JPH0213652B2 - - Google Patents

Info

Publication number
JPH0213652B2
JPH0213652B2 JP56193948A JP19394881A JPH0213652B2 JP H0213652 B2 JPH0213652 B2 JP H0213652B2 JP 56193948 A JP56193948 A JP 56193948A JP 19394881 A JP19394881 A JP 19394881A JP H0213652 B2 JPH0213652 B2 JP H0213652B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrolein
acid
methacrylic acid
selectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56193948A
Other languages
Japanese (ja)
Other versions
JPS5896041A (en
Inventor
Shinkichi Shimizu
Hiroshi Ichihashi
Masaaki Iwasa
Koichi Nagai
Asao Ooya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP56193948A priority Critical patent/JPS5896041A/en
Publication of JPS5896041A publication Critical patent/JPS5896041A/en
Publication of JPH0213652B2 publication Critical patent/JPH0213652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタクロレインを高温気相下に分子状
酸素または分子状酸素含有ガスにより接触酸化し
て収率よく、メタクリル酸を製造する方法に関す
るものである。 メタクロレインを高温気相下に接触酸化してメ
タクリル酸を製造する方法に関しては、従来から
既に燃モリブデン酸またはその塩からなる触媒を
用いる数多くの方法が提案されているが、未だ工
業化されるには至つていない。 この理由はひとつにはメタクロレインからメタ
クリル酸を製造する際の収率が低いことにある。
同じような反応でアクロレインからアクリル酸を
製造する場合の収率が著しく高い水準にあり、既
に工業化されているのと好対称である。 メタクリル酸の収率が低いことは、メタクロレ
インがアクロレインに較べて酸化されやすく部分
酸化に比して完全酸化(一酸化炭素、二酸化炭素
の生成)が起こりやすいという事実に起因するも
のと考えられる。 更に未だ工業化されるに至らないもうひとつの
理由としては、この目的に用いようとする触媒の
寿命が短いために実用的な工業触媒として採用し
得ないことがあげられる。 燐モリブデン酸またはその塩からなる触媒は耐
熱性に難点があり、熱分解や焼結等の現象により
活性が低下する。 メタクロレインからメタクリル酸を生成する選
択性は低温程高いこともあつて、燐モリブデン酸
またはその塩からなる触媒は可能な限り低温で使
用することが望まれている。とは言え活性は低温
程低下するため、反応器の大きさおよび充填する
触媒量が膨大なものとなり、経済的に成立しにく
い。 メタクロレインのワンパス反応率を抑えて高い
メタクリル酸の選択率を得ようとする多段酸化や
リサイクル法においては、より一層高い活性の触
媒が要請されている。 反応器に充填する形状に成型された触媒で
600hr-1以上、1〜2mmに破砕された状態で
1500-1以上の空間速度で十分に反応しうる触媒で
なければならない。こうした点で従来知られてい
る触媒は活性が不十分であり、選択性も満足でき
ないものである。 最近メタクリル酸の収率を高める工夫として
は、モリブデン、燐、バナジウム、銅を主成分と
する燐モリブデン酸系触媒にカリウム、ルビジウ
ムあるいはセシウム等のアルカリ金属やタリウム
を加えて、それらの塩とすることとか砒素を加え
ることが提案されている。 しかしながら、これらの成分を加えることは一
見ワンパス収率を高めているようであるが、活性
を低下させるという不利を生じている。又砒素は
代表的な毒物であり、特定化学物質に指定されて
いる物質の中でも特に取扱いおよび管理が問題と
されている。触媒の製造、運搬、反応器での充
填、抜出作業あるいは廃棄等、労働衛生および環
境衛生上極めて困難な問題をかかえている。 本願発明者らはこうした問題に鑑み、鋭意高い
活性、特に低温において高い活性と高い選択性を
有し、安全で取扱い易い触媒の探索を進めた結
