed through visual observation from support aircraft, radar, and photographic observations.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の観測では、流氷の海表面における形状は
わかるものの水中の形状までは観測できず、また観測を
阻害する天象・気象の影響も受は易いという欠点がある
The above-mentioned conventional observation has the disadvantage that although the shape of drift ice on the sea surface can be seen, it is not possible to observe the shape underwater, and it is also susceptible to the effects of celestial and meteorological phenomena that impede observation.

本発明の目的は上述した欠点を除去し、水中形状も確認
可能な流氷水中形状観測方式を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide an underwater shape observation method of drift ice that can also confirm the underwater shape.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の流氷水中形状観測方式は、水中を航行する潜水
船等の水中航行体の進行方向に対して左右直上方向から
それぞれ直角方向かつ所定の範囲にわたって音響ファン
ビーム(fan  beam)を走査しつつ側方を観測
する側方観測手段と、前記進行方向に音響ビームを送出
して前方を観測する前方観測手段と、垂直上方に音響ビ
ームを送出して上方を観測するとともに海上を航行する
船舶を発生雑音を含んで捕捉する上方観測手段とを備え
て構成される。
The underwater shape observation method of drift ice of the present invention scans an acoustic fan beam over a predetermined range in directions perpendicular to the left and right above the direction of travel of an underwater vehicle such as a submarine navigating underwater. A side observation means for observing the side, a forward observation means for transmitting an acoustic beam in the traveling direction to observe the front, and a ship sailing on the sea while transmitting an acoustic beam vertically upward to observe the upper side. and upward observation means for capturing noise including generated noise.

〔実施例〕〔Example〕

次に、図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の構成を示すブpワク図であ
り、左右上側方の水中を観測する側方観測ソーナー1、
進行方向の水中を観測する前方観測ソーナー2、直上の
水中を観測する上方観測ソーナー3を備えて構成される
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, in which a side observation sonar 1 for observing underwater on the upper left and right sides,
It is configured with a forward observation sonar 2 that observes the water in the direction of travel, and an upward observation sonar 3 that observes the water directly above.

第2図は第1図の実施例の各ソーナーの運用状況を示す
説明図である。
FIG. 2 is an explanatory diagram showing the operational status of each sonar in the embodiment of FIG. 1.

海表面9の下方の水中を航行する潜水船4は、側方観測
ソーナー1により進行方向に対する左右直上方向から左
右直角方向に所定の範囲αにわたってファンビーム51
を走査しつつ左右一対の側方観測ビーム5を形成して音
響パルスを放射する。この側方観測ビームは、いわゆる
サイドスキャンビームと呼ばれる下側方海底探査ビーム
を反対に海面に向けたものとほぼ同様のビームである。
A submersible vessel 4 navigating underwater below the sea surface 9 uses a side observation sonar 1 to emit a fan beam 51 over a predetermined range α from just above the right and left to the right and left angles to the direction of travel.
While scanning, a pair of left and right side observation beams 5 are formed and acoustic pulses are emitted. This side observation beam is almost the same as the so-called sidescan beam, which is a lower side seabed exploration beam that is directed in the opposite direction toward the sea surface.

また、前方には前方観測ビーム6が前方観測ソーナー2
によって形成され、水中流氷を含む前方障害物の存在の
有無を確認する。
In addition, the forward observation beam 6 is located in front of the forward observation sonar 2.
Confirm the presence or absence of obstacles in front of the vehicle, including underwater ice floes.

さらに、上方に対しては、上方観測ソーナー3による上
方観測ビーム7が形成され、この上方観測ビーム7によ
る音響パルスの送受波によって上方に存在する流氷を観
測し、また航行船舶の場合には捕捉雑音によって反射音
の類別を行なっている。
Furthermore, an upward observation beam 7 is formed by the upward observation sonar 3, and this upward observation beam 7 transmits and receives acoustic pulses to observe drift ice present above, and in the case of a navigating ship, to capture it. Reflected sounds are classified based on noise.

これら側方、前方および上方の流氷を観測する各観測ソ
ーナーは、本実施例の場合、いずれも流氷観測専用のも
のを装備しているが、これらを他の運用目的と併用する
多目的のソーナーを利用するものとしてもよい。
In this example, each observation sonar that observes drift ice on the sides, in front, and above is equipped specifically for drift ice observation, but a multipurpose sonar that can be used in conjunction with other operational purposes is also available. It may be used as something to use.

次に、第1図に戻って各観測ソーナーの側倒の構成なら
びに動作について述べる。
Next, referring back to FIG. 1, the configuration and operation of each observation sonar when tilted on its side will be described.

