JPH02136476A - Earthquakeproof structure of multistoried building - Google Patents

Earthquakeproof structure of multistoried building

Info

Publication number
JPH02136476A
JPH02136476A JP28667388A JP28667388A JPH02136476A JP H02136476 A JPH02136476 A JP H02136476A JP 28667388 A JP28667388 A JP 28667388A JP 28667388 A JP28667388 A JP 28667388A JP H02136476 A JPH02136476 A JP H02136476A
Authority
JP
Japan
Prior art keywords
wall
earthquakeproof
flexible
shear
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28667388A
Other languages
Japanese (ja)
Other versions
JP2514839B2 (en
Inventor
Kiyoshi Tanaka
清 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP63286673A priority Critical patent/JP2514839B2/en
Publication of JPH02136476A publication Critical patent/JPH02136476A/en
Application granted granted Critical
Publication of JP2514839B2 publication Critical patent/JP2514839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To improve the earthquakeproof performance of a multistoried building by composing the building of a frame structure plane and a continuous-storied earthquakeproof wall, installing a flexible brace structure plane to the partial structure plane of frame structure and connecting the brane structure plane to the continuous- storied earthquakeproof wall. CONSTITUTION:A building is constituted in wall-frame mixed structure consisting of frame structure planes 2, 2 and a continuous-storied earthquakeproof wall 1, and flexible brace structure planes 3, 3 or flexible earthquakeproof wall structure planes are mounted to the partial structure planes of frame structure. These structure planes are connected to the continuous-storied earthquakeproof wall 1, and the flexible brace structure planes 3, 3 are given a specified yield strength and shearing deformability. Consequently, the bending moment of the leg section of the continuous-storied earthquakeproof wall 1 is reduced on an earthquake, and the reduction section is shared as the increase section of the axial force of the posts of the frame structure planes 2, 2. Sufficient shearing deformability is displayed while maintaining constant shear strength after the flexible brace structure planes 3, 3 reach specified shear strength, so that the whole building transfers to a beam collapse mechanism to consume earthquake energy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はフレーム構造と連層耐震壁とからなる壁・フレ
ーム混合構造の高層建築物の耐震構造に係るものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an earthquake-resistant structure for a high-rise building having a wall/frame mixed structure consisting of a frame structure and a continuous earthquake-resistant wall.

(従来の技術) 従来、中層以下の特にRCC造建物物おいては、耐震設
計上、大きな水平力を負担させることを目的とした耐震
壁を有効に配して、建築物の安全性を確保している。
(Conventional technology) Conventionally, in earthquake-resistant design, especially for RCC buildings of medium or lower rises, shear walls designed to bear large horizontal forces have been effectively arranged to ensure the safety of the building. are doing.

而して前記耐震壁を高さ方向に連続した連層耐震壁と、
純フレーム(ラーメン)とが混在した壁・フレーム混合
構造があるが、高層建築物にこの構造型式が採用された
場合、前記連層耐震壁は、主として梁降伏によって地震
エネルギーを吸収するように設計されている。従ってこ
の場合の大地震での崩壊メカニズムは第5図のように設
定される。
and a multi-layered shear wall that is continuous in the height direction of the shear wall;
There is a mixed wall/frame structure with a pure frame (ramen) mixed in, but when this structural type is adopted for a high-rise building, the multi-layer shear wall is designed to absorb seismic energy mainly through beam yielding. has been done. Therefore, the collapse mechanism in a major earthquake in this case is set as shown in Figure 5.

このような建物が地震力を受けた時の動的挙動は大路次
のようになる。
The dynamic behavior of such a building when subjected to seismic force is as shown below by Ohji.

第6図に示すように、はぼ直線形をした1次モード(規
準モード)に対応した水平方向の加速度を受けた場合、
連層耐震壁の最下層脚部に最大の曲げモーメントとせん
断力とを生じ、この曲げモーメントの大きさに比例して
建物全体の地震エネルギー消費能力が決まる。この場合
、上層にいく程、耐震壁の負担曲げモーメントは小さく
なる。
As shown in Figure 6, when receiving acceleration in the horizontal direction corresponding to the nearly linear primary mode (reference mode),
The maximum bending moment and shear force are generated at the lowest leg of the continuous shear wall, and the seismic energy consumption capacity of the entire building is determined in proportion to the magnitude of this bending moment. In this case, the bending moment borne by the shear wall becomes smaller as it goes higher.