果、本発明に至つたものである。 本発明はモリブデン、燐、バナジウム、銅およ
び硼素からなる触媒を使用することにより、メタ
クリル酸を高選択率、高収率で製造するものであ
り、特にその極めて高い活性、特に低温における
高い活性から触媒寿命も極めて長く、十分に工業
的に成立する方法を提供するものである。 触媒は一般組成が MoaPbVcCudBeOf (ここにおいてa、b、c、d、eおよびfはそ
れぞれモリブデン、燐、バナジウム、銅、硼素お
よび酸素の原子数の比である。そしてa=12とす
るとb=0.1〜6、c=0.1〜6、d=0.01〜6、
e=0.01〜6、特に好ましくはb=0.5〜3、c
=0.3〜3、d=0.1〜3、e=0.1〜3であり、f
=各原子の原子価とa〜eの値により自然に決ま
る数で表わされる。) で示される実質的にアンモニウムまたはアルカリ
金属イオンを含まない遊離酸型ヘテロポリ酸触媒
である。 ここで実質的にアンモニウムまたはアルカリ金
属イオンを含まない遊離酸型ヘテロポリ酸とは、
150℃にて乾燥した後のX線回折スペクトルにお
いて主要面間隔が13.8、11.2、10.0、9.60、4.98、
4.78、3.49、3.42、3.21、3.14、2.99および2.81Å
からなる三斜晶型および9.93、4.90、4.44、4.33、
3.92、3.30、3.25、3.07および2.07Åからなる正方
晶型と思われるものの混合物であり、室温におい
て飽和蒸気圧下においては13.6、8.18、5.82、
5.33、4.44、4.11、3.91、3.53、3.35、3.02、2.90
および2.67Åのピークからなるダイアモンド型の
立方晶をとり、実質的にアルカリ金属やタリウム
あるいはアンモニウムを含まない組成物を意味す
る。 遊離酸型ヘテロポリ酸は、その構造中に含む結
晶水の量により上記のようなX線回折スペクトル
の変化を与えるが、又反応雰囲気に接触させる
と、還元型の遊離酸型ヘテロポリ酸となり、主要
面間隔8.50、4.98、4.79、4.69、4.35、4.27、4.19、
3.59、3.48、3.42、3.28および3.23ÅのX線回折ピ
ークを与える。 本発明方法に用いられる触媒の製造にあたつて
は、遊離の燐モリブデン酸の調製方法が一般的に
使用される。 触媒を製造する際に用いられる出発原料として
は、モリブデンは酸化モリブデン、モリブデン
酸、燐モリブデン酸、燐バナドモリブデン酸が、
燐原料としては燐酸、亜燐酸、五酸化燐、燐モリ
ブデン酸、燐バナドモリブデン酸、燐酸バナジウ
ム、燐酸銅等が、バナジウム原料としては五酸化
バナジウム、四二酸化バナジウム、三酸化バナジ
ウム、蓚酸バナジル、硫酸バナジル、二塩化バナ
ジル、燐酸バナジウム、燐バナドモリブデン酸等
が、銅原料としては酸化第一銅、酸化第二銅、塩
基性炭酸銅、燐酸銅等が、そして硼酸原料として
は酸化硼素、硼酸等が使用される。 モリブデン酸、燐酸、バナジン酸、硼酸等のア
ルカリ金属塩やアンモニウム塩も使用できなくは
ないが、鉱酸等で遊離酸に変換したり、エーテル
で遊離酸を抽出したりあるいは塩酸を加えてアン
モニウム根を塩化アンモニウムとして揮散させる
操作が必要となる。又残留するアルカリ金属やア
ンモニウムにより、活性が低下するので、好まし
い方法とは言えない。 先に挙げた原料化合物に水を加えて高温で煮
沸、還流し、ヘテロポリ酸の水溶液とする。 この水溶液を砂浴上で100〜150℃で蒸発乾固し
て固形物を得る。この固形物を粉砕して、更に打
錠してタブレツトにするか、担体にまぶしつけて
粒状の触媒とする。又触媒を蒸発乾固する過程に
おいて、水溶液を粒状多孔質無機担体に含浸し
て、これを乾燥する方法も使用することができ
る。 担体としては、シリカゲル、アルミナ、アルミ
ノシリケート、シリコンカーバイド、軽石、硅藻
土、チタン等の成型物あるいはこれらの粉末やシ
リカゲル等のコロイドが使用される。 本発明において使用されるメタクロレイン原料
としては、純粋なメタクロレインである必要はな
く、イソブチレンを空気で触媒上で酸化して得ら
れたメタクロレイン、未反応イソブチレン、一酸
化炭素、炭酸ガス、室素ガス、水蒸気等を含んだ
混合ガスでもよい。 使用する酸素原料も同様に、純粋な酸素でもよ
いが、一般には空気が使用される。また酸素を二
酸化炭素あるいは窒素のような不活性ガスで希釈
したガスを使用してもよい。 本発明の触媒による反応条件として適当な反応
温度は、触媒および原料ガス組成、空間速度等に
よつて異なるが、この種の反応に通常用いられて
いる温度、すなわち200〜450℃、好ましくは250
〜400℃である。 また、本発明は加圧下、減圧下のいずれでも行
いうるが、常圧下で行うのが便利である。 空間速度は200〜12000hr-1、好ましくは500〜