側方観測ソーナー1は、水中航行体の上面左右に直線配
列して側方観測ビーム5を形成する送受波器11a、l
lb、所定の指向特性の送受波ファンビーム5工を形成
せしめる整相器12a。
The side observation sonar 1 includes transducers 11a and 11a, which are linearly arranged on the left and right sides of the upper surface of the underwater vehicle to form a side observation beam 5.
lb, a phaser 12a for forming a transmitting/receiving fan beam 5 having predetermined directivity characteristics;

12b、送受信の切替を行なう送受切替器13、送信器
14、受信器15、ファンビーム走査を含む送受信のタ
イミング制御ならびに後述する映像処理器17および表
示器18に対する動作タイミングの制御を行なう制御器
16、側方観測ソーナーlによって得らhるデータにも
どつき、側方に存在する流氷の水中形状のプロファイル
(profile)データを作成する映像処理器17、
表示器18および周波数分析器19を備えて構成される
12b, a transmitter/receiver switch 13 for switching between transmission and reception, a transmitter 14, a receiver 15, a controller 16 that controls timing of transmission and reception including fan beam scanning, and operation timing for a video processor 17 and a display 18, which will be described later. , an image processor 17 that uses the data obtained by the side observation sonar l to create profile data of the underwater shape of the drift ice existing on the side;
It is configured with a display 18 and a frequency analyzer 19.

上述した構成中、制御器16は前方観測ソーナー2およ
び上方観測ソーナー3のタイミング制御も行ない、また
、映像処理器17と表示器18は、いずれも前方観測ソ
ーナー2、上方観測ソーナー3の出力表示に共用され、
さらに周波数分析器19は上方観測ソーナー3の専用機
器であるが、集中データ管理の目的で表示器18に併置
される。
In the above configuration, the controller 16 also controls the timing of the forward observation sonar 2 and the upward observation sonar 3, and the video processor 17 and the display 18 both display the output of the forward observation sonar 2 and the upward observation sonar 3. shared by
Furthermore, the frequency analyzer 19 is a dedicated device for the upward observation sonar 3, but is placed alongside the display 18 for the purpose of centralized data management.

この側方観測ソーナー2は、整相器12a。This side observation sonar 2 has a phaser 12a.

12bによって送受波器11a、llbの送受波入出力
に対して位相合成によるビーム形成を行ない、第2図に
示すファンビーム51を形成し、このファンビームを介
して送信器14の出力を送信し、また受波入力を受信器
15に供給する。ファンビーム51を所定の範囲αにわ
たって走査し側方観測ビーム5を形成するのは制御器1
6の送受信タイミング制御によって行なわれる。
12b performs beam formation by phase synthesis on the input and output of the transducers 11a and llb to form a fan beam 51 shown in FIG. 2, and transmits the output of the transmitter 14 via this fan beam. , and also supplies the received wave input to the receiver 15. The controller 1 scans the fan beam 51 over a predetermined range α to form the side observation beam 5.
This is done by the transmission/reception timing control of No. 6.

第2図に示す如く、流氷8の側方を側方観測ビーム5で
走査しながら潜水船4が進行すると、流氷8の側面の音
波によるプロファイルが得られる。
As shown in FIG. 2, as the submersible vessel 4 moves forward while scanning the sides of the drift ice 8 with the side observation beam 5, a profile of the side of the drift ice 8 due to sound waves is obtained.

映像処理器17は、受信器15の出力にもとづいて送受
波器11a、llbで走査した流氷の水中形状のプロフ
ァイル作成用のデータを求め、これを表示器18に送出
する。
The video processor 17 obtains data for creating a profile of the underwater shape of the drift ice scanned by the transducers 11a and llb based on the output of the receiver 15, and sends this to the display 18.

表示器18は、このデータをCRT 181で水中形状
プロファイルとして表示するとともにMT(Magne
tic  Tapl)182に収録し、かつXYプロッ
タ183で時間(X)対レベル(Y)のXYプロットを
行なう。表示器18のCRT181.MT182および
XYプロッタ183はそれぞれ、側方観測ソーナー1の
ほか前方観測ソーナー2および上方観測ソーナー3の出
力データに対する表示、格納も可能とする3チヤンネル
の表示系を備え、これら表示系に対するデータの映像処
理は共通の映像処理器としての映像処理器17によって
実施される。
The display 18 displays this data as an underwater shape profile on a CRT 181, and also displays it as an MT (Magnetic Profile).
tic Tapl) 182, and performs an XY plot of time (X) versus level (Y) using an XY plotter 183. The CRT 181 of the display 18. The MT 182 and the XY plotter 183 are each equipped with a three-channel display system that can display and store the output data of the side observation sonar 1, the forward observation sonar 2, and the upward observation sonar 3. Processing is performed by a video processor 17 as a common video processor.