(第7図参照) 次に第8図に示す如く各層の水平方向の加速度の向きが
同一でない2次以上の高次モードに対応した加速度を受
ける場合、連層耐震壁の最下層脚部に生じる曲げモーメ
ントは相対的に小さくなるが、中間層から上部での負担
曲げモーメントが大きくなる。これは高次モードによる
建造物の中、上層部の変形を小さくする役割を持ってい
ることを意味する。(第9図参照) (発明が解決しようとする課B) 前記連層耐震壁を用いた耐震構造には、次のような問題
点があった。
(See Figure 7) Next, as shown in Figure 8, when each layer receives acceleration corresponding to a second or higher order mode where the direction of horizontal acceleration is not the same, the lowermost leg of the multi-story shear wall Although the bending moment generated is relatively small, the bending moment borne from the middle layer to the upper layer becomes large. This means that it has the role of reducing the deformation of the upper layer of a building due to higher-order modes. (See Figure 9) (Problem B to be solved by the invention) The earthquake-resistant structure using the multi-layer earthquake-resistant walls has the following problems.

(i)中低層建造物においては、耐震壁が負担する長期
軸力が高層建造物に比較して比較的小さく、且つ設計用
の地震力も相対的に小さいため、耐震壁の設計(断面寸
法、配筋)が可能である。
(i) In medium- and low-rise buildings, the long-term axial force borne by shear walls is relatively small compared to high-rise buildings, and the seismic force for design is also relatively small. reinforcement) is possible.

しかしこの場合でも、高層建造物と同様に耐震壁の水平
剛性が大きいため、連層耐震壁脚部に曲げモーメントの
集中を生じ易く、比較的早期に曲げ降伏を生じる可能性
があり、中小地震時にも曲げ降伏を生じる可能性がある
However, even in this case, the horizontal rigidity of the shear wall is high, similar to that of high-rise buildings, so bending moments tend to concentrate at the legs of the multi-story shear wall, which may lead to bending yielding relatively early. Sometimes bending yielding may occur.

(ii)高層建造物においては、長期軸力が大きくなり
、且つ設計用の地震力も大きくなるため、連層耐震壁脚
部の曲げモーメントが相対的に可成り大きくなる。従っ
て断面設計が困難となってくることが多く、仮に設計が
できたとしても、中小地震時での早期の降伏が中低層建
造物に比してより生起し易くなり、大地震時には耐震壁
における圧縮側の付帯柱の軸圧縮力が大きくなり、十分
な圧縮靭性が得られない。
(ii) In high-rise buildings, the long-term axial force becomes large and the design seismic force also becomes large, so the bending moment of the multi-story shear wall legs becomes relatively large. Therefore, cross-sectional design is often difficult, and even if a design is possible, early yielding during small to medium-sized earthquakes is more likely to occur compared to low- and medium-rise buildings, and in the event of a large earthquake, shear wall The axial compressive force of the attached column on the compression side increases, making it impossible to obtain sufficient compressive toughness.

本発明は前記従来技術の有する問題点に鑑みて提案され
たもので、その目的とする処は、壁・フレーム構造の高
層建造物における連層耐震壁の下層階における地震時の
曲げ応力が軽減され、地震時における建物全体の早期の
損傷が防止されるとともに、塑性歪エネルギー消費能力
が維持される高層建造物の耐震構造を提供する点にある
The present invention was proposed in view of the problems of the prior art, and its purpose is to reduce bending stress during an earthquake in the lower floors of continuous shear walls in high-rise buildings with wall/frame structures. The object of the present invention is to provide an earthquake-resistant structure for a high-rise building, which prevents early damage to the entire building during an earthquake and maintains plastic strain energy consumption capacity.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る高層建造物は
フレーム構造と連層耐震壁とからなる壁・フレーム混合
構造の建造物において、前記フレーム構造の一部の構面
に可撓ブレースまたは可撓耐震壁構面を設けるとともに
、同構面を前記連層耐震壁に連結して構成されている。
(Means for Solving the Problems) In order to achieve the above object, the high-rise building according to the present invention has a wall/frame mixed structure consisting of a frame structure and a continuous shear wall, in which one of the frame structures is A flexible brace or a flexible seismic wall structure is provided on the structural surface of the section, and the structural surface is connected to the continuous seismic wall.