6000hr-1である。 原料ガス組成はメタクロレイン0.1〜10モル%、
酸素は0.1〜20モル%、水蒸気は0〜90モル%、
好ましくは10〜80モル%である。 原料混合ガス中に水蒸気を共存させることは目
的物であるメタクリル酸の収率上著しく有利であ
る。 本発明触媒は一般には固定床で用いられるが、
流動床でも使用することができる。 以下に実施例をあげて本発明を具体的に説明す
るが、本発明はこれら実施例によつて限定される
ものではない。 なお、本発明明細書におけるメタクロレイン反
応率、メタクリル酸選択率および酢酸選択率は次
のように定義する。 メタクロレイン反応率=消費メタクロ
レインのモル数/供給メタクロレインのモル数×100(
%) メタクリル酸選択率=生成メタクリル
酸のモル数/消費メタクロレインのモル数×100(%) 酢酸選択率=生成酢酸のモル数/消費
メタクロレインのモル数×100×1/2(%) なお、分析はガスクロマトグラフイーによつ
た。 実施例 1 酸化モリブデン86.4g、五酸化バナジウム4.55
g、酸化第二銅0.80gおよび硼酸1.24gを水600
mlに懸濁させ、85%燐酸6.34gを更にその液に加
えた。 この懸濁液を10時間煮沸、還流すると赤色の透
明な液となつた。次いてこの液を砂浴上で蒸発乾
固し、更に乾燥器で150℃で5時間乾燥した。 得られた固形物のX線回折スペクトルは、主要
面間隔13.8、11.2、10.0、9.93、9.60、4.98、4.90、
4.78、4.44、4.33、3.42、3.30、3.25および3.21Å
のピーク群からなり、遊離酸型ヘテロポリ酸であ
ることを示している。 触媒の組成はMo12P1.1V1Cu0.2B0.4O42.1であつ
た。 触媒固形物を粉砕した後圧縮成型し、これを再
び粗く砕いて10〜16メツシユに篩別した。この触
媒2mlを内径12mmのガラス製反応管に充填し、メ
タクロレイン3.9モル%、酸素7.2モル%、窒素
74.6モル%、水蒸気14.2モル%の組成の原料ガス
を触媒に対する空間速度2800hr-1にて供給した。 反応温度300℃においてはメタクロレイン反応
率72.5%、メタクリル酸選択率87.5%、酢酸選択
率4.6%であつた。 また、反応温度320℃ではメタクロレイン反応
率87.9%、メタクリル酸選択率83.7%、酢酸選択
率6.2%であつた。 実施例 2 実施例1の触媒を用い、メタクロレイン3.9モ
ル%、酢酸7.2モル%、窒素60.4モル%、水蒸気
28.4モル%の水蒸気の含まれる濃度を高めた組成
の原料ガスを空間速度2800hr-1で供給した。 反応温度300℃においてはメタクロレイン反応
率80.6%、メタクリル酸選択率89.2%、酢酸選択
率5.4%であつた。 また反応温度320℃ではメタクロレイン反応率
95.4%、メタクリル酸選択率85.4%、酢酸選択率
4.1%であつた。 実施例 3 実施例1の触媒を用い、実施例2と同じ組成の
ガスで空間速度1600hr-1の比較的緩やかな条件で
反応を行つた。 反応温度280℃においてはメタクロレイン反応
率80.1%、メタクリル酸選択率88.5%、酢酸選択
率2.9%であつた。 反応温度300℃ではメタクロレイン反応率95.8
%、メタクリル酸選択率85.5%、酢酸選択率4.6
%であつた。 実施例 4〜9 実施例1と同様にして製作された種々の組成の
触媒について実施例1と同じ反応条件で活性試験
を行つた。 触媒組成と活性試験結果を第1表に示す。
The present invention relates to a method for producing methacrylic acid in high yield by catalytically oxidizing methacrolein with molecular oxygen or a molecular oxygen-containing gas in a high-temperature gas phase. Regarding the production of methacrylic acid by catalytic oxidation of methacrolein in a high-temperature gas phase, many methods using catalysts made of molybdic acid or its salts have been proposed, but these methods have yet to be industrialized. has not been reached yet. One reason for this is that the yield when producing methacrylic acid from methacrolein is low.