なお、受信器15.映像処理器17および表示器18に
おける処理のタイミングは、制御器16のタイミング制
御のもとに行なわれる。
Note that the receiver 15. The timing of processing in the video processor 17 and the display 18 is performed under timing control of the controller 16.

さて、映像処理器17において受信器15の出力を映像
データとする映像処理において、データの値に影響を与
える条件として、水中船4の針路、速力、深度の航走諸
元、ピッチ、ロール。
Now, in video processing in which the output of the receiver 15 is used as video data in the video processor 17, the conditions that affect the data values include the course, speed, and navigation specifications of the underwater ship 4 such as depth, pitch, and roll.

ヨーの姿勢諸元があり、これらの諸元は通常一定として
運用されるが多くの理由で変動することが多い。従って
、映像処理にあたってはこれら諸元の変動量を常時補正
する必要があるので、映像処理器17は各種センサから
これら航走諸元および姿勢諸元に関するセンサデータを
取得しつつ必要な補正を加える。
There are attitude specifications for yaw, and although these specifications are normally operated as constant, they often vary for many reasons. Therefore, in image processing, it is necessary to constantly correct the amount of variation in these specifications, so the image processor 17 makes necessary corrections while acquiring sensor data regarding these navigation specifications and attitude specifications from various sensors. .

こうして得られる表示器18の各種データのうち、側方
観測ソーナー1によるCRT 181のプロファイル映
像を第3図に示す。
Among the various data thus obtained on the display 18, a profile image of the CRT 181 obtained by the side observation sonar 1 is shown in FIG.

第3図はX方向を経度、X方向を緯度で表わし、この座
標系で側方観測ソーナー1のファンビームによる側方走
査線1812を次次に表示すると、点線の円で示す2つ
の水中流氷1811が画かれる。本実施例では、こうし
て画かれるプロファイルを実感的にするため受信データ
の反転表示で映像化している。
In Figure 3, the X direction is represented by longitude and the X direction is represented by latitude, and when lateral scanning lines 1812 by the fan beam of lateral observation sonar 1 are displayed one after another in this coordinate system, two underwater ice floes shown by dotted circles can be seen. 1811 is drawn. In this embodiment, in order to make the profile drawn in this way more realistic, the received data is visualized by inverted display.

次に、前方観測ソーナー2について説明する。Next, the forward observation sonar 2 will be explained.

前方観測ソーナー2は、船首部に設けた送受波器21、
送受波器22の所定の送受波指向角を付与する整相器2
2.送受切替器23.送信器24゜受信器25を備え、
前方の障害物を監視し、受信器25の出力は側方観測ソ
ーナー1の映像処理器17によって映像データに変換さ
れ、表示器18のCRT181.XYプロッタ183に
それぞれ所定の表示形式で表示されるとともにMT18
2に格納される。
The forward observation sonar 2 includes a transducer 21 installed at the bow of the ship,
A phasing device 2 that provides a predetermined directivity angle for transmitting and receiving waves of the transducer 22
2. Transmission/reception switch 23. Comprising a transmitter 24° and a receiver 25,
Obstacles ahead are monitored, and the output of the receiver 25 is converted into video data by the video processor 17 of the side observation sonar 1, and the CRT 181. They are displayed on the XY plotter 183 in their respective predetermined display formats, and the MT18
2.

また、上方観測ソーナー3は、放射面を垂直上向きにし
て配備した送受波器31.整相器32゜送受切替器33
.送信器34および受信器35を備えて構成され、整相
器32によって付与される所定の送受波指向角を有する
送受波ビームで上方を監視し、上方に流氷があるときは
これを表示器18のCRTI 81.XYプpツタ18
3にそれぞれ所定の表示形式で表示するとともにMT 
182に格納する。この場合、上方からのエコーが流氷
によるものであるか、あるいは航行船舶によるものであ
るかは、受信器35の出力にスクリュー音、エンジン音
等の周期性雑音が含まれるか否かによって識別可能であ
り、受信器35の出力を側方観測ソーナー1の表示器1
8の近傍に配置する周波数分析器19に導いて監視する
Moreover, the upward observation sonar 3 includes a transducer 31. Phaser 32° Transmission/reception switch 33
.. It is configured with a transmitter 34 and a receiver 35, and monitors the upper side with a transmitting/receiving beam having a predetermined transmitting/receiving directivity angle given by a phaser 32, and when there is drift ice above, it is displayed on the display 18. CRTI 81. XY pup ivy 18
3 respectively in the prescribed display format and MT.
182. In this case, whether the echo from above is caused by drift ice or a sailing ship can be identified by whether or not the output of the receiver 35 contains periodic noise such as screw noise or engine sound. The output of the receiver 35 is displayed on the display 1 of the side observation sonar 1.
8 and is guided to a frequency analyzer 19 placed near the frequency analyzer 8 for monitoring.