更に前記可撓ブレースは、所定の耐力とせん断変形能力
を有する構面で、形成されている。
Further, the flexible brace is formed with a structural surface having a predetermined proof strength and shear deformation ability.

(作用) 本発明によれば前記したように、連層耐震壁・フレーム
混合構造の高層建造物において、フレーム構造の構面の
一部に、剪断力により生じる剪断変形能力が大きい可撓
ブレースまたは可撓耐震壁構面を設置して前記連層耐震
壁に連結したことによって、地震時における本発明の耐
震構造における連層耐震壁の曲げモーメント分布を従来
の耐震構造と比較したとき、前記可撓ブレースまたは可
撓耐震壁構面の梁による曲げ戻しモーメント効果によっ
て、前記連層耐震壁脚部の曲げモーメントが減少され、
この曲げモーメントの減少分がフレーム構面の柱の軸方
向力の増加分として負担される。
(Function) According to the present invention, as described above, in a high-rise building having a mixed layered shear wall/frame structure, a flexible brace or a flexible brace having a large shearing deformation capacity caused by shearing force is attached to a part of the frame structure. By installing a flexible shear wall structure and connecting it to the multi-layer shear wall, the bending moment distribution of the multi-layer shear wall in the seismic structure of the present invention during an earthquake was compared with that of the conventional seismic structure. The bending moment of the continuous shear wall leg is reduced by the bending moment effect of the flexible brace or the beam of the flexible shear wall structure,
This decrease in bending moment is borne by an increase in the axial force of the column of the frame structure.

この際、可撓ブレース構面が所定のせん断耐力に達した
後は、一定のせん断強度を保持しつつ、十分なせん断変
形能力を発揮して、建造物全体として梁崩壊メカニズム
に移行して地震エネルギーを消費する。
At this time, after the flexible brace structure reaches a predetermined shear strength, it maintains a certain shear strength and exhibits sufficient shear deformation capacity, and the structure as a whole shifts to a beam collapse mechanism, causing an earthquake. Consumes energy.

(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.

第1図は本発明に係る高層建造物の耐震構造の基本的な
架構を示し、中央部の連層耐震壁(1)と、その両側に
配置されたフレーム構面(2)とから構成され、同フレ
ーム構面(2)の最上階に可撓ブレース構面(3)が設
けられ、同構面(3)が前記連層耐震壁(1)に連結さ
れている。
Figure 1 shows the basic structure of the earthquake-resistant structure of a high-rise building according to the present invention, which is composed of a multi-layer earthquake-resistant wall (1) in the center and frame structures (2) placed on both sides of the wall. A flexible brace structure (3) is provided on the top floor of the frame structure (2), and the flexible brace structure (3) is connected to the continuous shear wall (1).

なお前記可撓ブレース構面(2)の代りに可撓耐震壁構
面を設置してもよい。
Note that a flexible shear wall structure may be installed in place of the flexible brace structure (2).

前記可撓ブレース構面(3)は所定のせん断耐力w Q
 yに達した後は、第3図に示すようなせん断力、せん
断変形特性を有する可撓構造とされてい図中、δアはせ
ん断降伏変形、。δ工は最大変形を示す。
The flexible brace structure (3) has a predetermined shear strength wQ
After reaching y, it becomes a flexible structure with shear force and shear deformation characteristics as shown in Figure 3. In the figure, δa is shear yield deformation. δ engineering indicates the maximum deformation.