When acrylic acid is produced from acrolein using a similar reaction, the yield is at an extremely high level, which is in good contrast to what has already been industrialized. The low yield of methacrylic acid may be due to the fact that methacrolein is more easily oxidized than acrolein, and complete oxidation (formation of carbon monoxide and carbon dioxide) is more likely to occur than partial oxidation. . Another reason why it has not yet been industrialized is that the catalyst used for this purpose has a short lifespan and cannot be used as a practical industrial catalyst. Catalysts made of phosphomolybdic acid or its salts have difficulty in heat resistance, and their activity decreases due to phenomena such as thermal decomposition and sintering. Since the selectivity for producing methacrylic acid from methacrolein is higher at lower temperatures, it is desirable to use a catalyst made of phosphomolybdic acid or a salt thereof at as low a temperature as possible. However, since the activity decreases as the temperature decreases, the size of the reactor and the amount of catalyst charged become enormous, making it difficult to achieve economically. Catalysts with even higher activity are required in multi-stage oxidation and recycling methods in which the one-pass reaction rate of methacrolein is suppressed to obtain a high selectivity of methacrylic acid. A catalyst molded into a shape to be filled into a reactor.
600hr -1 or more, crushed to 1-2mm
The catalyst must be able to react sufficiently at a space velocity of 1500 -1 or higher. In this respect, conventionally known catalysts have insufficient activity and unsatisfactory selectivity. Recently, a method to increase the yield of methacrylic acid has been to add alkali metals such as potassium, rubidium, or cesium, or thallium to a phosphomolybdic acid catalyst whose main components are molybdenum, phosphorus, vanadium, and copper to form a salt thereof. It has been proposed to add koto or arsenic. However, although the addition of these components appears to increase the one-pass yield, it has the disadvantage of decreasing activity. Furthermore, arsenic is a typical poisonous substance, and its handling and management are particularly problematic among substances designated as specific chemical substances. Catalyst production, transportation, filling in reactors, extraction work, and disposal pose extremely difficult problems in terms of occupational and environmental health. In view of these problems, the inventors of the present application have earnestly searched for a catalyst that has high activity, particularly high activity and high selectivity at low temperatures, and is safe and easy to handle, and as a result, the present invention has been achieved. The present invention uses a catalyst consisting of molybdenum, phosphorus, vanadium, copper, and boron to produce methacrylic acid with high selectivity and high yield, and particularly because of its extremely high activity, especially at low temperatures. The catalyst has an extremely long life and provides a method that is fully commercially viable. The general composition of the catalyst is Mo a P b V c Cu d B e Of (where a, b, c, d, e and f are the ratios of the numbers of molybdenum, phosphorus, vanadium, copper, boron and oxygen atoms, respectively If a=12, b=0.1~6, c=0.1~6, d=0.01~6,
e=0.01-6, particularly preferably b=0.5-3, c
=0.3~3, d=0.1~3, e=0.1~3, and f
= Represented by a number naturally determined by the valence of each atom and the values of a to e. ) is a free acid type heteropolyacid catalyst substantially free of ammonium or alkali metal ions. Here, the free acid type heteropolyacid that does not substantially contain ammonium or alkali metal ions is
The main spacings in the X-ray diffraction spectrum after drying at 150°C are 13.8, 11.2, 10.0, 9.60, 4.98,
4.78, 3.49, 3.42, 3.21, 3.14, 2.99 and 2.81Å
Triclinic type consisting of and 9.93, 4.90, 4.44, 4.33,
It is a mixture of what appears to be a tetragonal crystal type consisting of 3.92, 3.30, 3.25, 3.07 and 2.07 Å, and at room temperature and under saturated vapor pressure it is 13.6, 8.18, 5.82,
5.33, 4.44, 4.11, 3.91, 3.53, 3.35, 3.02, 2.90