こうして側方、前方および上方の流氷を監視しつつ安全
な水中航行を確保することができる。
In this way, safe underwater navigation can be ensured while monitoring drift ice to the sides, in front, and above.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明は、水中航行体に側方、前方、
上方の3種の観測ソーナーを配備し、前方と上方を監視
しつつ側方観測ソーナーで流氷の水中形状プロファイル
をとることにより、水中航行体自体を含み水上船舶の安
全航行可否の判断が可能となり、またVLF通信の受信
の可否の判断も可能となるという効果がある。
As explained above, the present invention provides an underwater vehicle with side, front,
By deploying three types of observation sonar above and monitoring the front and above, and taking the underwater shape profile of drift ice with side observation sonar, it becomes possible to judge whether or not surface vessels, including underwater vehicles themselves, can safely navigate. , it is also possible to determine whether or not VLF communication can be received.

また、観測を定期的に実施することにより、流氷の流れ
、および形状に関する時間的変化が把握でき゛、対象海
域における安全航行確保に関する長期的対策を立て易い
という効果がある。
In addition, by conducting regular observations, it is possible to understand temporal changes in the flow and shape of drift ice, which has the effect of making it easier to develop long-term measures to ensure safe navigation in the target sea area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は第1
図の実施例における各観測ビームの説明図、第3図は第
1図の実施例によって取得した流氷水中形状のプロファ
イルの一例を示す記録図である。 1・・・・・・側方観測ソーナー、2・・・・・・前方
観測ソーナー、3・・・・・・上方観測ソーナー、4・
・・・・・潜水船、5・・・・・・側方観測ビーム、6
・・・・・・前方観測ビーム、7・・・・・・上方観測
ビーム、8・・・・・・流氷、9・・・・・・海表面、
11 a、 1 l b、 21.31−送受波器、1
2 a、 12 b、 22.32−−整相器、13゜
23.33・・・・・・送受切替器、14,24,34
・・・・・・送信器、15,25,35・・・・・・受
信器、16・・・・・・制御器、17・・・・・・映像
処理器、18・・・・・・表示器、19・・・・・・周
波数分析器、51・・・・・・音響ファンビーム、18
1・・・・・・CRT、182・・・・・・MT%18
3・・・・・・XYプロッタ、1811・・・・・・水
中流氷。 代理人 弁理士  内 原   音 4−−−−ジ沓水*ひ j −−−一一側万徊し則ビーム 6−−−−−@方省屯夏ソビ′−ム 7 −−−−−ヱ方坂瓢渭lビーム 8−一一一沸ジに 7−−−一塙表葡 S/  −−−−−ファしビーム 第2 図
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
An explanatory diagram of each observation beam in the embodiment shown in the figure, and FIG. 3 is a record diagram showing an example of the profile of the shape of drift ice water obtained by the embodiment shown in FIG. 1...Side observation sonar, 2...Forward observation sonar, 3...Upward observation sonar, 4.
...Submersible, 5 ...Side observation beam, 6
...Forward observation beam, 7...Upward observation beam, 8...Drift ice, 9...Sea surface,
11 a, 1 l b, 21.31-transducer, 1
2 a, 12 b, 22.32 -- Phaser, 13° 23.33... Transmission/reception switch, 14, 24, 34
......Transmitter, 15, 25, 35...Receiver, 16...Controller, 17...Video processor, 18...・Display device, 19... Frequency analyzer, 51... Acoustic fan beam, 18
1...CRT, 182...MT%18
3...XY plotter, 1811...Underwater drift ice. Agent Patent Attorney Oto Hara Uchihara 4-----Jiyu Shui * Hij --- Eleven side Wandering Law Beam 6----@Fang Province Tunxia Sobi'-mu 7 ---- -Eho Saka Gourd L Beam 8-111 Ji ni 7---Ichihan Omote S/---Fashi Beam 2nd Figure