図示の実施例は前記したように構成されているので1、
地震時において前記ブレース構面(3)による曲げ戻し
効果によって、連層耐震壁の負担曲げモーメント分布図
は第2図のaに示す如くなり、可撓ブレース構面のない
従来の耐震壁の負担曲げモーメント分布図すと対比して
明らかなように、連層耐震壁脚部の曲げモーメントが軽
減される。
Since the illustrated embodiment is constructed as described above, 1.
During an earthquake, due to the bending effect of the brace structure (3), the bending moment distribution diagram of the multi-story shear wall becomes as shown in Figure 2a, and the load of a conventional shear wall without a flexible brace structure becomes as shown in Figure 2a. As is clear from the bending moment distribution diagram, the bending moment at the legs of the continuous shear wall is reduced.

この曲げモーメントの減少分は、両側のフレーム構面(
2)の柱の軸方向力の増加分によって負担される。
This reduction in bending moment is caused by the frame structure on both sides (
2) is borne by the increased axial force of the column.

このように連層耐震壁脚部の曲げモーメントを軽減する
ために配設された前記可撓ブレース構面(3)が、若し
も強度抵抗形の架構であって変形能力がないと、建造物
全体での崩壊メカニズムを形成することができない、し
かるに前記可撓ブレース構面(3)は前掲第3図に示す
ようにせん断変形能力を有し、降伏せん断耐力w Q 
yに達した後は一定のせん断耐力を保持しつつせん断変
形を生起し、前記可撓ブレース構面(3)が連結された
連層耐震壁(1)にその残存応力が伝達されることによ
り、同連層耐震壁(1)の負担曲げモーメントを減少せ
しめ、各階のフレーム構面(2)への変形を平均に分担
させ、各層に塑性ヒンジを生起せしめ、建造物全体とし
て第4図に示す如き良好な梁崩壊メカニズムに移行せし
め、地震時のエネルギーを吸収するものである。
If the flexible brace structure (3) installed to reduce the bending moment of the multi-story shear wall leg is a strength-resistance type structure and does not have the ability to deform, the construction However, the flexible brace structure (3) has a shear deformation capacity as shown in FIG. 3, and the yield shear strength w Q
After reaching y, shear deformation occurs while maintaining a constant shear strength, and the residual stress is transmitted to the continuous shear wall (1) to which the flexible brace structure (3) is connected. , the bending moment borne by the continuous shear wall (1) is reduced, the deformation of the frame structure (2) of each floor is shared evenly, and a plastic hinge is created in each floor, and the building as a whole is constructed as shown in Figure 4. As shown in the figure, the beam collapse mechanism is transferred to a favorable one, and the energy during an earthquake is absorbed.

か(して前記実施例によれば、従来高層建造物では設計
が困難となる耐震壁の付帯柱脚部の負担圧縮力を軽減す
ることができ、耐震壁脚部の曲げ靭性を向上することが
できる。
(Thus, according to the above embodiment, it is possible to reduce the compressive force borne by the base of the attached columns of the shear wall, which is difficult to design in conventional high-rise buildings, and improve the bending toughness of the base of the shear wall. Can be done.

なお前記実施例においては可撓ブレース構面(3)、ま
たは可撓耐震壁構面が、フレーム構面(2)の最上階に
設置されているが、必要に応じて中間階に可撓ブレース
構面、または可撓耐震壁構面を設置し、同構面のせん断
耐力と連層耐震壁(1)の曲げ耐力とを11節しながら
、各階のフレーム構面(2)への変形を平均に分担させ
ることもできる。
In the above embodiment, the flexible brace structure (3) or the flexible shear wall structure is installed on the top floor of the frame structure (2), but if necessary, the flexible brace may be installed on an intermediate floor. A structural surface or a flexible shear wall structure is installed, and the deformation to the frame structure (2) of each floor is carried out while maintaining the shear capacity of the structure surface and the bending capacity of the continuous shear wall (1) in 11 sections. It is also possible to have the average share.