It means a composition that has a diamond-shaped cubic crystal structure with a peak of 2.67 Å and does not substantially contain alkali metals, thallium, or ammonium. A free acid type heteropolyacid changes its X-ray diffraction spectrum as described above depending on the amount of crystallization water contained in its structure, but when it comes into contact with a reaction atmosphere, it becomes a reduced free acid type heteropolyacid, and the main Surface spacing 8.50, 4.98, 4.79, 4.69, 4.35, 4.27, 4.19,
It gives X-ray diffraction peaks at 3.59, 3.48, 3.42, 3.28 and 3.23 Å. In producing the catalyst used in the process of the present invention, a method for preparing free phosphomolybdic acid is generally used. The starting materials used in the production of catalysts include molybdenum oxide, molybdic acid, phosphomolybdic acid, phosphovanadomolybdic acid,
Phosphorus raw materials include phosphoric acid, phosphorous acid, phosphorus pentoxide, phosphomolybdic acid, phosphovanadomolybdic acid, vanadium phosphate, copper phosphate, etc. Vanadium raw materials include vanadium pentoxide, vanadium tetroxide, vanadium trioxide, vanadyl oxalate, etc. Vanadyl sulfate, vanadyl dichloride, vanadium phosphate, phosphovanadomolybdic acid, etc. are used as copper raw materials, cuprous oxide, cupric oxide, basic copper carbonate, copper phosphate, etc. are used as raw materials for copper, and boron oxide, Boric acid etc. are used. Alkali metal salts and ammonium salts such as molybdic acid, phosphoric acid, vanadate acid, and boric acid can also be used, but ammonium salts can be obtained by converting them to free acids with mineral acids, extracting the free acids with ether, or adding hydrochloric acid. It is necessary to volatilize the roots as ammonium chloride. Furthermore, the remaining alkali metals and ammonium reduce the activity, so it cannot be said to be a preferable method. Water is added to the above-mentioned raw material compound, and the mixture is boiled and refluxed at a high temperature to form an aqueous solution of heteropolyacid. This aqueous solution is evaporated to dryness on a sand bath at 100-150°C to obtain a solid. This solid substance is pulverized and further compressed into tablets, or sprinkled on a carrier to form a granular catalyst. Further, in the process of evaporating the catalyst to dryness, a method of impregnating a granular porous inorganic carrier with an aqueous solution and drying the carrier can also be used. As the carrier, molded products such as silica gel, alumina, aluminosilicate, silicon carbide, pumice, diatomaceous earth, titanium, etc., or powders thereof, and colloids such as silica gel are used. The methacrolein raw material used in the present invention does not need to be pure methacrolein, but includes methacrolein obtained by oxidizing isobutylene with air over a catalyst, unreacted isobutylene, carbon monoxide, carbon dioxide gas, A mixed gas containing raw gas, water vapor, etc. may be used. Similarly, the oxygen source used may be pure oxygen, but air is generally used. Alternatively, a gas obtained by diluting oxygen with an inert gas such as carbon dioxide or nitrogen may be used. The reaction temperature suitable for the reaction conditions using the catalyst of the present invention varies depending on the catalyst, raw material gas composition, space velocity, etc., but is the temperature normally used for this type of reaction, that is, 200 to 450°C, preferably 250°C.
~400℃. Further, although the present invention can be carried out either under increased pressure or reduced pressure, it is convenient to carry out under normal pressure. Space velocity is 200~12000hr -1 , preferably 500~
6000hr -1 . Raw material gas composition is methacrolein 0.1 to 10 mol%,
Oxygen is 0.1 to 20 mol%, water vapor is 0 to 90 mol%,
Preferably it is 10 to 80 mol%. The coexistence of water vapor in the raw material mixed gas is extremely advantageous in terms of the yield of methacrylic acid, which is the target product. The catalyst of the present invention is generally used in a fixed bed, but
Fluidized beds can also be used. The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. In addition, the methacrolein reaction rate, methacrylic acid selectivity, and acetic acid selectivity in the present specification are defined as follows. Methacrolein reaction rate = Number of moles of methacrolein consumed / Number of moles of methacrolein supplied × 100 (