Claims (1)

【特許請求の範囲】[Claims] 水中を航行する潜水船等の水中航行体の進行方向に対し
て左右直上方向からそれぞれ直角方向かつ所定の範囲に
わたって音響ファンビーム(fanbeam)を走査し
つつ側方を観測する側方観測手段と、前記進行方向に音
響ビームを送出して前方を観測する前方観測手段と、垂
直上方に音響ビームを送出して上方を観測するとともに
海上を航行する船舶を発生雑音を含んで捕捉する上方観
測手段とを備えて流氷の水中形状を観測することを特徴
とする流氷水中形状観測方式。
Side observation means for observing the sides of an underwater vehicle such as a submersible traveling underwater while scanning an acoustic fan beam in a direction perpendicular to the left and right sides and over a predetermined range, respectively, with respect to the traveling direction of the underwater vehicle, such as a submersible; forward observation means for transmitting an acoustic beam in the direction of travel to observe the front; and upward observation means for transmitting an acoustic beam vertically upward to observe the upward direction and to capture a ship sailing on the sea including generated noise. An underwater shape observation method for drift ice, which is characterized by the observation of the underwater shape of drift ice.
JP63164347A 1988-06-30 1988-06-30 System for observing under water shape of floating ice Pending JPH0213877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63164347A JPH0213877A (en) 1988-06-30 1988-06-30 System for observing under water shape of floating ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63164347A JPH0213877A (en) 1988-06-30 1988-06-30 System for observing under water shape of floating ice

Publications (1)

Publication Number Publication Date
JPH0213877A true JPH0213877A (en) 1990-01-18

Family

ID=15791440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164347A Pending JPH0213877A (en) 1988-06-30 1988-06-30 System for observing under water shape of floating ice

Country Status (1)

Country Link
JP (1) JPH0213877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087705A (en) * 2012-12-31 2014-07-09 대우조선해양 주식회사 Dynamic positioning system having iceberg load prediciton apparatus and iceberg load prediction method of the same
JP2015217882A (en) * 2014-05-20 2015-12-07 株式会社Ihi Underwater vehicle floating position selection method and underwater vehicle floating position selection device
JP2016536604A (en) * 2013-09-13 2016-11-24 タレス System and associated method for detecting and locating underwater objects with neutral buoyancy, such as mooring mines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140087705A (en) * 2012-12-31 2014-07-09 대우조선해양 주식회사 Dynamic positioning system having iceberg load prediciton apparatus and iceberg load prediction method of the same
JP2016536604A (en) * 2013-09-13 2016-11-24 タレス System and associated method for detecting and locating underwater objects with neutral buoyancy, such as mooring mines
US10353059B2 (en) 2013-09-13 2019-07-16 Thales System for detecting and locating submerged objects having neutral buoyancy such as moored mines and associated method
JP2015217882A (en) * 2014-05-20 2015-12-07 株式会社Ihi Underwater vehicle floating position selection method and underwater vehicle floating position selection device

Similar Documents

Publication Publication Date Title
AU2016203271B2 (en) Sonar systems and methods using interferometry and/or beamforming for 3d imaging
KR100493783B1 (en) Apparatus suitable for searching objects in water
US9348028B2 (en) Sonar module using multiple receiving elements
US9244168B2 (en) Sonar system using frequency bursts
US9335412B2 (en) Sonar transducer assembly
US20100067330A1 (en) Ship mounted underwater sonar system
US6285628B1 (en) Swept transit beam bathymetric sonar
JPS61254879A (en) Sea-bottom prospecting sonic device
US11921199B2 (en) Sonar beam footprint presentation
EP3273264A2 (en) Underwater detection apparatus
US20220390542A1 (en) Live sonar systems and methods
JPH0213877A (en) System for observing under water shape of floating ice
JPS61262674A (en) Apparatus for measuring position in water
JP4281617B2 (en) Synthetic aperture sonar signal processor
JPH0679065B2 (en) Seabed search device
JP2000111647A (en) Obstacle detector
JP2002168937A (en) Device and method for detecting position of submerged target
JPH07181255A (en) Ship collision ground-hitting prevention system
JPH04372890A (en) Apparatus for displaying topography of sea bottom
JPH04279883A (en) Fish finder
JPH0424581A (en) Guiding apparatus of underwater navigating body by ultrasonic wave
JP2022138365A (en) Echo-sounding device
Tucker Sonar and underwater acoustical engineering
JPH03108684A (en) Hydrospace detector
CA2650524A1 (en) Multibeam sounder