(発明の効果) 本発明によれば前記したように、フレーム構造と連層耐
震壁とからなる壁・フレーム混合構造の建造物において
、フレーム構造の一部に設けた可撓ブレース、または可
撓耐震壁構面を連層耐震壁に連結することによって、地
震時に大きな曲げモーメントとせん断力とを負担させ、
建造物各層の変形を小さくして平均に負担させ、建造物
全体として良好な梁崩壊メカニズムに移行し、構造設計
を容易に行なうことができるようにし、中小地震時には
建造物の早期の損傷を防止し、大地震時には耐震壁にお
ける圧縮側付帯柱の負担圧縮力を軽減し、耐震壁曲部の
圧縮靭性を向上し、大地震時には塑性エネルギー吸収能
力を発揮して抵抗し、耐震性能の優れた高層建造物を構
成するものである。
(Effects of the Invention) According to the present invention, as described above, in a building having a wall/frame mixed structure consisting of a frame structure and a multi-layer seismic wall, a flexible brace provided in a part of the frame structure or a flexible By connecting the shear wall structure to the multilayer shear wall, it can bear large bending moments and shear forces during earthquakes.
By reducing the deformation of each layer of the building and distributing it evenly, the structure as a whole shifts to a good beam collapse mechanism, making structural design easier and preventing early damage to the building in the event of a small to medium earthquake. In the event of a major earthquake, it reduces the compressive force of the compression side columns of the shear wall, improves the compressive toughness of the curved portion of the shear wall, and exhibits plastic energy absorption ability to resist the earthquake, resulting in excellent earthquake resistance. It constitutes a high-rise building.

請求項2の発明は前記可撓ブレースまたは可撓耐震壁構
面を、所定のせん断力とせん断変形能力を有する構面で
構成したことによって前記した壁・フレーム混合構造の
高層建造物の耐震機能を発揮せしめるものである。
The invention according to claim 2 provides an earthquake-resistant function of a high-rise building having a mixed wall/frame structure by configuring the flexible brace or the flexible shear wall structure with a structure having a predetermined shear force and shear deformation ability. It is something that allows you to demonstrate your abilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る高層建造物の耐震構造の架構を示
す正面図、第2図は本発明の耐震構造と従来構造との地
震時における負担曲げモーメント分布の比較図、第3図
は可撓ブレース構面のせん断力とせん断変形との関係を
示す図表、第4図は本発明に係る耐震構造の崩壊メカニ
ズムを示す説明図、第5図は従来構造の梁崩壊メカニズ
ムを示す説明図、第6図は1次モードに対応した建造物
の各層の応答加速度分布図、第7図は1次モードに対応
した耐震壁の曲げモーメント及びせん断力分布図、第8
図は2次モードに対応した建造物の各層の応答加速度分
布図、第9図は2次モードに対応した耐震壁の曲げモー
メント及びせん断力分布図である。 (+)−m一連層耐震壁、  (2)−フレーム構面、
(3)−・可撓ブレース構面。 代理人 弁理士 岡 本 重 文 外2名 第1図 第2図 第6図 第7図 5M u 4IL、Fυ 第8図 第9図 13VI1.L+ 5トυ
Fig. 1 is a front view showing the frame of the earthquake-resistant structure of a high-rise building according to the present invention, Fig. 2 is a comparison diagram of the load bending moment distribution during an earthquake between the seismic structure of the present invention and a conventional structure, and Fig. 3 is a A diagram showing the relationship between shear force and shear deformation of a flexible brace structure, Fig. 4 is an explanatory diagram showing the collapse mechanism of the earthquake-resistant structure according to the present invention, and Fig. 5 is an explanatory diagram showing the collapse mechanism of the beam of the conventional structure. , Figure 6 is the response acceleration distribution diagram of each layer of the building corresponding to the first mode, Figure 7 is the bending moment and shear force distribution diagram of the shear wall corresponding to the first mode, and Figure 8 is the response acceleration distribution diagram of each layer of the building corresponding to the first mode.
The figure is a response acceleration distribution diagram of each layer of the building corresponding to the second-order mode, and FIG. 9 is the bending moment and shear force distribution diagram of the shear wall corresponding to the second-order mode. (+)-m series of shear walls, (2)-frame structure,
(3)--Flexible brace structure. Agent Patent attorney Shige Okamoto 2 people outside of the text Figure 1 Figure 2 Figure 6 Figure 7 Figure 5 M u 4IL, Fυ Figure 8 Figure 9 Figure 13 VI1. L+ 5t υ

Claims (2)