%) Methacrylic acid selectivity = Number of moles of methacrylic acid produced/Number of moles of methacrolein consumed x 100 (%) Acetic acid selectivity = Number of moles of acetic acid produced/Number of moles of methacrolein consumed x 100 x 1/2 (%) The analysis was conducted using gas chromatography. Example 1 Molybdenum oxide 86.4g, vanadium pentoxide 4.55g
g, 0.80 g of cupric oxide and 1.24 g of boric acid to 600 g of water
ml and further added 6.34 g of 85% phosphoric acid to the solution. When this suspension was boiled and refluxed for 10 hours, it became a red transparent liquid. Next, this liquid was evaporated to dryness on a sand bath and further dried in a drier at 150°C for 5 hours. The X-ray diffraction spectrum of the obtained solid has major spacings of 13.8, 11.2, 10.0, 9.93, 9.60, 4.98, 4.90,
4.78, 4.44, 4.33, 3.42, 3.30, 3.25 and 3.21Å
It consists of a group of peaks, indicating that it is a free acid type heteropolyacid. The composition of the catalyst was Mo 12 P 1.1 V 1 Cu 0.2 B 0.4 O 42.1 . The catalyst solid was crushed and compression molded, and then coarsely crushed again and sieved into 10 to 16 meshes. 2 ml of this catalyst was packed into a glass reaction tube with an inner diameter of 12 mm, and 3.9 mol% of methacrolein, 7.2 mol% of oxygen, and nitrogen
A raw material gas having a composition of 74.6 mol% and water vapor of 14.2 mol% was supplied at a space velocity of 2800 hr -1 relative to the catalyst. At a reaction temperature of 300°C, the methacrolein reaction rate was 72.5%, the methacrylic acid selectivity was 87.5%, and the acetic acid selectivity was 4.6%. Furthermore, at a reaction temperature of 320°C, the methacrolein reaction rate was 87.9%, the methacrylic acid selectivity was 83.7%, and the acetic acid selectivity was 6.2%. Example 2 Using the catalyst of Example 1, methacrolein 3.9 mol%, acetic acid 7.2 mol%, nitrogen 60.4 mol%, water vapor
A raw material gas having a composition with an increased concentration of 28.4 mol % water vapor was supplied at a space velocity of 2800 hr -1 . At a reaction temperature of 300°C, the methacrolein reaction rate was 80.6%, the methacrylic acid selectivity was 89.2%, and the acetic acid selectivity was 5.4%. In addition, at the reaction temperature of 320℃, the methacrolein reaction rate
95.4%, methacrylic acid selectivity 85.4%, acetic acid selectivity
It was 4.1%. Example 3 Using the catalyst of Example 1 and a gas having the same composition as in Example 2, a reaction was carried out under relatively gentle conditions at a space velocity of 1600 hr -1 . At a reaction temperature of 280°C, the methacrolein reaction rate was 80.1%, the methacrylic acid selectivity was 88.5%, and the acetic acid selectivity was 2.9%. Methacrolein reaction rate 95.8 at reaction temperature 300℃
%, methacrylic acid selectivity 85.5%, acetic acid selectivity 4.6
It was %. Examples 4 to 9 Activity tests were conducted on catalysts of various compositions prepared in the same manner as in Example 1 under the same reaction conditions as in Example 1. The catalyst composition and activity test results are shown in Table 1.

【表】 実施例 10 酸化モリブデン86.4g、五酸化バナジウム4.55
g、酸化銅1.60gおよび硼酸1.24gを水600mlに
懸濁させ、85%燐酸6.34gを更にその液に加え
た。 この懸濁液を10時間煮沸、還流して赤色の透明
液を得た。この液を更に煮沸し、200mlまで濃縮
した。 次いで液に直径5mmの球形多孔質アルフアアル
ミナ145.7gを投入し、なおも濃縮を続行し、蒸
発乾固させ、触媒成分を完全に担体に担持した。 こうして得られた触媒の活性成分の組成は
Mo12P1.1V1Cu0.4O42.3であり、触媒中の活性成分
量は約40重量%であつた。 この触媒を実施例1と同じ組成の原料ガスで空
間速度1600hr-1で活性試験を行つた。 その結果320℃においてはメタクロレイン反応
率77.6%、メタクリル酸選択率88.2%、酢酸選択
率3.8%であつた。 また、340℃ではメタクロレイン反応率93.6%、
メタクリル酸選択率83.0%、酢酸選択率6.3%で
あつた。 実施例 11 酸化モリブデン86.4g、五酸化バナジウム4.55
g、酸化銅1.60gおよび硼酸1.24gを水600mlに
懸濁させ、85%燐酸6.34gを更にその液に加え
た。 この懸濁液を10時間煮沸、還流して赤色の透明
液を得た。この液に担体として20重量%濃度のシ
リカゲル105gを加えた。次いでこの液を砂浴上
で蒸発乾固し、更に乾燥器で150℃で5時間乾燥
した。 得られた固形物を粉砕した後圧縮成型し、これ
を再び粗く砕いて10〜16メツシユに篩別した。 こうして得られた触媒の活性成分の組成は
Mo12P1.1V1Cu0.4B0.4O42.3であり、触媒中の活性
成分量は約82.2重量%であつた。 この触媒を用い実施例1と同じ組成の原料ガス
を空間速度2800hr-1にて供給した。 その結果反応速度300℃においてはメタクロレ
イン反応率70.4%、メタクリル酸選択率87.0%、
酢酸選択率4.9であつた。 また反応温度320℃ではメタクロレイン反応率
88.6%、メタクリル酸選択率82.3%、酢酸選択率
6.6%であつた。 実施例 12 実施例10の触媒を用い、実施例10の条件でただ
触媒層温度を350℃として熱的に過酷な条件で寿
命試験を行つた。活性測定はその都度触媒層温度
を320℃まで下げて行つた。第2表に活性の経時
的変化を示す。
[Table] Example 10 Molybdenum oxide 86.4g, vanadium pentoxide 4.55