【特許請求の範囲】[Claims] (1)フレーム構造と連層耐震壁とからなる壁・フレー
ム混合構造の建造物において、前記フレーム構造の一部
の構面に可撓ブレースまたは可撓耐震壁構面を設けると
ともに、同構面を前記連層耐震壁に連結してなることを
特徴とする高層建造物の耐震構造。
(1) In a building with a mixed wall/frame structure consisting of a frame structure and a series of shear walls, a flexible brace or a flexible shear wall structure is provided on a part of the frame structure, and the same structure surface is provided with a flexible brace or a flexible shear wall structure. An earthquake-resistant structure for a high-rise building, characterized in that the seismic structure is connected to the multi-layer seismic wall.
(2)前記可撓ブレースまたは可撓耐震壁構面は、所定
のせん断耐力に達した後は、一定のせん断強度を保持し
つつせん断変形能力を発揮するように構成された請求項
1記載の高層建造物の耐震構造。
(2) The flexible brace or the flexible shear wall structure is configured to exhibit shear deformation ability while maintaining a constant shear strength after reaching a predetermined shear strength. Earthquake-resistant structures of high-rise buildings.
JP63286673A 1988-11-15 1988-11-15 Seismic structure of high-rise buildings Expired - Lifetime JP2514839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286673A JP2514839B2 (en) 1988-11-15 1988-11-15 Seismic structure of high-rise buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286673A JP2514839B2 (en) 1988-11-15 1988-11-15 Seismic structure of high-rise buildings

Publications (2)

Publication Number Publication Date
JPH02136476A true JPH02136476A (en) 1990-05-25
JP2514839B2 JP2514839B2 (en) 1996-07-10

Family

ID=17707482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286673A Expired - Lifetime JP2514839B2 (en) 1988-11-15 1988-11-15 Seismic structure of high-rise buildings

Country Status (1)

Country Link
JP (1) JP2514839B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106436905A (en) * 2016-07-26 2017-02-22 东南大学 Top shock insulation module building structure with self-adaptive shock insulation floor number
CN108222283A (en) * 2018-03-15 2018-06-29 天津城建大学 A kind of flexible connecting structure and its construction method for filling wall and main body frame

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854736A (en) * 1971-11-08 1973-08-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854736A (en) * 1971-11-08 1973-08-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106436905A (en) * 2016-07-26 2017-02-22 东南大学 Top shock insulation module building structure with self-adaptive shock insulation floor number
CN106436905B (en) * 2016-07-26 2018-08-21 东南大学 The top shock insulation building module structure of the adaptive shock insulation number of plies
CN108222283A (en) * 2018-03-15 2018-06-29 天津城建大学 A kind of flexible connecting structure and its construction method for filling wall and main body frame

Also Published As

Publication number Publication date
JP2514839B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US5271197A (en) Earthquake resistant multi-story building
Nair Belt Trusses and Basements as Virtual; Outriggers for Tall Buildings
CN102587692B (en) Mixed integrated high-rise structural system
AU2020327349B2 (en) Energy-consuming latticed column structure with dense batten plates and use method
JP4804231B2 (en) Seismic isolation structure on the piloti floor
JPH1162316A (en) Earthquake resistive damping construction
JPH02136476A (en) Earthquakeproof structure of multistoried building
JP3804904B2 (en) Bracing structure of bearing wall in three-story house
JPH07279478A (en) Earthquake resistant-structure coping with wind load and building thereof
JPH10280725A (en) Damping skeleton construction
JP5290786B2 (en) Damping structure
JP2001200654A (en) Vibration control building
JP2514839C (en)
JP2001140497A (en) Earthquake-resistant house
JP3028081B2 (en) Dynamic rigid structure
JP7438154B2 (en) vibration damping building
Bhargavi et al. Analysis of outrigger structural system for high-Rise Building subjected to earthquake loads
JP2003106004A (en) Seismically isolated structure of cable reinforcement
JP2001295494A (en) Terraced building
CN108360671B (en) Building frame structure
JP2000204787A (en) Vibration controlled building
JPH02136477A (en) Earthquakeproof structure of multistoried building
JP3218520B2 (en) Building frame structure
JP2001090352A (en) Aseismatic remodeling method of dwelling, and aseismatic dwelling
JPH01102181A (en) Structure of wall body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13