g, 1.60 g of copper oxide and 1.24 g of boric acid were suspended in 600 ml of water, and 6.34 g of 85% phosphoric acid was further added to the solution. This suspension was boiled and refluxed for 10 hours to obtain a red transparent liquid. This liquid was further boiled and concentrated to 200ml. Next, 145.7 g of spherical porous alpha alumina with a diameter of 5 mm was added to the solution, and concentration was continued to evaporate to dryness, so that the catalyst component was completely supported on the carrier. The composition of the active component of the catalyst thus obtained is
Mo 12 P1.1V 1 Cu 0.4 O 42.3 , and the amount of active component in the catalyst was about 40% by weight. This catalyst was subjected to an activity test using a raw material gas having the same composition as in Example 1 at a space velocity of 1600 hr -1 . As a result, at 320°C, the methacrolein reaction rate was 77.6%, the methacrylic acid selectivity was 88.2%, and the acetic acid selectivity was 3.8%. In addition, at 340℃, the methacrolein reaction rate was 93.6%,
The methacrylic acid selectivity was 83.0% and the acetic acid selectivity was 6.3%. Example 11 Molybdenum oxide 86.4g, vanadium pentoxide 4.55g
g, 1.60 g of copper oxide and 1.24 g of boric acid were suspended in 600 ml of water, and 6.34 g of 85% phosphoric acid was further added to the solution. This suspension was boiled and refluxed for 10 hours to obtain a red transparent liquid. To this solution was added 105 g of 20% by weight silica gel as a carrier. This liquid was then evaporated to dryness on a sand bath and further dried in a dryer at 150°C for 5 hours. The obtained solid was pulverized and compression molded, then coarsely crushed again and sieved into 10 to 16 meshes. The composition of the active component of the catalyst thus obtained is
The amount of active component in the catalyst was approximately 82.2 % by weight . Using this catalyst, a raw material gas having the same composition as in Example 1 was supplied at a space velocity of 2800 hr -1 . As a result, at a reaction rate of 300℃, the methacrolein reaction rate was 70.4%, the methacrylic acid selectivity was 87.0%,
The acetic acid selectivity was 4.9. In addition, at the reaction temperature of 320℃, the methacrolein reaction rate
88.6%, methacrylic acid selectivity 82.3%, acetic acid selectivity
It was 6.6%. Example 12 Using the catalyst of Example 10, a life test was conducted under the conditions of Example 10 but under thermally severe conditions with the catalyst layer temperature at 350°C. Each time the activity was measured, the temperature of the catalyst layer was lowered to 320°C. Table 2 shows changes in activity over time.

【表】 参考例 1 実施例1の触媒の組成から硼素を抜いた組成で
あるMo12V1P1.1Cu0.2O41.5を実施例1と同様に作
り同じ条件で活性試験を行つた。 反応温度300℃におけるメタクロレイン反応率
は53.7%、メタクリル酸選択率84.6%、酢酸選択
率6.9%であつた。
[Table] Reference Example 1 Mo 12 V 1 P1.1Cu 0.2 O 41.5 , which had a composition in which boron was removed from the catalyst composition of Example 1, was prepared in the same manner as in Example 1, and an activity test was conducted under the same conditions. At a reaction temperature of 300°C, the methacrolein reaction rate was 53.7%, the methacrylic acid selectivity was 84.6%, and the acetic acid selectivity was 6.9%.

Claims (1)

【特許請求の範囲】 1 メタクロレインを分子状酸素または分子状酸
素含有ガスにより気相接触酸化してメタクリル酸
を製造するにあたり、一般組成が MoaPbVcCudBeOf (ここにa、b、c、d、eおよびfはそれぞれ
モリブデン、燐、バナジウム、銅、硼素および酸
素の原子数の比である。そしてa=12とすると、
b=0.1〜6、c=0.1〜6、d=0.01〜6、e=
0.01〜6、f=各原子の原子価とa〜eの値によ
り自然に決まる数で表わされる。) で示される実質的にアンモニウムまたはアルカリ
金属イオンを含まない遊離酸型ヘテロポリ酸触媒
を使用することを特徴とするメタクリル酸の製造
方法。 2 触媒成分の原子数の比がa=12に固定した場
合、b=0.5〜3、c=0.3〜3、d=0.1〜3、e
=0.1〜3、f=各原子の原子価とa〜eの値に
より自然に決まる数で表わされる特許請求の範囲
第1項記載の方法。
[Claims] 1. In producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen or molecular oxygen-containing gas, the general composition is Mo a P b V c Cu d B e Of (here where a, b, c, d, e and f are the ratios of the number of atoms of molybdenum, phosphorus, vanadium, copper, boron and oxygen, respectively.If a=12, then
b=0.1~6, c=0.1~6, d=0.01~6, e=
0.01 to 6, f = a number naturally determined by the valence of each atom and the values of a to e. ) A method for producing methacrylic acid, which comprises using a free acid type heteropolyacid catalyst substantially free of ammonium or alkali metal ions. 2 When the ratio of the number of atoms of the catalyst components is fixed at a = 12, b = 0.5 to 3, c = 0.3 to 3, d = 0.1 to 3, e
1. The method according to claim 1, wherein f=0.1 to 3, and f=a number naturally determined by the valence of each atom and the values of a to e.
JP56193948A 1981-12-01 1981-12-01 Preparation of methacrylic acid Granted JPS5896041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193948A JPS5896041A (en) 1981-12-01 1981-12-01 Preparation of methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193948A JPS5896041A (en) 1981-12-01 1981-12-01 Preparation of methacrylic acid

Publications (2)

Publication Number Publication Date
JPS5896041A JPS5896041A (en) 1983-06-07
JPH0213652B2 true JPH0213652B2 (en) 1990-04-04

Family

ID=16316415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193948A Granted JPS5896041A (en) 1981-12-01 1981-12-01 Preparation of methacrylic acid

Country Status (1)

Country Link
JP (1) JPS5896041A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209258A (en) * 1984-04-02 1985-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd Oxidation catalyst and its manufacture
JP4745766B2 (en) * 2004-09-07 2011-08-10 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
DE102012207811A1 (en) 2012-05-10 2012-07-12 Basf Se Heterogeneously catalyzed gas phase partial oxidation of (meth)acrolein to (meth)acrylic acid using a catalytically active multimetal oxide mass
DE102013202048A1 (en) 2013-02-07 2013-04-18 Basf Se Preparing catalytically active composition useful for preparing a catalyst, comprises e.g. thermally treating geometrical precursor bodies formed by a mixture obtained by uniformly mixing e.g. a spray-dried powder and molybdenum oxide
JP2023522261A (en) 2020-04-21 2023-05-29 ベーアーエスエフ・エスエー Method for producing catalytically active multi-element oxides containing elements Mo, W, V and Cu
EP4237145A1 (en) 2020-10-29 2023-09-06 Basf Se Method for producing a core-shell catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466619A (en) * 1977-10-31 1979-05-29 Nippon Kayaku Co Ltd Preparation of methacrylic acid and its catalyst
JPS5579341A (en) * 1978-12-13 1980-06-14 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466619A (en) * 1977-10-31 1979-05-29 Nippon Kayaku Co Ltd Preparation of methacrylic acid and its catalyst
JPS5579341A (en) * 1978-12-13 1980-06-14 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst

Also Published As

Publication number Publication date
JPS5896041A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
EP0043100B2 (en) Oxidation catalyst and process for preparation thereof
EP0425666B1 (en) Process for producing methacrylic acid and methacrolein
JP5192495B2 (en) Catalysts for the oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acids and methods for their production and use
EP0072381B1 (en) Coated catalysts useful in the preparation of maleic anhydride, preparation thereof and use in the preparation of maleic anhydride
US5191116A (en) Process for the preparation of methacrylic acid and methacrolein
JPS5811416B2 (en) Method for producing methacrylic acid
JPS5946934B2 (en) Method for manufacturing methacrylic acid
JPH0532323B2 (en)
KR840000986B1 (en) Methacrolein oxidation catalyst
JPS5826329B2 (en) Seizouhou
CA2027323C (en) Process for preparing catalysts for producing methacrylic acid
JPH0213652B2 (en)
US4541964A (en) Production of methacrylonitrile
JPS582232B2 (en) Method for producing acrylonitrile
EP0543019B1 (en) Process for preparing catalyst for producing methacrylic acid
JPH05177141A (en) Preparation of methacrylic acid
JPS6033539B2 (en) Oxidation catalyst and its preparation method
US4358610A (en) Process for the production of methacrylic acid from isobutyraldehyde
US4364856A (en) Mixed metal phosphorus oxide coated catalysts for the oxidative dehydrogenation of carboxylic acids
JPH0463139A (en) Catalyst for production of methacrylic acid
US3838067A (en) Catalyst and use thereof
US3649684A (en) Process for the preparation of methacrylic acid
US4473707A (en) Oxidative dehydrogenation of carboxylic acids with mixed metal phosphorus oxide coated catalysts
CS264284B2 (en) Catalyst for preparing maleic acid anhydride and process for preparing thereof
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou