JPH02135312A - Compact zoom lens of high variable magnification - Google Patents

Compact zoom lens of high variable magnification

Info

Publication number
JPH02135312A
JPH02135312A JP28780688A JP28780688A JPH02135312A JP H02135312 A JPH02135312 A JP H02135312A JP 28780688 A JP28780688 A JP 28780688A JP 28780688 A JP28780688 A JP 28780688A JP H02135312 A JPH02135312 A JP H02135312A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
wide
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28780688A
Other languages
Japanese (ja)
Other versions
JP2903473B2 (en
Inventor
Takanori Yamanashi
隆則 山梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63287806A priority Critical patent/JP2903473B2/en
Publication of JPH02135312A publication Critical patent/JPH02135312A/en
Application granted granted Critical
Publication of JP2903473B2 publication Critical patent/JP2903473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To reduce the size of the zoom lens and to increase its magnification by employing three-group constitution of a positive, a positive, and a negative element and moving the respective groups in zooming. CONSTITUTION:The zoom lens consists of the 1st lens group G1 with positive refracting power, the 2nd lens group G2 which has positive refracting power, and the 3rd lens group G3 with negative power in order from the object side, the magnification is varied by varying the gaps between the lens groups, and the requirements shown by inequalities are met. In the inequalities, psi1 is the refracting power of the 1st lens group, psi12w the composite refracting power of the 1st and 2nd lens groups at the wide-angle end, psiw the refracting power of the whole system at the wide-angle end, and beta3T the lateral magnification of the 3rd lens group. Therefore, the refracting power arrangement at the wide- angle end is so determined that the wide-angle end with a short back focus is constituted and a rear main plane position is relatively behind the lens system. Consequently, the small-sized zoom lens of high variable magnification is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、コンパクトな高変倍率ズームレンズに関する
ものでる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a compact high-power zoom lens.

[従来の技術1 近年、カメラの全自動化が進み、多機能でありながら携
帯性の優れたコンパクトカメラに、ズームレンズを内蔵
して撮影伸域を広げることが一般に行なわれている。そ
のためズームレンズ自体が撮影光学系としてカメラシス
テム中に組込まれるために、コンパクトなレンズ系が必
要である。
[Prior Art 1] In recent years, full automation of cameras has progressed, and it has become common practice to incorporate a zoom lens into compact cameras, which are multifunctional yet highly portable, to expand their photographic range. Therefore, since the zoom lens itself is incorporated into the camera system as a photographing optical system, a compact lens system is required.

この種のレンズ系は、いわゆる−眼レフカメラのように
ミラーを配置することを考慮する必要がなく、バックフ
ォーカスを短くすることが可能である。その、ために、
−眼レフカメラ用のように、その画角が広いレンズ系に
対しては、レトロフォーカスタイプにして後側主平面位
置を光学系の後側に配する必要がな(、逆にテレフォト
タイプとして、後側主平面位置をいくぶん物体側へ位置
させるような屈折力配置にすることが出来る。
This type of lens system does not require consideration of arranging a mirror like a so-called eye reflex camera, and it is possible to shorten the back focus. for that,
- For lens systems with a wide angle of view, such as those for reflex cameras, there is no need to use a retrofocus type with the rear principal plane located at the rear of the optical system (on the contrary, there is no need to place the rear principal plane at the rear of the optical system). As a result, it is possible to arrange the refractive power so that the rear principal plane is located somewhat toward the object side.

基本的には、単焦点レンズをはじめとして多焦点切換え
式の変倍光学系や、特開昭57−20レンズ3号公報に
記載されたような2群ズームもテレフオドタイプのレン
ズ系である。更に2群ズームレンズの発展形として、そ
の特定のレンズ群を分割して収差補正の改善を試みたも
のや、変倍率を分担させた3群ズームレンズが提供され
ている。更に四つのレンズ群にて構成し、可動群を3に
した4群ズームレンズが特開昭60−57814号に記
載されている。
Basically, single focus lenses, multifocal switching type variable magnification optical systems, and two-group zooms such as those described in Japanese Patent Application Laid-Open No. 57-20 Lens No. 3 are telephoto lens systems. . Furthermore, as an advanced version of the two-group zoom lens, there have been provided those in which a specific lens group is divided to improve aberration correction, and three-group zoom lenses in which the variable magnification is shared. Further, a four-group zoom lens consisting of four lens groups and three movable groups is described in JP-A-60-57814.

[発明が解決しようとする課題] 上記のズームレンズは、変倍比が1.5からせいぜい2
程度であり、口径比も小さく実用面では不十分である。
[Problem to be solved by the invention] The above zoom lens has a variable power ratio of 1.5 to 2 at most.
The aperture ratio is also small, making it insufficient for practical use.

これに対して本出願人は、変倍比と光学性能の向上を意
図して特開昭63−43115号公報記載の4群ズーム
レンズを開発した。又このズームレンズの機構を簡略化
したものとして特開昭63−153511号公報に記載
されたレンズ系等を提案したにれらのズームレンズは、
変倍比が約3で全変倍域にわたって光学性能の良好なレ
ンズ系である。
In response, the present applicant has developed a four-group zoom lens described in Japanese Patent Application Laid-Open No. 63-43115 with the intention of improving the zoom ratio and optical performance. In addition, our zoom lens proposed the lens system described in Japanese Patent Application Laid-Open No. 153511/1983 as a simplified version of the zoom lens mechanism.
It is a lens system with a variable power ratio of approximately 3 and excellent optical performance over the entire variable power range.

本発明は光学設計上非常な困難性を伴う高変倍率化を意
図し、パースペクティブの変化をさらに作画意図に生か
して実用上の要望を満足するために更に変倍域を拡張し
たレンズ系で一層の小型化を図るものである。
The present invention aims to achieve a high variable magnification ratio, which is extremely difficult in terms of optical design, and further utilizes changes in perspective for the purpose of drawing, and in order to satisfy practical demands, the lens system further expands the variable magnification range. The aim is to downsize the

したがって本発明の目的は、包括画角が76°〜18°
程度で変倍比が3〜4程度の光学性能が全変倍域にわた
って良好な3群ズーム方式のコンパクトな高変倍率ズー
ムレンズを提供することにある。
Therefore, the object of the present invention is to achieve a comprehensive angle of view of 76° to 18°.
It is an object of the present invention to provide a compact, high-power zoom lens of a three-group zoom system, which has good optical performance over the entire zoom range with a zoom ratio of about 3 to 4.

[問題点を解決するための手段] 本発明のズームレンズは、基本的には前記の特開昭63
−153511号のレンズ系を発展させることを出発点
とし更に鏡枠構造の簡単化とフす−カシング方式の最適
化によるコンパクト化を考慮して3群ズーム方式のレン
ズ系としてその目的を達成した。
[Means for solving the problems] The zoom lens of the present invention is basically based on the above-mentioned Japanese Patent Laid-Open No. 63
- Starting from the development of the lens system of No. 153511, we achieved the objective as a 3-group zoom lens system by simplifying the lens frame structure and optimizing the lens system. .

またレンズ構成およびズーミング時のレンズ群の挙動は
1本来はズーミング時の倍率負担と収差補正特に像面わ
ん曲の補正の点から又レンズ系の小型化を目的として、
物体側から順に正、負。
In addition, the lens configuration and the behavior of the lens group during zooming were originally designed from the viewpoint of magnification burden during zooming, aberration correction, especially correction of field curvature, and for the purpose of downsizing the lens system.
Positive and negative in order from the object side.

正、負の屈折力を有するレンズ構成を基本の屈折力配分
にしている。この4群ズーム方式をズーム方程式の一般
解とする時、第2レンズ群と第3レンズ群がほぼ同一の
ズーミング移動をしながら、しかも光学性能を良好にし
得ることを見出したものである。つまり4群ズーム方式
の中の特殊解としての3群ズーム方式を見出した。
The basic refractive power distribution is a lens configuration with positive and negative refractive powers. It has been found that when this four-group zoom system is used as a general solution to the zoom equation, the second and third lens groups can perform almost the same zooming movement while still achieving good optical performance. In other words, we have discovered a 3-group zoom system as a special solution among the 4-group zoom systems.

本発明のズームレンズは、上記のように4群ズーム方式
のレンズ系における負の屈折力の第2レンズ群と正の屈
折力の第3レンズ群を全体として正の屈折力を有する一
つのレンズ群としこれを第2レンズ群としたものである
。このようにして3群ズーム方式として変倍比が3〜4
程度を達成するためには各レンズ群の屈折力配置を適切
にすることがレンズ系を小型にする上で重要であり、更
に最適な厚肉レンズの構成や新素材の使用等によって一
層効果をあげることが出来る。
In the zoom lens of the present invention, as described above, the second lens group having a negative refractive power and the third lens group having a positive refractive power in a four-group zoom lens system are combined into one lens having a positive refractive power. This lens group is used as a second lens group. In this way, the magnification ratio is 3 to 4 as a 3-group zoom system.
In order to achieve this level, it is important to appropriately arrange the refractive power of each lens group in order to make the lens system compact, and furthermore, the effect can be further improved by optimizing the configuration of thick lenses and using new materials. I can give it to you.

本発明のズームレンズは、以上の考えにもとづくもので
、物体側より順に正の屈折力の第1レンズ群と、正の屈
折力の第2レンズ群と、負のレンズ群の第3レンズ群と
より構成され、各レンズ群間の間隔を変化させて変倍を
行なうものである。
The zoom lens of the present invention is based on the above idea, and includes, in order from the object side, a first lens group with a positive refractive power, a second lens group with a positive refractive power, and a third lens group with a negative lens group. The zoom lens is configured with the following, and magnification is changed by changing the distance between each lens group.

又次の条件(1) 、 +21 、 +3)を満足する
ことを特徴とする。
It is also characterized by satisfying the following conditions (1), +21, +3).

(1)0.05<Fl/FW  <0.9(2)1.0
<lF+aw/Fw  <2.0(312,0<βit
<5.0 ただし、F+は第1レンズ群の屈折力、r1□、は広角
端における第1レンズ群と第2レンズ群の合成屈折力、
ρWは広角端における全系の屈折力、β3□は望遠端に
おける第3レンズ群の横倍率である。
(1) 0.05<Fl/FW<0.9 (2) 1.0
<lF+aw/Fw <2.0(312,0<βit
<5.0 However, F+ is the refractive power of the first lens group, r1□ is the combined refractive power of the first lens group and the second lens group at the wide-angle end,
ρW is the refractive power of the entire system at the wide-angle end, and β3□ is the lateral magnification of the third lens group at the telephoto end.

本発明のズームレンズは、以上述べたような構成を特徴
とするものであるが、次のようにしてレンズ系の全長並
びに外径を小にしてコンパクトな構成とし更に高変倍率
化を達成するようにしている。
The zoom lens of the present invention is characterized by the above-described configuration, but the overall length and outer diameter of the lens system are reduced in the following manner to achieve a compact configuration and a high variable magnification. That's what I do.

本発明は、前述の通り、第38図に示すような4群ズー
ム方式のレンズ系の解析を行なって、レンズ系のコンパ
クト化のみならず、機構、構造上の検討を行なった結果
にもとづいて、第3レンズ群の広角端から望遠端へのズ
ーミング時に負担する変倍率が比較的小さい解が存在す
ること、そしてその時のこの第3レンズ群の役割は変倍
よりもむしろ像面わん曲の補正を担っている等の光学性
能の改善にあることがわかった。
As mentioned above, the present invention is based on the results of analyzing a four-group zoom lens system as shown in FIG. 38, and not only making the lens system more compact, but also examining its mechanism and structure. , there is a solution in which the magnification ratio that the third lens group bears when zooming from the wide-angle end to the telephoto end is relatively small, and the role of this third lens group at that time is to control the field curvature rather than to change the magnification. It turns out that this is due to improvements in optical performance, such as being responsible for correction.

このようにして4群ズームのうちの第2レンズ群と第3
レンズ群を適宜な光軸上間隔を隔てた一つのレンズ群と
することが可能となった。
In this way, the second and third lens groups of the four zoom groups
It has become possible to form the lens group into one lens group separated by an appropriate distance on the optical axis.

一方、第3レンズ群が有していた像面わん曲のI工作用
は、3群ズームレンズにおいては、光軸上間隔の調整即
ち望遠側のレンズ構成に望遠比の余裕を与えることや、
各レンズを構成する厚肉レンズの中に凸のメニスカス形
状の空気レンズを設けて高次の収差を発生させることに
よって得るようにした。
On the other hand, in order to modify the curvature of field that the third lens group had, in a three-group zoom lens, it is necessary to adjust the spacing on the optical axis, that is, to give the lens configuration on the telephoto side a margin for the telephoto ratio.
This is achieved by providing a convex meniscus-shaped air lens among the thick lenses constituting each lens to generate high-order aberrations.

上記のようにして構成した3群ズーム方式のレンズ系は
、第4図に示すように広角端において第ルンズ群G、と
第2レンズ群G2とでその合成の屈折力が正の一つのレ
ンズ群と考えることが出来る。そしてそれに続く負の屈
折力の第3レンズ群G、とていわゆる望遠タイプを構成
している。
As shown in FIG. 4, the three-group zoom lens system configured as described above consists of the first lens group G and the second lens group G2 at the wide-angle end, and their combined refractive power is one lens with a positive refractive power. It can be thought of as a group. The third lens group G having a negative refractive power following this lens constitutes a so-called telephoto type.

このように広角端における屈折力配置は、基本的には望
遠タイプであり、バックフォーカスの短い広角端を構成
する上では最適である。一方広角端では、焦点距離が短
いので後側主平面位置がレンズ系の比較的後に来るよう
な屈折力配置が可能である。つまりコンパクトでしかも
性能が良好な近軸配置になし得る。
In this way, the refractive power arrangement at the wide-angle end is basically a telephoto type, which is optimal for configuring the wide-angle end with a short back focus. On the other hand, at the wide-angle end, since the focal length is short, it is possible to arrange the refractive power so that the rear principal plane is located relatively behind the lens system. In other words, a compact paraxial arrangement with good performance can be achieved.

以上の理由から設けたのが条件(1)および条件(2)
である。
Conditions (1) and (2) were established for the above reasons.
It is.

条件(11は、第1レンズ群の屈折力を規定する条件で
ある。第1レンズ群は基本的には広角端でのレンズ系全
長よりも、望遠端での望遠比と全変へ 倍域での収差補正状況の影響力や、さらにはフォ△ 一カシング方式についての考慮をする必要がある。つま
り高変倍率を達成しながらコンパクトで良好な光学性能
を得る上で重要な要因を決定する条件がこの条件(1)
である。
Condition (11 is a condition that defines the refractive power of the first lens group.Basically, the first lens group has a magnification range that varies from the total length of the lens system at the wide-angle end to the telephoto ratio and total change at the telephoto end. It is necessary to consider the influence of the aberration correction situation and the focusing method.In other words, it is necessary to determine the important factors in obtaining compact and good optical performance while achieving a high magnification ratio. This condition is (1)
It is.

ここで第4図に示すような3群ズームレンズで、広角端
における屈折力をψ1、レンズ系の全長をり、ヒすると
次の式が成立する。
Here, in a three-group zoom lens as shown in FIG. 4, if the refractive power at the wide-angle end is ψ1, and the total length of the lens system is ψ, then the following equation holds true.

Fw” F+ 11−ezw−Fi)+ (1−e+1
F+l (Fi+Fs−e’ awl”iFsl(iL Lw =e+w+exw+ff、’w        
     (ti)11 ’y:(−Fleaw÷(1
−e+w−1”+l (1−ezw・Fil )/Fw
  ’(組ただし、rl、ψ2.ψ3は夫々第ルンズ群
G1.第2レンズ群G2.第3レンズ群G、の屈折力、
e4は広角端における第ルンズ群G、と第2レンズ群G
2の主点間隔、e+tは望遠端における第ルンズ群G1
と第2レンズ群G2の主点間隔、02wは広角端におけ
る第2レンズ群G!と第3レンズ群G3の主点間隔、e
trは望遠端における第2レンズ群G2と第3レンズ群
G、の主点間隔、β゛1は広角端におけるバックフォー
カス、β°Tは望遠端におけるバックフォーカスである
Fw” F+ 11-ezw-Fi)+ (1-e+1
F+l (Fi+Fs-e'awl"iFsl(iL Lw =e+w+exw+ff,'w
(ti)11'y: (-Fleaw÷(1
-e+w-1”+l (1-ezw・Fil)/Fw
'(where rl, ψ2, ψ3 are the refractive powers of the lens group G1, the second lens group G2, and the third lens group G, respectively;
e4 is the first lens group G and the second lens group G at the wide-angle end.
2 principal point interval, e+t is the distance between the lens groups G1 at the telephoto end.
and the principal point interval of the second lens group G2, 02w is the second lens group G! at the wide-angle end. and the principal point interval of the third lens group G3, e
tr is the distance between the principal points of the second lens group G2 and the third lens group G at the telephoto end, β'1 is the back focus at the wide-angle end, and β°T is the back focus at the telephoto end.

これらの近軸関係式かられかるように、本発明のように
広角端でレンズ系の全長が最も短くなることが明らかな
場合には、広角端にのみ注目すればよい、したがって望
遠端における全長については、屈折力配置に基くズーミ
ング移動軌跡と移動量を考慮して厚肉構成を割当てるこ
とになる。
As can be seen from these paraxial relational expressions, when it is clear that the total length of the lens system is shortest at the wide-angle end, as in the present invention, it is only necessary to pay attention to the wide-angle end; therefore, the total length at the telephoto end For this, a thick wall configuration will be assigned in consideration of the zooming movement locus and movement amount based on the refractive power arrangement.

条件(11の上限を越えると、仕様として定まる広角端
の焦点距離が一定であるので、第1レンズ群の屈折力が
強くなりズーミング時の移動量が少なくなるためレンズ
系全体が小型になるので好ましい。しかし本発明は、高
変倍率化を主たる目的にしているので、望遠側は必然的
に画角が24°程度を越える望遠域に入るため色収差が
発生し、像面の平坦性も維持出来なくなる。そのため第
1レンズ群の厚肉レンズの構成に留意して本発明の目的
を達成することも考えられるが、その場合レンズ枚数が
増加し又レンズの肉厚が大になり好ましくない。
If the upper limit of condition 11 is exceeded, the focal length at the wide-angle end determined by the specifications is constant, so the refractive power of the first lens group becomes stronger and the amount of movement during zooming becomes smaller, making the entire lens system smaller. However, since the main purpose of the present invention is to increase the magnification ratio, the angle of view on the telephoto side inevitably falls into the telephoto range exceeding about 24°, which causes chromatic aberration and maintains the flatness of the image plane. Therefore, it is possible to achieve the object of the present invention by paying attention to the structure of the thick lenses in the first lens group, but in this case, the number of lenses increases and the thickness of the lenses becomes large, which is not preferable.

条件(1)の下限を越えると、第1レンズ群の屈折力が
弱くなるので、広角端から望遠端までのズーミング移動
量が大になりレンズ系の全長が大になる。そのため収差
補正上は有利だが、本発明の目的であるコンパクト化に
反することになる。
If the lower limit of condition (1) is exceeded, the refractive power of the first lens group becomes weak, so the amount of zooming movement from the wide-angle end to the telephoto end becomes large, and the total length of the lens system increases. Although this is advantageous in terms of aberration correction, it goes against the objective of the present invention, which is compactness.

このように条件(1)は、変倍比が3〜4の本発明ズー
ムレンズにおいての光学性能とレンズ系の全長との均衡
のとれる屈折力配置を決定する上で重要な条件である。
As described above, condition (1) is an important condition in determining the refractive power arrangement that balances the optical performance and the total length of the lens system in the zoom lens of the present invention having a variable power ratio of 3 to 4.

条件(2)は、広角端における第ルンズP1G、と第2
レンズ群G2の合成屈折力を規定したものである。そし
てこの正の合成系と負の第3レンズ群とでいわゆる望遠
タイプを構成し、これによって全系のコンパクト化を達
成するためのものである。
Condition (2) is the second lens P1G at the wide-angle end, and the second lens P1G at the wide-angle end.
This defines the composite refractive power of the lens group G2. This positive composite system and the negative third lens group form a so-called telephoto type lens, thereby making the entire system more compact.

第3レンズ群の近軸的バックフォーカスを設定した時に
、その横倍率を設定すると第3レンズ群の屈折力が決ま
る。即ち変倍率が与えられた時は条件(2)によりほぼ
屈折力配置が定まり、全系の近軸的な配置を設定するこ
とが出来る。
When the paraxial back focus of the third lens group is set, the refractive power of the third lens group is determined by setting its lateral magnification. That is, when a variable magnification is given, the refractive power arrangement is almost determined by condition (2), and a paraxial arrangement of the entire system can be set.

条件(2)の上限を越えると、広角端におけるレンズ系
の全長を短くする上では効果的であり、望遠端までのズ
ーミング時の移動量も比較的少なくてすむ。しかし第ル
ンズ群G、と第2レンズ群G2の屈折力が共に強くなる
傾向となり、像面わん曲の補正をはじめとして各収差の
バランスをとることが困難になり、最終的には撮影レン
ズの性能。
Exceeding the upper limit of condition (2) is effective in shortening the total length of the lens system at the wide-angle end, and the amount of movement during zooming to the telephoto end can be relatively small. However, the refractive powers of both the lens group G and the second lens group G2 tend to become stronger, making it difficult to balance various aberrations including correction of field curvature, and ultimately Performance.

品質上での偏芯による感度が高くなるため好ましくない
This is not preferable because the sensitivity due to eccentricity increases in terms of quality.

条件(2)の下限を越えると収差補正上は有利であるが
、広角端におけるレンズ系の全長を短くすることか困難
となるばかりでなく、後続する第3レンズ群G3の屈折
力が弱くなるので収差補正上のバランスをとることが必
要になり、後側主平面位置が第3レンズ群の厚肉レンズ
系中に入り込むためレンズ系のパックフォーカスが短く
なる。そのためレンズ径も大になり本発明の目的に反す
ることになる。
Exceeding the lower limit of condition (2) is advantageous in terms of aberration correction, but not only does it become difficult to shorten the total length of the lens system at the wide-angle end, but the refractive power of the subsequent third lens group G3 becomes weaker. Therefore, it is necessary to balance the aberration correction, and since the position of the rear principal plane enters the thick lens system of the third lens group, the pack focus of the lens system becomes short. Therefore, the lens diameter becomes large, which is contrary to the purpose of the present invention.

以上述べた条件fl+、(21を満足すると本発明のレ
ンズ系の基本的な骨組になる第1レンズ群と第2レンズ
群の屈折力配置が設定される。
When the above-mentioned conditions fl+, (21) are satisfied, the refractive power arrangement of the first lens group and the second lens group, which forms the basic framework of the lens system of the present invention, is set.

更に第3レンズ群の屈折力の配分が定まれば本発明のレ
ンズ系の近軸的なレイアウトが決定されることになる。
Furthermore, once the refractive power distribution of the third lens group is determined, the paraxial layout of the lens system of the present invention is determined.

この第3レンズ群の屈折力配分を定めるためには、広角
端から望遠端へのズーミングの時の倍率負担が重要であ
る。これと近軸的バックフォーカスとの兼ね合いで全系
の屈折力配置を決定し得る。
In order to determine the refractive power distribution of this third lens group, the magnification load during zooming from the wide-angle end to the telephoto end is important. The refractive power arrangement of the entire system can be determined by balancing this with the paraxial back focus.

ここで広角端でのコンパクト化と高倍率化とを考えた時
、第3レンズ群の負担する近軸横倍率が重要な意味を持
ち、良好な性能を得る上でも大きな意味を持つ。即ち第
3レンズ群の負担する近軸横倍(以下倍率と言う)を規
定したのが条件(3)である。
When considering compactness and high magnification at the wide-angle end, the paraxial lateral magnification borne by the third lens group has an important meaning, and also has a great meaning in obtaining good performance. That is, condition (3) defines the paraxial lateral magnification (hereinafter referred to as magnification) that is borne by the third lens group.

第3レンズ群の倍率は、広角端から望遠端までの変倍率
に直接結びついており、またズーミング時の第3レンズ
群の移動量自体にも関係している。したがって、同じ変
倍率を得ようとする時、第3レンズ群の担う倍率の与え
方で第2レンズ群の担う倍率も変化し、ズーミング時の
移動軌跡も変化し、収差補正の状況も変化する。
The magnification of the third lens group is directly related to the variable magnification from the wide-angle end to the telephoto end, and is also related to the amount of movement of the third lens group itself during zooming. Therefore, when trying to obtain the same magnification, the magnification performed by the second lens group changes depending on how the magnification is given to the third lens group, the movement trajectory during zooming changes, and the situation of aberration correction also changes. .

即ち条件(11、(2+によって基本的な屈折力配置が
決まり、条件(3)で変倍率を設定すべき望遠端におけ
る第3レンズ群の倍率を与えることによって基本的な近
軸的レイアウトがほぼ決定される。
In other words, the basic refractive power arrangement is determined by conditions (11 and (2+), and the basic paraxial layout is approximately It is determined.

更に各レンズ群の厚肉構成を割り当てることによって、
良好な結像性能と所望の変倍率とレンズ系の小型化を達
成するように繰返し近軸構成を見回して目的が実現され
る。
Furthermore, by assigning a thick wall configuration to each lens group,
The objective is realized by repeatedly looking around the paraxial configuration to achieve good imaging performance, the desired magnification, and compactness of the lens system.

条件(3)の上限を越えると第3レンズ群の持つ倍率が
高くなり、高変倍率を得るためには好ましいが、第3レ
ンズ群のズーミング時の移動量が大きくなる。また厚肉
レンズ構成を少ないレンズで達成しようとすることと、
性能上からレンズ群の移動量を大にして望遠比をかせぐ
ことからは1条件(3)の上限を越えることは好ましく
ない。又レンズ鏡枠および駆動機構が複雑になりコスト
高になる。また下限を越えると、高変倍率にするために
は、第2レンズ群の負担する倍率が高(なり、広角端か
ら望遠端までのレンズ系の全長の変化が比較的少なくコ
ンパクトになし得るが収差補正が困難になる。そのため
良好に収差補正を行なうためには、屈折率分布型レンズ
を併用しなければならなくなる。このように収差補正が
困難なことから実際上は高変倍にすることがむずかしく
、変倍率が2程度となりそれ以上は困難になる。
If the upper limit of condition (3) is exceeded, the magnification of the third lens group will increase, which is preferable for obtaining a high variable magnification, but the amount of movement of the third lens group during zooming will increase. Also, trying to achieve a thick lens configuration with fewer lenses,
From the standpoint of performance, in order to increase the telephoto ratio by increasing the amount of movement of the lens group, it is not preferable to exceed the upper limit of Condition 1 (3). Furthermore, the lens barrel and drive mechanism become complicated, resulting in high costs. If the lower limit is exceeded, the second lens group will have to bear a high magnification in order to achieve a high variable magnification, and the change in the overall length of the lens system from the wide-angle end to the telephoto end will be relatively small, making it possible to make it compact. It becomes difficult to correct aberrations. Therefore, in order to properly correct aberrations, a gradient index lens must be used in conjunction with the lens. In this way, it is difficult to correct aberrations, so in practice it is recommended to use a high zoom ratio. The magnification ratio is about 2, and it becomes difficult to increase the magnification.

本発明の高変倍率ズームレンズにおいて、特にその変倍
率を一層高くするためには、条件Tl)の条件を次の条
件(1°)の範囲に限定することが望ましい。
In the high variable power zoom lens of the present invention, especially in order to further increase the variable power, it is desirable to limit the condition Tl) to the range of the following condition (1°).

(1’l  O,05<F+/Fw <0.にれらの条
件は、第1レンズ群の屈折力を規定するもので、高変倍
率化を図るためには、第ルンズ群、第2レンズ群および
第3レンズ群の各々が広角端から望遠端への変倍の際に
独立して移動−するための自由度が大であることが好ま
しい。この自由度を多(与えるためには上記条件(lo
)の範囲に限定することが好ましい。
(1'l O,05<F+/Fw<0. These conditions define the refractive power of the first lens group, and in order to achieve high magnification, it is necessary to It is preferable that each of the lens group and the third lens group have a large degree of freedom in order to move independently during zooming from the wide-angle end to the telephoto end. The above conditions (lo
) is preferable.

この条件(lo)の下限の範囲内であればレンズ系の全
長に関しては望遠端で余裕をもつことになり又光学性能
の面では、第1レンズ群をフォーカシング群として用い
ることを考えなければ極めて良好になし得て、高性能な
高変倍率ズームレンズが得られる。又上限値以下であれ
ばレンズ系の小型化特に望遠側で全長を短くなし得る屈
折力配分が出来る。そして第2レンズ群の屈折力の配分
と合わせて小型な高変倍率ズームレンズが得られる。
If it is within the lower limit of this condition (lo), the total length of the lens system will have a margin at the telephoto end, and in terms of optical performance, it will be extremely difficult to achieve this unless you consider using the first lens group as a focusing group. A high-performance, high-variability zoom lens can be obtained. If the value is below the upper limit, it is possible to achieve a refractive power distribution that allows for miniaturization of the lens system, especially shortening the overall length on the telephoto side. In combination with the distribution of refractive power in the second lens group, a compact high-power zoom lens can be obtained.

更に条件(3)に関して次の条件(3°)のように限定
すれば変倍率を3〜4程度になし得る。
Furthermore, if condition (3) is limited to the following condition (3 degrees), the magnification ratio can be set to about 3 to 4.

(3°12.5<βST <5.0 高度倍率化には、第3レンズ群の横倍率を適切に選ぶこ
とが、光学性能上も製造上も重要になる。条件(3°)
の下限をこえると上記のように一層高変倍率にすること
が容易でなくなる。
(3°12.5<βST<5.0 To achieve high magnification, it is important to appropriately select the lateral magnification of the third lens group from both optical performance and manufacturing perspectives. Condition (3°)
If the lower limit of is exceeded, it becomes difficult to increase the magnification as described above.

以上のような各条件によって各レンズ群の基本的な屈折
力配分を決定し得る。
The basic refractive power distribution of each lens group can be determined by each of the above conditions.

次に実際の厚肉レンズの構成について述べる。Next, the structure of the actual thick lens will be described.

第1レンズ群は、前記の条件によってその屈折力は与え
られているが、そのレンズ構成は、基本的には正レンズ
と負レンズの接合レンズよりなっている。しかしこれに
更に正レンズを追加してもよい。又接合レンズを分離し
てその間にメニスカス状の空気レンズを形成することに
よって収差補正効果を増大させ得る。
The first lens group has a refractive power given to it by the above-mentioned conditions, and its lens structure basically consists of a cemented lens of a positive lens and a negative lens. However, a positive lens may be added to this. Furthermore, the aberration correction effect can be increased by separating the cemented lens and forming a meniscus air lens therebetween.

第2レンズ群は、その役割から二つの群からなると考え
られ、負の前群Gzrと正の後群G2.Iとにて構成さ
れている。
The second lens group is considered to consist of two groups due to its role: a negative front group Gzr and a positive rear group G2. It is composed of I.

第2レンズ群中の前群Gayは、第1レンズ群で発生す
る軸外収差のうち、後群G、のみでは補正困難な歪曲収
差の補正や像面わん曲の補正のために、第1レンズ群で
発生するこれら収差と反対符号の収差を発生させている
。又球面収差の補正に関しては、特にマージナル光束径
が大になる望遠域における色の球面収差の補正に重要な
役割を有している。
The front group Gay in the second lens group is used to correct distortion and field curvature, which are difficult to correct with the rear group G alone, among the off-axis aberrations generated in the first lens group. Aberrations with the opposite sign to these aberrations occurring in the lens group are generated. Regarding the correction of spherical aberration, it plays an important role in correcting chromatic spherical aberration, especially in the telephoto range where the marginal beam diameter becomes large.

この前群G2rのレンズ構成は、物体側より正レンズと
負レンズを配置することを基本とするもので、要求され
る結像性能に応じて更に正レンズもしくは負レンズを配
置してもよい。この前群G。
The lens configuration of the front group G2r is basically a positive lens and a negative lens arranged from the object side, and a positive lens or a negative lens may be further arranged depending on the required imaging performance. This front group G.

の正レンズもしくは負レンズを分割しその間に空気レン
ズを形成したり、前群GaP中のレンズに非球面を用い
ることにより一層性能を向上させることが可能である。
The performance can be further improved by dividing the positive or negative lens and forming an air lens between them, or by using an aspherical surface for the lens in the front group GaP.

また第2レンズ群の後群G2.8は、前群G2Fと光軸
上の間隔りだけ隔てて配置され、基本的にはトリブレッ
トもしくはテツサータイプのように1枚の負レンズと2
枚の正レンズからなっている。ここで第1レンズ群と第
2レンズ群とで全体として結像系になっているので、こ
の後群G2Rは、いわゆるリレー系を構成していると考
えることも出来る。
Also, the rear group G2.8 of the second lens group is arranged apart from the front group G2F by a distance on the optical axis, and basically consists of one negative lens and two lenses like a triplet or Tetsusar type.
It consists of positive lenses. Since the first lens group and the second lens group constitute an imaging system as a whole, the rear group G2R can also be considered to constitute a so-called relay system.

この後群(IRは、望遠域でマージナル光束径が大にな
る位置にあり、球面収差の補正に大きく寄与せしめる必
要があり、又偏芯感度をはじめとして製造上の困難を伴
うことが少ないように各面での入射角もしくは出射角が
大きくならないように配慮する必要がある。
The rear group (IR) is located at a position where the marginal beam diameter becomes large in the telephoto range, and it is necessary to make a large contribution to the correction of spherical aberration. It is necessary to take care to ensure that the incident angle or the outgoing angle on each surface does not become large.

本発明のズームレンズにおいて、−層の小型化を実現す
るためには、第2レンズ群G2の前群G11Fと後群G
!Rの主点間隔e′2の値をある範囲内に設定し、この
近軸構成を満足するように厚肉レンズを割り当てること
によってデッドスペースを少なくすることが必要である
In the zoom lens of the present invention, in order to achieve miniaturization of the - layer, the front group G11F of the second lens group G2 and the rear group G
! It is necessary to reduce the dead space by setting the value of the principal point spacing e'2 of R within a certain range and allocating thick lenses so as to satisfy this paraxial configuration.

又レンズ系を小型化することによって第2レンズ群G2
の前群G2F又は後群G11flのいずれかの屈折力が
強くなり性能劣化に結びつくことがある。その場合非球
面や屈折率分布型レンズを用いることが有効である。
Also, by downsizing the lens system, the second lens group G2
The refractive power of either the front group G2F or the rear group G11fl may become strong, leading to performance deterioration. In that case, it is effective to use an aspherical surface or a gradient index lens.

本発明のズームレンズの第2レンズ群は、負の屈折力の
前群G2Fと正の屈折力の後群G2Rにて構。
The second lens group of the zoom lens of the present invention includes a front group G2F with negative refractive power and a rear group G2R with positive refractive power.

成され1例えば後に示す実施例1〜7のように開口絞り
の前後の軸上空気間隔を設けてレンズ系全長に余裕をも
たせ、高画質をねらったり、ビームスプリッタ−等を設
けて受光素子やファイター光学系等に光路を分岐させる
こと等を考慮しなければ、より小型のレンズ系になし得
る。つまりこれによって後に示す実施例8〜11のよう
に一層小型になし得る。
For example, as in Examples 1 to 7 shown later, an axial air gap is provided before and after the aperture diaphragm to provide a margin for the overall length of the lens system, aiming at high image quality, or a beam splitter is installed to increase the light receiving element. If branching of the optical path to a fighter optical system or the like is not considered, a smaller lens system can be achieved. In other words, this allows the device to be made even smaller as in Examples 8 to 11 shown later.

このようにして小型化を実現するためには、第2レンズ
群G2中の前群02 Fの屈折力F2Fと前群G2Fと
後群G2+1の二つのレンズ群の主点間隔12等を適切
に選択すればよい、ここで第2レンズ群G2の屈折力r
2は、前記の条件(2)によって一定の範囲内に規定さ
れている。
In order to achieve miniaturization in this way, the refractive power F2F of the front group 02F in the second lens group G2 and the principal point spacing 12 of the two lens groups, the front group G2F and the rear group G2+1, must be adjusted appropriately. Here, the refractive power r of the second lens group G2
2 is defined within a certain range by the above condition (2).

又第2レンズ群G2の後群G2Rの屈折力pilIは次
の式にもとづいて規定される。
Further, the refractive power pilI of the rear group G2R of the second lens group G2 is defined based on the following equation.

FIR= (Fz−1”zrl/ (1−Fzp・e’
alこの第2レンズ群G、自体の屈折力配置は、いわゆ
るレトロフォーカスタイプとみることが出来る。つまり
正の屈折力の後群G211の前に負の屈折力の前群C+
2rを配置することによって第2レンズ群G2からの結
像点位置な長(する働きをしている。そして第3レンズ
群に対する物点位置を長くし、収差補正上゛は有利な配
置にしである。
FIR= (Fz-1"zrl/ (1-Fzp・e'
The refractive power arrangement of the second lens group G itself can be considered to be of a so-called retrofocus type. In other words, in front of the rear group G211 with positive refractive power, there is a front group C+ with negative refractive power.
By arranging lens 2r, the position of the image forming point from the second lens group G2 is lengthened.The position of the object point relative to the third lens group is lengthened, making the arrangement advantageous in terms of aberration correction. be.

ここで前群G2Fと後群G2Rの主点間隔 12を短(
すると共に前群G2Fの屈折力Y’21を強めることに
よって、前群G2.の実質的な口径比が大になることに
なり、主として望遠端での球面収差の補正にはいくぶん
不利になるが、軸外収差の補正にはそれ程不利ではない
Here, shorten the principal point distance 12 between the front group G2F and the rear group G2R (
At the same time, by increasing the refractive power Y'21 of the front group G2F, the front group G2. This increases the effective aperture ratio, which is somewhat disadvantageous for correcting spherical aberrations mainly at the telephoto end, but it is not so disadvantageous for correcting off-axis aberrations.

更にレンズ系の全長が短くなるので、一般に外径が大き
くなりやすいが、第ルンズ群の入射瞳距離が短(なるの
で小型化は達成出来、全体としては小型になる。
Furthermore, since the overall length of the lens system is shortened, the outer diameter generally tends to become large, but the entrance pupil distance of the lens group is short, so miniaturization can be achieved, and the overall size is small.

以上のことから一層の小型化を達成するためには、主点
間隔e′2を次の範囲内に選ぶことが望ましい。
From the above, in order to achieve further miniaturization, it is desirable to select the principal point spacing e'2 within the following range.

5  < e’2  < 20 この条件は、広角端での全長と、レンズ外径を小さくす
ることによってレンズ系全体の小型化を達成するもので
ある。
5 <e'2< 20 This condition achieves miniaturization of the entire lens system by reducing the overall length at the wide-angle end and the outer diameter of the lens.

この条件の上限を越えると光学性能上にとっては好まし
いが、全長かい(ぶん長くなる。又下限を越えると前群
G2Fと後群G2Flが干渉するので好ましくない。
If the upper limit of this condition is exceeded, it is preferable in terms of optical performance, but the overall length becomes considerably longer.If the lower limit is exceeded, the front group G2F and the rear group G2Fl will interfere with each other, which is not preferable.

第3レンズ群は、負の屈折力を有しており、いわゆる望
遠クイブのレンズ系における負の屈折力の後群とみなす
ことが出来る。広角端においては、後側主平面の位置が
像面に比較的近いために光学系全体としては本来の望遠
タイプのように主平面位置がレンズ系の前方に位置する
ようにはならない。しかしながら望遠端に近づ(につれ
て望遠タイプの特徴が顕著になって来る。この第3レン
ズ群は、条件(3)の説明で述べたように、望遠側で大
きな横倍率を持つリアーコンバージョンとしての作用を
有すると考えると、像面位置での縦方向での効きが縦倍
率として作用するので、これを活用すると同時に十分に
制御することが重要である。
The third lens group has negative refractive power and can be regarded as a rear group with negative refractive power in a so-called telephoto quib lens system. At the wide-angle end, since the position of the rear principal plane is relatively close to the image plane, the principal plane of the optical system as a whole is not located in front of the lens system as in the original telephoto type. However, as you get closer to the telephoto end, the characteristics of the telephoto type become more noticeable.As mentioned in the explanation of condition (3), this third lens group is used as a rear conversion with a large lateral magnification on the telephoto end. Considering that it has an effect, the effect in the vertical direction at the image plane position acts as a vertical magnification, so it is important to utilize this and at the same time sufficiently control it.

本発明のレンズ系では、この第3レンズ群によって広角
端でのバックフォーカスを短く構成し得るので、逆にバ
ックフォーカスが極端に短くなることもあり得る。その
ため第3レンズ群の後側主平面位置があまり物体側に入
らないように留意する必要がある。そのためにこの第3
レンズ群は、正レンズおよび負レンズにて構成すること
を基本にしている。これを負レンズ1枚のみで構成する
ことも可能であるが、その屈折力を弱くしないと結像性
能が十分良好になし得ない。しかしその屈折力を弱くす
るとズーミング時の移動量が大になり好ましくない。
In the lens system of the present invention, the back focus at the wide-angle end can be shortened by the third lens group, so the back focus may become extremely short. Therefore, care must be taken to ensure that the position of the rear principal plane of the third lens group is not too close to the object side. For that reason, this third
The lens group is basically composed of a positive lens and a negative lens. It is possible to configure this with only one negative lens, but unless its refractive power is weakened, the imaging performance will not be sufficiently good. However, if the refractive power is weakened, the amount of movement during zooming becomes large, which is not preferable.

以上のように構成することによって、本発明の目的であ
る高変倍率で小型なズームレンズを構成し得る。
By configuring as described above, it is possible to configure a compact zoom lens with a high zoom ratio, which is the object of the present invention.

[実施例] 次に本発明のコンパクトな高変倍率ズームレンズの各実
施例を示す。
[Examples] Next, examples of the compact high-power zoom lens of the present invention will be shown.

実施例1 f=36.0〜102.51 2ω=62°〜23.83゜ r、 = −166,4075 d、= 1.8500 rz=62.2552 d2= 1.6845 rs=55.0491 d== 3.9500 r4: −220,3122 d4= o、 2000 rs = 45.8646 d、= 4.2500 r6= 164.3370 da=D+(可変) ry=−104,0826 d、= 1.6200 r、= 18.9433 d、= 1.3080 j9= 21.7916 nz=1.49700 n+=1.85026 ns=1.61700 n4= 1.83481 F/4.5 〜F76、9 ν、  =32.28 ν、  =81.61 ν、  =62.79 ν4  =42.72 d、=3.6500    Q5: 1.80518r
、。 = −56,3446 d+a  =1.5000 rtl =−26,4587(非球面)d、 、  =
1.8500 ’na−1,7440゜rtl  =−
45,7190 d1□ = 4.8500 r、、=oo(絞り) d、、 =2.1500 r、4 = 115.6110 d、、  = 2.7500   nt” 1.772
50r+s  =−35,8400 d、、  =0.3000 r、、  =−103,9152 d、、  = 3.3000   na” 1.497
0゜r+y  =−19,6769 d、、  =o、7so。
Example 1 f=36.0~102.51 2ω=62°~23.83°r, = -166,4075 d, = 1.8500 rz=62.2552 d2= 1.6845 rs=55.0491 d == 3.9500 r4: -220,3122 d4= o, 2000 rs = 45.8646 d, = 4.2500 r6= 164.3370 da=D+ (variable) ry=-104,0826 d, = 1.6200 r, = 18.9433 d, = 1.3080 j9 = 21.7916 nz = 1.49700 n+ = 1.85026 ns = 1.61700 n4 = 1.83481 F/4.5 ~F76,9 ν, = 32 .28 ν, =81.61 ν, =62.79 ν4 =42.72 d, =3.6500 Q5: 1.80518r
,. = -56,3446 d+a =1.5000 rtl = -26,4587 (aspherical surface) d, , =
1.8500'na-1,7440゜rtl =-
45,7190 d1□ = 4.8500 r,, =oo (aperture) d,, =2.1500 r, 4 = 115.6110 d,, = 2.7500 nt" 1.772
50r+s =-35,8400 d,, =0.3000 r,, =-103,9152 d,, = 3.3000 na" 1.497
0°r+y =-19,6769 d,, =o, 7so.

r+s =−16,9975(非球面)d+a  =1
.750On、=1.80518r+*  = 163
.2352 νも ν6 ν丁 = 25.43 = 44.73 = 49.66 シ、  =81.61 ν9 =25.43 d、、  =0−8500 rao  = 557.4189 d2.  = 4.000Oneo  = 1.677
90   ν、、=55.33r、l =−19,43
99 d21 = o2(可変) r2□ = 85.7977 d、□ =3.4000   n、、  =1.784
72   シ、、=25.68ria = −74,6
440(非球面)d、、 =0.2000 r24 =−350,7649 dz4 = 1.1000  n+z  = 1.80
400 1712= 46.57rzs  = 39.
5546 d2s  =7.9800 rza  =−16,4027 d、、  = 1.3000   n、、  = 1.
80400   v、3=46.57r、、  =−4
4,4413 非球面係数 (第11面) A、、=−0,56568xlO−’ 、B、、=0.
23101 xlO−’Cz=−0.20694xlO
−” 、D、、=0.12871 xlG−”(第18
面) A+a=−0,レンズ26X to−’  、  Bt
−=0.44951  X 10−’C,,=−0.1
0654x to−’  、D、、=0.12613 
 x 10−”(第23面) A2.=−0,10924x 10−’  、B2.=
0.20316  x 10−’C23= −0,89
838X lロー10、023=−0,19119X 
10−”f     36.0    62.50  
 102.51D、     2.283  16.7
80   20.8500、    18.000  
  7.500     1.450!+/P、= 0
.119  、   F+tw/’/’w  = 1.
186β3T  =3.186   、  e’t  
=26.919実施例2 f=36〜102.51   、  F/4.5〜F/
6.92ω=62a〜23.83゜ r 、 = 502.5293 d+ = 1.8500   n1= 1.83400
  17+ = 37.16r2= 37.9948 da=1.0000 r3= 36.4586 d3=3.95・OOn2= 1.48749   v
2=、70.20r4= 505.2364 d、: o、2000 r、= 34.7995 d、= 4.250On、” 1.6170Or、= 
81.7654 d、=p、(可変) r、= −108,8354 d ? = 1 、6200    n 4= 1 、
83481r、= 18.9756 do”1.3080 r9=21.0831 d−= 3.6500     j15= 1.805
18r、。 =−123,0270 d、、  =1.5000 r++ =−24,7536(非球面)dll = 1
.8500   j16= 1.7440Or+2  
=−38,2169 d、、  =4.8500 r13=(資)(絞り) d13  =2.1500 ν3 ν4 ν5 シロ = 62.79 =42.72 =25.43 =44.73 r、4 =76.6588 d、、  = 2.7500   fi、= 1.77
250r=5 =−36,4149 dos  =0.3000 rla  =−137,5101 d、、  ” 3.300On、= 1.48749r
+7 =−21゜0700 d、、  =0.7500 rla =: −18,1883(非球面)d、、  
= 1.7500  119= 1.80518r+9
 =180.9686 d、9 =0.8500 r2o  =458.6435 dz。 = 4.0000   n1o = 1.69
100r2t  =−20,7155 d2.=02(可変) r2□ = 80.7565 d、、  ” 3.400On、、  = 1.784
7Or、、 = −68,6262(非球面)d2− 
 =0.2000 = 49.66 = 70.20 = 25.43 シ、0=54.84 、=26.30 rz<  =−189,9115 dz4 = 1.1000   n+z= 1.803
00 シ、、=46.66 rzs  = 35.7987 d25.= 7.9800 r2g  =−16,6678 d26  =1.3000  口、3 r2□ = −38,9529 非球面係数 (第11面) A、= −0,79645x to−5CI+=−0,
88961X 10−”(第18面) A+a=−0,13873x IQ−’C+a=−0,
I2835X 10−”(第23面) Aa3=−0,84212X 1O−5B23=C23
= 0.34160 X 10−’、  D23=f 
  36   62.50 D、   2.283 16.780 D、   18.000   ?、500B、、= 0
.24914  x 1O−8D、、=0.16372
  x 10−’B、、=−0,48202x 10−
’D+a=0.75290  X 1O−I2= 1.
80300 シ13=46.66 0.13374 X 10−7 −0.12614X 10−’ 102.51 20.850 1.450 乙zw/Y’w  = 1.204 8’2 =22.483 pH/Fw  =0.l13  。
r+s = -16,9975 (aspherical surface) d+a = 1
.. 750On, = 1.80518r++ = 163
.. 2352 ν is also ν6 ν = 25.43 = 44.73 = 49.66 ci, = 81.61 ν9 = 25.43 d,, =0-8500 rao = 557.4189 d2. = 4.000 Oneo = 1.677
90 ν,,=55.33r,l=-19,43
99 d21 = o2 (variable) r2□ = 85.7977 d,□ =3.4000 n,, =1.784
72 shi,, =25.68ria = -74,6
440 (aspherical surface) d,, =0.2000 r24 = -350,7649 dz4 = 1.1000 n+z = 1.80
400 1712 = 46.57rzs = 39.
5546 d2s =7.9800 rza =-16,4027 d,, = 1.3000 n,, = 1.
80400 v, 3=46.57r,, =-4
4,4413 Aspheric coefficient (11th surface) A,, =-0,56568xlO-', B,, =0.
23101xlO-'Cz=-0.20694xlO
−”,D,,=0.12871 xlG−”(18th
surface) A+a=-0, lens 26X to-', Bt
-=0.44951 X 10-'C,,=-0.1
0654x to-' ,D,,=0.12613
x 10-” (23rd surface) A2.=-0,10924x 10-', B2.=
0.20316 x 10-'C23= -0,89
838X llow 10, 023=-0,19119X
10-”f 36.0 62.50
102.51D, 2.283 16.7
80 20.8500, 18.000
7.500 1.450! +/P, = 0
.. 119, F+tw/'/'w = 1.
186β3T = 3.186, e't
=26.919 Example 2 f=36~102.51, F/4.5~F/
6.92ω = 62a ~ 23.83゜r, = 502.5293 d+ = 1.8500 n1 = 1.83400
17+ = 37.16r2= 37.9948 da=1.0000 r3= 36.4586 d3=3.95・OOn2= 1.48749 v
2=, 70.20r4= 505.2364 d,: o, 2000 r, = 34.7995 d, = 4.250On," 1.6170Or,=
81.7654 d, = p, (variable) r, = -108,8354 d? = 1, 6200 n 4= 1,
83481r, = 18.9756 do”1.3080 r9=21.0831 d-= 3.6500 j15= 1.805
18r. =-123,0270 d,, =1.5000 r++ =-24,7536 (aspherical surface) dll = 1
.. 8500 j16= 1.7440Or+2
=-38,2169 d,, =4.8500 r13 = (capital) (aperture) d13 =2.1500 ν3 ν4 ν5 White = 62.79 =42.72 =25.43 =44.73 r,4 =76 .6588 d,, = 2.7500 fi, = 1.77
250r=5 =-36,4149 dos =0.3000 rla =-137,5101 d,, ” 3.300On, = 1.48749r
+7 = -21°0700 d,, =0.7500 rla =: -18,1883 (aspherical surface) d,,
= 1.7500 119= 1.80518r+9
=180.9686 d, 9 =0.8500 r2o =458.6435 dz. = 4.0000 n1o = 1.69
100r2t = -20,7155 d2. =02 (variable) r2□ = 80.7565 d,, ” 3.400On,, = 1.784
7Or,, = -68,6262 (aspherical surface) d2-
= 0.2000 = 49.66 = 70.20 = 25.43 shi, 0 = 54.84 , = 26.30 rz< = -189,9115 dz4 = 1.1000 n+z = 1.803
00 shi,, =46.66 rzs = 35.7987 d25. = 7.9800 r2g = -16,6678 d26 = 1.3000 mouth, 3 r2□ = -38,9529 Aspheric coefficient (11th surface) A, = -0,79645x to-5CI+=-0,
88961X 10-” (18th side) A+a=-0, 13873x IQ-'C+a=-0,
I2835X 10-” (23rd side) Aa3=-0,84212X 1O-5B23=C23
= 0.34160 x 10-', D23=f
36 62.50 D, 2.283 16.780 D, 18.000? ,500B,,=0
.. 24914 x 1O-8D,,=0.16372
x 10-'B,,=-0,48202x 10-
'D+a=0.75290 X 1O-I2=1.
80300 13=46.66 0.13374 =0. l13.

βsT =3.23511  、 実施例3 f=39.3〜132.6 2ω=57.66°〜1853゜ rl= 1111.6796 d、= 1.7300 rz=45.9404 d2= 1.7oo。βsT = 3.23511, Example 3 f=39.3~132.6 2ω=57.66°~1853° rl=1111.6796 d, = 1.7300 rz=45.9404 d2 = 1.7oo.

rs = 70.0465 d、= 3.6800 r4= 493.3583 d4= 0.2100 r%= 34.3218 ds= 5.8500 r6= −102,1033 de=D+(可変) r、=−36,1920 d、= 1.6200 ra=22.2827 n4:= 1.83481 fi3= 1.49700 n2= 1.62t141 0、= 1.83400 F/4.6 〜F/7.75 =37.16 = 60.27 = 81.61 =42.72 d、= 1.3229 r−= 28.5155  (非球面)d9” 2.7
200    ns= 1.78472r、。=−45
,3406 dl。= 2.2978 rz  =−23,7783 d、、  ” 1.5300   n−= 1.700
0ロr1□ = −30,8734 d+□ = 5.9500 rts =■(絞り) dl3  =1.9961 r、、  =−102,2083 d、4 ” 2.7500  nt= 1.6170゜
r、a  =−33,5731 d、5 =0.3800 r、、  =66.3498 d、、= 3.2400  ns= 1.61272r
、、=−27,2123 d、、  =0.5700 r+a  =−23,5275 ν、 =25゜68 シロ :48.08 シ?=62.79 ν8  =58.75 d、a  =1.750On5=1.78470r、g
 ニア6.9210 ate  =0.4800 r2゜= 85.0000 d、、= 4.650On+o  = 1.61720
rH=−23,2593(非球面) di+=Di(可変) r2□ = 488.0762 daz  = 3.3500  n、= 1.7847
2、.3 =−37,3997 dzs  =1.5157 rt−=−35,7145 d、、= 1.4500  n、、= 1.7725O
r□ = 44.5594 c+、、  =5.250O rs6 =−25,2038 d、s  = 1.262o   n、3 = 1.7
3520rat  =−59,6041 非球面係数 (第9面) = 26.22 ν、。= 54.04 シz=25.68 ν1□=49.66 シ、、=41.08 As  = −0,89555x to−’C9=0.
37493  xlO−” (第21面) A2.= 0.82922  x 10−’C2,= 
−0,20748x 10−”f      39.3 D、      1.950 02   18.485 PH/Fw  =0.4166  、 β3?=3.8 実施例4 f=39.3〜132.6 2 (,1= g7.66”〜18.53゜r 、 =
 5475.5289 B、、= 0.16310  x 10−’Dz+= 
0.90282  X 10−1289.1     
132.6 14.722    18.077 5.442     1.450 v1112w/Pw = 1.336 e  2  =26.288 Bq  =−0,95694x to−”D、  = 
−0,30414x 10−”F/4.5 〜F77.
71 d、= t、7200 Q、= 1.83400 ν、  =37.16 rz=50.6199 d2= 1.2000 rs= 79.7805 d、= 3.650O r、=413.2292 1、: 1.64000 ν2 =60.09 d、= 0.2000 rs” 33.4990 d、i=5.2500 rsニー110.0600 ds=D+(可変) ry=−32,0020 d、= 1.6200 ra=21.9789 ds= 1.3080 r9= 27.9975  (非球面)d*= 2.7
200    ns= 1.78472r、。=−41
,0641 dl。 =2、口000 r1+  =−23,2209 dll  =1.8500   口a=1.7000゜
rtz  =−30,0726 d1□ = 3.8500 r13=oo(絞り) d、3 =2.1500 r、、  =−232,0353 114=  1.84100 ns=1.49700 = 81.61 =43.23 =、25.68 = 48.08 d、、 =2.750O r、、  ”−36,8408 d、、  =0.350O r、s  =65.9953 nt=1.61800 ν、  =63.38 d+6 =3.240On−=1.60881ν、  
=58.94 r、、  =−28,2241 d、、  =0.5850 rls  =−24,1104 d、、  ” 1.7500   jl、= 1.78
470r1s  = 52.7043 d、9 =o、ass。
rs = 70.0465 d, = 3.6800 r4 = 493.3583 d4 = 0.2100 r% = 34.3218 ds = 5.8500 r6 = -102,1033 de = D + (variable) r, = -36, 1920 d, = 1.6200 ra = 22.2827 n4: = 1.83481 fi3 = 1.49700 n2 = 1.62t141 0, = 1.83400 F/4.6 ~ F/7.75 = 37.16 = 60.27 = 81.61 =42.72 d, = 1.3229 r- = 28.5155 (Aspherical surface) d9” 2.7
200 ns=1.78472r,. =-45
, 3406 dl. = 2.2978 rz = -23,7783 d,, ” 1.5300 n- = 1.700
0ro r1□ = -30,8734 d+□ = 5.9500 rts = ■ (aperture) dl3 = 1.9961 r,, = -102,2083 d, 4'' 2.7500 nt = 1.6170゜r, a =-33,5731 d, 5 =0.3800 r,, =66.3498 d,, = 3.2400 ns = 1.61272r
,,=-27,2123 d,, =0.5700 r+a =-23,5275 ν, =25°68 Shiro: 48.08 Shi? =62.79 ν8 =58.75 d,a =1.750On5=1.78470r,g
Near 6.9210 ate = 0.4800 r2゜ = 85.0000 d,, = 4.650On+o = 1.61720
rH=-23,2593 (aspherical surface) di+=Di (variable) r2□ = 488.0762 daz = 3.3500 n, = 1.7847
2. 3 = -37,3997 dzs = 1.5157 rt- = -35,7145 d,, = 1.4500 n,, = 1.7725O
r□ = 44.5594 c+,, =5.250O rs6 = -25,2038 d, s = 1.262on, 3 = 1.7
3520rat = -59,6041 Aspheric coefficient (9th surface) = 26.22 ν,. = 54.04 sz=25.68 ν1□=49.66 s,,=41.08 As=-0,89555x to-'C9=0.
37493 xlO-” (21st side) A2.= 0.82922 x 10-'C2,=
−0,20748x 10-”f 39.3 D, 1.950 02 18.485 PH/Fw =0.4166, β3?=3.8 Example 4 f=39.3~132.6 2 (,1 = g7.66"~18.53゜r, =
5475.5289 B,, = 0.16310 x 10-'Dz+=
0.90282 x 10-1289.1
132.6 14.722 18.077 5.442 1.450 v1112w/Pw = 1.336 e 2 =26.288 Bq =-0,95694x to-”D, =
-0,30414x 10-”F/4.5 ~F77.
71 d, = t, 7200 Q, = 1.83400 ν, = 37.16 rz = 50.6199 d2 = 1.2000 rs = 79.7805 d, = 3.650O r, = 413.2292 1,: 1 .64000 ν2 =60.09 d,=0.2000 rs” 33.4990 d,i=5.2500 rs knee 110.0600 ds=D+(variable) ry=-32,0020 d,=1.6200 ra= 21.9789 ds= 1.3080 r9= 27.9975 (Aspherical surface) d*= 2.7
200 ns=1.78472r,. =-41
, 0641 dl. =2, mouth 000 r1+ =-23,2209 dll =1.8500 mouth a=1.7000゜rtz =-30,0726 d1□ = 3.8500 r13=oo (aperture) d, 3 =2.1500 r, , =-232,0353 114= 1.84100 ns=1.49700 = 81.61 =43.23 =, 25.68 = 48.08 d,, =2.750O r,, ”-36,8408 d, , = 0.350O r, s = 65.9953 nt = 1.61800 ν, = 63.38 d+6 = 3.240 On- = 1.60881 ν,
=58.94 r,, =-28,2241 d,, =0.5850 rls =-24,1104 d,, ” 1.7500 jl, = 1.78
470r1s = 52.7043 d, 9 = o, ass.

rho  =61.9805 dzo  =4.000Oneo  =1.61720
r21=−22−1366(非球面) az+=[la (可変) rzz  = 193.4725 di□ = 3.3500   n+ +  = 1.
78470rzs = −36,7360(非球面)d
2.  =o、qso。
rho =61.9805 dzo =4.000 Oneo =1.61720
r21=-22-1366 (aspherical surface) az+=[la (variable) rzz=193.4725 di□=3.3500 n++=1.
78470rzs = -36,7360 (aspherical surface) d
2. = o, qso.

r2*  =−36,4680 ν、  =26.22 ν、。= 54.04 シz=26.22 d、、  = 1.450On、2 ” 1.7725
0   v、、= 49.66r、、 =40.331
4 d、5 =5.4500 rzs  =−26,1119 d26 = 1.750On、、  = 1.7352
0  1’la = 41.08rzt  =−69,
2496 非球面係数 (第9面) A、 =−0,16572x 10−’ 、 B、=−
0,10996x 1O−7C,=0.44878 x
 10−’ 、 D9 =−0,34885x 10−
(第21面) A2.=0.97261 xlO−5,82,=0.1
9926 xlO−’C,,=−0.36802x 1
0−9 、 02.=0.20193  x  l0伺
(第23面) A23=−0,68780x 10−6.8.、=0.
99067 x 1O−8G23= 0.69513 
X 10−”  D22=−0,49493X 1O−
12f   39.3  89.1  132.6D、
   2.090 14.802  18.1660、
  18.625  5.522  1.539!I/
F、 =0.4055、!+zw/Fw = 1.34
6β、、、  =3.8513   、   e  2
  =21.863実施例5 f:39.3〜131.6  、  F/4.6〜F/
7.752ω= 57.66’〜18.67” r+=80.7343 d1= 1.9000   n1= 1.83400 
  v+ = 37.16r2 = 38.4838 d、= 3.2000 rs =−75,7956 d、= 2.8000 Q2= i、64000 ν2 =60.09 r4= −90,7971 d、= 0.2000 rs = 32.6398 da= 5.5000    fi、= 1.4970
Or、=−114,9080 da=O+(可変) rt=−28,6342 dy= 1.7000    n4= 1.83481
r8= 22.4483 d、= 1.3200 νg  =81.61 ν4 =42.72 r、=31.3921  (非球面) d、= 2.8500 IIs= 1.78472 r+o  ”−87,2017 d、。 = 2.3000 r++  =−105,4924 d、、  =2.4000  n、=1.70000シ
s  ”25.68 ν、  =48.08 r+z  =−28,8013 d1□ = 5.9800 r13=cx:+(絞り) d、、  =2.000O r+4 =−313,1522 d、4 =2.750O rls  =−50,4776 d、5 =0.300O r、s  =109.0157 d、、  = 3.2500 rly  =−49,2713 ャモ=;1ih−嬶 h7= G17o。
r2* =-36,4680 ν, =26.22 ν,. = 54.04 sz = 26.22 d,, = 1.450On, 2 ” 1.7725
0 v,,=49.66r,,=40.331
4 d, 5 = 5.4500 rzs = -26,1119 d26 = 1.750 On,, = 1.7352
0 1'la = 41.08rzt = -69,
2496 Aspheric coefficient (9th surface) A, =-0,16572x 10-', B, =-
0,10996x 1O-7C,=0.44878x
10-', D9 =-0,34885x 10-
(Page 21) A2. =0.97261 xlO-5,82,=0.1
9926 xlO-'C,,=-0.36802x 1
0-9, 02. =0.20193 x l0 (23rd page) A23=-0,68780x 10-6.8. ,=0.
99067 x 1O-8G23 = 0.69513
X 10-” D22=-0,49493X 1O-
12f 39.3 89.1 132.6D,
2.090 14.802 18.1660,
18.625 5.522 1.539! I/
F, =0.4055,! +zw/Fw = 1.34
6β,,, =3.8513, e2
=21.863 Example 5 f:39.3~131.6, F/4.6~F/
7.752ω= 57.66'~18.67" r+=80.7343 d1= 1.9000 n1= 1.83400
v+ = 37.16r2 = 38.4838 d, = 3.2000 rs = -75,7956 d, = 2.8000 Q2 = i, 64000 ν2 = 60.09 r4 = -90,7971 d, = 0.2000 rs = 32.6398 da = 5.5000 fi, = 1.4970
Or, = -114,9080 da = O + (variable) rt = -28,6342 dy = 1.7000 n4 = 1.83481
r8 = 22.4483 d, = 1.3200 νg = 81.61 ν4 = 42.72 r, = 31.3921 (aspherical surface) d, = 2.8500 IIs = 1.78472 r+o ”-87,2017 d, =2.3000 r++ =-105,4924 d,, =2.4000 n, =1.70000 s ”25.68 ν, =48.08 r+z =-28,8013 d1□ = 5.9800 r13= cx:+(aperture) d,, =2.000O r+4 =-313,1522 d,4 =2.750O rls =-50,4776 d,5 =0.300O r,s =109.0157 d,, = 3.2500 rly =-49,2713 Jamo=;1ih-嬶h7=G17o.

シフ = G2.7’? jl、= 1.61272 ν、  =58.75 d+y  =0.7000 rls  ”−36,6175 d、8 ” 1.7500   Q9= 1.7847
2ν9=25.71 rla  = 46.0377 d+s  ”1.0000 rxo = 82.1062 dzo  = 4.656On、、 = 1.6172
0  v、、= 54.04r21= −21−938
3(非球面)di+ =’D2 (可変) r2□ = −2777,0227 daa  =3.350On++  =1.78472
  シ++=25.68r、、  =−41,0373 dzz  =1.5157 rl4 =−36,7693 dz4 = 1.450Onrz  = 1.7725
0 1)+z= 49.66r、、  = 45.99
42 d、、  =4.6000 r2.  =−46,8725 da6 =1.600Onrz  =1.73520 
 v+5=41.08r2t  =−110,6815 非球面係数 (第9面) Ae =−0,52873x IQ−s  Be = 
−0,68602x to−’C,=0.18557 
x to−” 、 D、 =−0,11923x 10
−〇(第21面) Affi、= 0.76464  X to−’C,,
=0.14387  x 10−’f      39
.3 D、      1.700 D、    20.964 !、/Il’、  =0.33 、 β、ア = 3.7085 実施例6 f=39.3〜131.6 2ω= 57.66’〜18.67” r+=201.3566 d、= 1.7500 r2 = 43.2604 d、=  1.7000 r、= 134.5966 d3= :1.7000 r、 = −852,0851 d、= 0.2100 νl  =37.16 シ、  =65.48 F/4.6 〜F77.75 B2.= −0,81476x 10−70、、= −
0,83446x 10−目89.1     131
.6 17.965   21.673 5.793    1.242 1”+2W/FW  = 1.:1074e、=69.
746 n2= 1.60300 nrz1.83400 rs: 29.1194 dS= 5.8000 rs=−117,0703 ds=D+(可変) rt”−27,5859 dy= 1.7000 rs” 18.8682 d、= 1.:1200 r、+=28.8176  (非球面)d−= 2.8
50Q   ns= 1.78472「1゜ =−53
,7701 dl。= 2.3000 r++  =−31,2775 d、  =1.8500  na=1.7000Or+
2  =−21,1532 d、□ = 5.9800 rla :QQ (絞り) a+3 =2.0000 fi、= 1.49700 fi4= 1.83481 ν3  =81.61 ν、  =42.72 シ5=25.68 νa  ”48.08 rl<  =−117,0197 rls  =−40,5176 d、、  =0.3000 rla  =98.8887 d、s  ” 3.2500   na= 1.612
72r、、  =−44,5490 d、、  =0.570O rla  =−24,5454 d+*  = 1.7500   ns= 1.784
72r+9  = 90.1223 d、、  =0.4000 rao  = 136.5959 dzo  = 4.6500   n10 = 1.6
172Or、、 =−18,1746(非球面)di+
=Dx(可変) r2□ = −861,0376 d2a  = 3.3500 11+  = 1.78
472r、、  =−38,8664 dz3 =1.5157 シ、  =58.75 ν9  =25.71 ν、。= 54.04 シ、、=25.68 rl4 =−35,5994 d+、  = 2.7500  nt= 1.6170
0νt  ”62.79 d2.=1.4500  n、□ =1.77250 
 ν、、=49.66r25 = 45.9952 d25 =5.2500 r2.  =−34,6923 d2a  = 1.2620   n13  = 1.
73520   v+3= 41.08ray  =−
64,4792 非球面係数 (第9面) As =O,16261X 10−5.89=−0,2
8806x to−’C9=0.13717 X 10
−’ 、n9=−0,62948X 10−目(第21
面) A21= 0.11850  X  10−’  、 
 B21= −〇、40165X  10−’C,,=
0.’j3423x10−902.=−0,41105
xlO−f   39.3  89.1  131.6
D、   1.900 14.411  17.110
D220.826  5.864  1.270F+/
Pw =0.49、F+ □w/’Pw = 1 、3
07B3T=3.6617  、  e a= 4:1
.331実施例7 f = 39.37〜102.69  、 F/3.3
8〜F/6.42ω=57.58°〜23.79” rl = 229.9769 d  = 1.7300    (’1.: 1.83
400rz=28.1914 d2= 1.3500 rs= 44.7599 d、= 3.6800 r4: 224.2787 d4= 0.2100 rs= 25.8699 ds= 5.8500 raミニ−9,5レンズ d6=D、(可変) r、= −34,8103 d、= 1.6200 r8= 27.5584 da”1.0200 r9=33.2775 d9= 2.7200 r、o  =−104,1054 d、o =1.9200 n4= 1.79500 n s ” 1 、78472 nx” 1.62041 Q、= 1.55671 ν1 ν2 =37.16 =60.27 シ、=58 シ、=45 ν5 = 25.68 r、、  =−157,1266 d、、  =1.530On、=1.69100   
 v、  =54.84r、2 =−40271,83
31 d、、  =5.2660 r13=(資)(絞り) (L3 =3.4720 rl4 =147.1875 d、4 = 2.7500   ny= 1.6363
6    vt  = 35.37r、s  ”−30
,9280 (Lt、  =0.3800 rla  =72.4462 dla  = 3.2400   n8= 1.622
30    va  = 53.2Or+7  =−4
5,1421 d1□ =0゜8500 rls  =−18,4663 d、8 =1.750On5=1.740ロ0    
1/s  =28.29r+9  =28.0593 d、、  = 4.650On、、  ” 1.622
99   シ、、=58.14r2o  ”−18,5
239 d2゜=92(可変) ra+  =−45,2119 d、、  =2.9500 r、、”−20,9146 d2□ = i、5500 rts  =−19,7591 da3 =1.4500 rl4 =−102,3405 d2.  =2.7200 r2s  ”−31,4912 d、s  =1.3000 rl6 :o。
Schiff = G2.7'? jl, = 1.61272 ν, = 58.75 d+y = 0.7000 rls ”-36,6175 d, 8 ” 1.7500 Q9 = 1.7847
2ν9=25.71 rla = 46.0377 d+s ”1.0000 rxo = 82.1062 dzo = 4.656On,, = 1.6172
0 v,,=54.04r21=-21-938
3 (aspherical surface) di+ ='D2 (variable) r2□ = -2777,0227 daa =3.350On++ =1.78472
C++=25.68r,, =-41,0373 dzz =1.5157 rl4 =-36,7693 dz4 = 1.450Onrz = 1.7725
0 1) +z = 49.66r,, = 45.99
42 d,, =4.6000 r2. =-46,8725 da6 =1.600 Onrz =1.73520
v+5=41.08r2t=-110,6815 Aspheric coefficient (9th surface) Ae=-0,52873x IQ-s Be=
-0,68602x to-'C,=0.18557
x to-”, D, =-0,11923x 10
-〇 (Side 21) Affi, = 0.76464 X to-'C,,
=0.14387 x 10-'f 39
.. 3 D, 1.700 D, 20.964! , /Il', = 0.33, β, a = 3.7085 Example 6 f = 39.3 ~ 131.6 2ω = 57.66' ~ 18.67'' r + = 201.3566 d, = 1. 7500 r2 = 43.2604 d, = 1.7000 r, = 134.5966 d3= : 1.7000 r, = -852,0851 d, = 0.2100 νl = 37.16 ci, = 65.48 F/ 4.6 ~F77.75 B2.= -0,81476x 10-70,, = -
0,83446x 10th 89.1 131
.. 6 17.965 21.673 5.793 1.242 1”+2W/FW = 1.:1074e, =69.
746 n2= 1.60300 nrz1.83400 rs: 29.1194 dS= 5.8000 rs=-117,0703 ds=D+ (variable) rt"-27,5859 dy= 1.7000 rs" 18.8682 d,= 1. :1200 r, +=28.8176 (aspherical surface) d-=2.8
50Q ns = 1.78472 "1° = -53
, 7701 dl. =2.3000 r++ =-31,2775 d, =1.8500 na=1.7000Or+
2 = -21,1532 d, □ = 5.9800 rla : QQ (aperture) a+3 = 2.0000 fi, = 1.49700 fi4 = 1.83481 ν3 = 81.61 ν, = 42.72 Si5 = 25 .68 νa "48.08 rl< =-117,0197 rls =-40,5176 d,, =0.3000 rla =98.8887 d,s" 3.2500 na= 1.612
72r,, =-44,5490 d,, =0.570O rla =-24,5454 d+* = 1.7500 ns= 1.784
72r+9 = 90.1223 d,, =0.4000 rao = 136.5959 dzo = 4.6500 n10 = 1.6
172Or,, =-18,1746 (aspherical surface) di+
=Dx (variable) r2□ = -861,0376 d2a = 3.3500 11+ = 1.78
472r,, =-38,8664 dz3 =1.5157 ci, =58.75 ν9 =25.71 ν,. = 54.04 ci, , = 25.68 rl4 = -35,5994 d+, = 2.7500 nt = 1.6170
0νt ”62.79 d2.=1.4500 n, □ =1.77250
ν,,=49.66r25=45.9952 d25=5.2500 r2. =-34,6923 d2a = 1.2620 n13 = 1.
73520 v+3=41.08ray=-
64,4792 Aspheric coefficient (9th surface) As =O,16261X 10-5.89=-0,2
8806x to 'C9=0.13717 x 10
-', n9=-0,62948X 10th (21st
surface) A21 = 0.11850 x 10-',
B21= -〇, 40165X 10-'C,,=
0. 'j3423x10-902. =-0,41105
xlO-f 39.3 89.1 131.6
D, 1.900 14.411 17.110
D220.826 5.864 1.270F+/
Pw = 0.49, F+ □w/'Pw = 1, 3
07B3T=3.6617, e a= 4:1
.. 331 Example 7 f = 39.37-102.69, F/3.3
8~F/6.42ω=57.58°~23.79" rl = 229.9769 d = 1.7300 ('1.: 1.83
400rz = 28.1914 d2 = 1.3500 rs = 44.7599 d, = 3.6800 r4: 224.2787 d4 = 0.2100 rs = 25.8699 ds = 5.8500 RA mini-9,5 lens d6 = D, (variable) r, = -34,8103 d, = 1.6200 r8 = 27.5584 da"1.0200 r9 = 33.2775 d9 = 2.7200 r,o = -104,1054 d,o = 1.9200 n4= 1.79500 n s ” 1 , 78472 nx” 1.62041 Q, = 1.55671 ν1 ν2 = 37.16 = 60.27 si, = 58 si, = 45 ν5 = 25.68 r, , =-157,1266 d, , =1.530On, =1.69100
v, =54.84r, 2 =-40271,83
31 d,, =5.2660 r13 = (capital) (aperture) (L3 = 3.4720 rl4 = 147.1875 d, 4 = 2.7500 ny = 1.6363
6 vt = 35.37r, s”-30
,9280 (Lt, =0.3800 rla =72.4462 dla = 3.2400 n8 = 1.622
30 va = 53.2Or+7 = -4
5,1421 d1□ =0°8500 rls =-18,4663 d,8 =1.750On5=1.740ro0
1/s = 28.29r+9 = 28.0593 d,, = 4.650On,, ” 1.622
99 shi,,=58.14r2o ”-18,5
239 d2゜=92 (variable) ra+ =-45,2119 d,, =2.9500 r,,"-20,9146 d2□ = i, 5500 rts =-19,7591 da3 =1.4500 rl4 =-102 ,3405 d2. =2.7200 r2s ”-31,4912 d,s =1.3000 rl6 :o.

f     39.37 D、     2.550 02    18.570 9’、/FW =0.563  、 β−T  =2.781 実施例8 f=39.5〜102.7 2ω=57.4’〜23.8’ 「、= 115.2670 n+−”1.72916   ν n+□ = 1.72916  ’L)+2= 54n
+ 1  = 1.78470 62.9     102.69 12.560    17.590 9.830    2.820 1’12W/FW  = 1.321 e’2 = 21.525 シ1+=26.30 3=54.68 F/4.65〜F/6.55 d、= 1.400O r、=28.8331 d2= 0.7100 rs=28.2651 d3=3.400O r、= 102.8707 n+=1.83400 nm=1.60300 d、= 0.2000 rs=29.0721 シ+=37.16 シ2 : 65.48 d5=3.8000 nm=1.55671 ν3 = 58.68 r6=−339,3697 d、=D、(可変) rt =−19,5695 d、= 1.4000 ra=33.4856 d、= 0.5500 re=32.5005 d、= 2.5000 r、、  =−70,3092 d、。 =0.500O r、、  =−97,0891 fi4= 1.79500 nm=1.78472 ν、  =45.29 νS  =25.68 rtz 「13 d、、  =1.4000 =−1305,1334 d+z  =1.0000 =oo(絞り) d+3 ”1.0000 ns” 1.69100 r+4 ”−133,7972 d+4 =2.2500 r+s  ”−18,7647 d+s  ”0.2000 r、e  =38.5688 fi、= 1.63636 dls  = 2.5000  08= 1.6223
゜ray  =−44,5886 d、、  =0.8500 r+a  =−16,5161 d、、= i、2500  n、= 1.7400゜r
+*  =33.1126 d、、  =0.2400 rzo  = 39.7549 d、、= 3.250On、、= 1.62299r*
+  =−16,5460 = 54.84 =35.37 = 53.20 = 28.29 ν1゜=58.14 d21 =02 (可変) ra2 ”−23,9539 d22 =2.950On、、  =1.78470 
  シ、、=26.30r2z  =−17,3716 d23 =0.8600 r24 =−24,3055 d、、  =1.3000 r25 =−33,1828 d2s  ’= 2.1000 ra6 =−18,2661 d、6 =1.3000 rzt=−304,9233 f      39.5 D、      2.550 02    18.850 P、/Tow =0.596  、 β、、  =2.824 実施例9 f = 29.36〜?5. l。
f 39.37 D, 2.550 02 18.570 9', /FW = 0.563, β-T = 2.781 Example 8 f = 39.5 ~ 102.7 2ω = 57.4' ~ 23 .8'", = 115.2670 n+-"1.72916 ν n+□ = 1.72916 'L)+2= 54n
+ 1 = 1.78470 62.9 102.69 12.560 17.590 9.830 2.820 1'12W/FW = 1.321 e'2 = 21.525 C1+=26.30 3=54. 68 F/4.65 ~ F/6.55 d, = 1.400O r, = 28.8331 d2 = 0.7100 rs = 28.2651 d3 = 3.400O r, = 102.8707 n+ = 1.83400 nm=1.60300 d, = 0.2000 rs=29.0721 si+=37.16 si2: 65.48 d5=3.8000 nm=1.55671 ν3=58.68 r6=-339,3697 d , =D, (variable) rt = -19,5695 d, = 1.4000 ra = 33.4856 d, = 0.5500 re = 32.5005 d, = 2.5000 r,, = -70,3092 d ,. =0.500O r,, =-97,0891 fi4=1.79500 nm=1.78472 ν, =45.29 νS =25.68 rtz "13 d,, =1.4000 =-1305,1334 d+z = 1.0000 =oo (aperture) d+3 "1.0000 ns" 1.69100 r+4 "-133,7972 d+4 =2.2500 r+s "-18,7647 d+s "0.2000 r, e =38.5688 fi, = 1.63636 dls = 2.5000 08 = 1.6223
゜ray = -44,5886 d,, =0.8500 r+a = -16,5161 d,, = i, 2500 n, = 1.7400゜r
+* =33.1126 d,, =0.2400 rzo = 39.7549 d,, = 3.250On,, = 1.62299r*
+ =-16,5460 = 54.84 =35.37 = 53.20 = 28.29 ν1° = 58.14 d21 =02 (variable) ra2 ''-23,9539 d22 =2.950On,, =1. 78470
,, =26.30r2z =-17,3716 d23 =0.8600 r24 =-24,3055 d,, =1.3000 r25 =-33,1828 d2s' = 2.1000 ra6 =-18,2661 d, 6 = 1.3000 rzt = -304,9233 f 39.5 D, 2.550 02 18.850 P, /Tow = 0.596, β,, = 2.824 Example 9 f = 29.36~? 5. l.

2ω= 72.8@〜32. l’ 63.2    102.7 12.560    17.590 9.830    2.820 F+ 2w/Fw  = 1.332 e  2  = IO,8s2 n+z  = 1.72916   U+z= 54.
68n+x  = 1.72916  ν11= 54
.68F/4.62〜F76.55 r+=85.9422 d、= 1.4000 rt= 27.5784 d、= 0.6500 rz=27.5225 d、= 4.1000 r4: 107.2895 d、= 0.2000 rs=32.6753 d5= 4.2000 ra”−352,2657 d、=D、(可変) rt=−18,2062 dy= 1.400O r、l= 28.7159 da= o、5500 re =43.3677 d、=2.500O r、、  =−54,1439 d+o  =0−5000 n、= 1.83400 n 2 = 1 、60300 Q3= 1.55963 Q4= 1.79500 Q、= 1.80518 = 37.16 = 65.48 = 61.17 =45.29 =25.43 r、 =−61,6568 d、 =1.4000   n5=1.69100「1
□ =−73,5293 dl□ =  1.00口O r1ユ=oo(絞り) dl3 =1.0000 r、4 =−138,0629 dl4 =2.2500   r+y=1.59270
r、s  =−17,0525 d、、  =0.2000 r+a  =43.9728 d、、  ” 2.5000  na= 1.7128
5ray  =−33,7692 d、、  =0.8500 r+ll  =−13,9493 d、、  ” 1.250o   n、= 1.740
00r、−= 33.0554 dl9 =0.3500 rho  =36.6402 d2゜ = 3.2500   口、。 = 1.60
300シロ  =54.84 νt  =35.29 ν8  =43.19 ν、  =28.29 ν1゜= 65.48 r21 =−13,5900 dz+=Da(可変) r2□ =、−32,9569 d2□ = 2.3500 rzz  ==−21,3235 do3 =0.1500 rz−=−47,5616 dz4 =1.1000 rzs  =−137,5488 d2!  =5.000O rto  =−16,6330 dam  =1.1000 r2t  =−209,0778 f      29.36 D、      1.699 D、     13.962 F、/+pH=0.435  、 β、□ =2.376 実施例10 f=36.22 〜102.0 il Ix = 1.80518 νz=25.43 = 1.74100 ν1□= 52.68 : 1.72916 シ、、=54.68 48.3     75.1 9.028   20.082 5.716    0.250 V)+zw/Y’w  = 1.23 e  2  = 12.03 F/4.65〜F76.55 2 ω =61.7’  〜23.95’rl = t
oo、2088 d、= 1.4000 (”2: 28.3094 d2= 0.6500 r3= 27.7669 d、= 3.4000 r4= 89.0092 d、= 0.2000 r、” 28.3930 d5= 3.8000 r、=−426,2746 d、=D、(可変) 「、=−19,8065 d、=  1.4000 r、、’:30.7191 d、= 0.5500 r++ = 32.0073 02=1.60:(On n、= 1.83400 n4 :1.79500 nz”1.55963 d、= 2.5000 ns” 1.80518 r+o  =−76,3193 ll ν皿 =37.16 シx  ”65.48 ν、  =61.17 シ、  =45.29 νs”25.43 1z r+s r+4 Is 1g r+t r+a ye ra。
2ω=72.8@〜32. l' 63.2 102.7 12.560 17.590 9.830 2.820 F+ 2w/Fw = 1.332 e 2 = IO,8s2 n+z = 1.72916 U+z= 54.
68n+x = 1.72916 ν11= 54
.. 68F/4.62 ~ F76.55 r+ = 85.9422 d, = 1.4000 rt = 27.5784 d, = 0.6500 rz = 27.5225 d, = 4.1000 r4: 107.2895 d, = 0.2000 rs=32.6753 d5= 4.2000 ra"-352,2657 d,=D,(variable) rt=-18,2062 dy=1.400O r,l=28.7159 da=o,5500 re =43.3677 d, =2.500O r,, =-54,1439 d+o =0-5000 n, = 1.83400 n 2 = 1, 60300 Q3 = 1.55963 Q4 = 1.79500 Q, = 1 .80518 = 37.16 = 65.48 = 61.17 = 45.29 = 25.43 r, = -61,6568 d, = 1.4000 n5 = 1.69100 "1
□ = -73,5293 dl□ = 1.00 openings Or r1yu = oo (aperture) dl3 = 1.0000 r, 4 = -138,0629 dl4 = 2.2500 r+y = 1.59270
r, s = -17,0525 d,, =0.2000 r+a =43.9728 d,, ” 2.5000 na = 1.7128
5ray =-33,7692 d,, =0.8500 r+ll =-13,9493 d,, ” 1.250on, = 1.740
00r, -= 33.0554 dl9 = 0.3500 rho = 36.6402 d2゜ = 3.2500 mouth. = 1.60
300 Shiro = 54.84 νt = 35.29 ν8 = 43.19 ν, = 28.29 ν1° = 65.48 r21 = -13,5900 dz+=Da (variable) r2□ =, -32,9569 d2□ = 2.3500 rzz ==-21,3235 do3 =0.1500 rz-=-47,5616 dz4 =1.1000 rzs =-137,5488 d2! =5.000O rto =-16,6330 dam =1.1000 r2t =-209,0778 f 29.36 D, 1.699 D, 13.962 F, /+pH=0.435, β, □ =2. 376 Example 10 f = 36.22 ~ 102.0 il Ix = 1.80518 νz = 25.43 = 1.74100 ν1□ = 52.68 : 1.72916 , , = 54.68 48.3 75. 1 9.028 20.082 5.716 0.250 V) + zw/Y'w = 1.23 e 2 = 12.03 F/4.65 ~ F76.55 2 ω = 61.7' ~ 23.95 'rl = t
oo, 2088 d, = 1.4000 ("2: 28.3094 d2 = 0.6500 r3 = 27.7669 d, = 3.4000 r4 = 89.0092 d, = 0.2000 r," 28.3930 d5 = 3.8000 r, = -426,2746 d, = D, (variable) ", = -19,8065 d, = 1.4000 r,, ': 30.7191 d, = 0.5500 r++ = 32. 0073 02=1.60: (On n, = 1.83400 n4 :1.79500 nz"1.55963 d,=2.5000 ns" 1.80518 r+o =-76,3193 ll ν plate=37.16 s x ”65.48 ν, =61.17 shi, =45.29 νs”25.43 1z r+s r+4 Is 1g r+t r+a ye ra.

dl。 =0.5000 =−106,8207 d++=1.4000 =−302,6502 d1□ = 1.0000 二〇〇(絞り) dIa=1.0000 =−88,6629 d、、  =2.2500 =−17,5588 dls  =0.2000 = 43.3709 d、、  =2.5000 = −39,4877 1Lt  =0.8500 =−14,7456 dl、  =1.2500 ;34.6451 d、9 =0.3500 = 40.2667 na=1.69100 シロ n、= 1.59270 νフ ロ、= 1.71285 νB n9= 1.74000 = 54.84 = 35.29 =43.19 =28.29 d2o  =3.250Ont。dl. =0.5000 =-106,8207 d++=1.4000 =-302,6502 d1□ = 1.0000 200 (aperture) dIa=1.0000 =-88,6629 d,, =2.2500 =-17,5588 dls = 0.2000 = 43.3709 d,, =2.5000 = −39,4877 1Lt = 0.8500 =-14,7456 dl, = 1.2500 ;34.6451 d, 9 = 0.3500 = 40.2667 na=1.69100 Shiro n, = 1.59270 νfu B, = 1.71285 νB n9= 1.74000 = 54.84 = 35.29 =43.19 =28.29 d2o = 3.250 Ont.

rtl =−14,7039 da+=Da(可変) r、、  =−25,6419 d2w  =2.950On++ r、、  =−18,3466 == 1.60300   ν、。〜65.48= 1
.80518  ν1l=25.43dzi  =0.
3000 rt4 =−28,5968 d、、  =1.500O r、5 =−38,0285 d2.  =3.1000 rza  =−18,0602 d2a  =1.3000 rzt  =−11866,4764 f      36.22 n+      2.607 02    16.792 Fl/!w  =0.5506  、 βav=2.92 実施例11 n+2 = 1.73400 シ、、=51.49 neo = 1.72916 シ+3=54.68 60.6     102.0 13.399    18゜440 7.507     0.472 F+zw/Fw= 1.303 e  、  =、11.642 f  = 30.28 〜77.8 2ω= 71.1’  〜31.l’ r+=213.8660 d+=1.4000 [、= 23.8020 d、= 0.6440 ri=24.3680 d、= 4.9250 r、= 138.7480 d、= 0.2020 rs=33.2500 d、= 4.8000 j6=−97,1720 d、=D、(可変) r ? = −18、4410 d、= 1.4000 r、= 29.9330 ds= 0.5500 r、: 27.8420 d+= 2.5000 j12= 1.60300 n+=1.83400 Q3= 1.56013 j14= 1.79500 ns= 1.80518 F/4.65〜F/6.4 〜37.16 〜65.48 = 46.99 = 45.29 = 25.43 r+。
rtl =-14,7039 da+=Da (variable) r,, =-25,6419 d2w =2.950On++ r,, =-18,3466 == 1.60300 ν,. ~65.48= 1
.. 80518 ν1l=25.43dzi=0.
3000 rt4 =-28,5968 d,, =1.500O r, 5 =-38,0285 d2. =3.1000 rza =-18,0602 d2a =1.3000 rzt =-11866,4764 f 36.22 n+ 2.607 02 16.792 Fl/! w = 0.5506, βav = 2.92 Example 11 n+2 = 1.73400 shi, , = 51.49 neo = 1.72916 shi+3 = 54.68 60.6 102.0 13.399 18°440 7 .507 0.472 F+zw/Fw= 1.303 e, =, 11.642 f = 30.28 ~77.8 2ω= 71.1' ~31. l' r+=213.8660 d+=1.4000 [,=23.8020 d,=0.6440 ri=24.3680 d,=4.9250 r,=138.7480 d,=0.2020 rs=33 .2500 d, = 4.8000 j6 = -97,1720 d, = D, (variable) r? = -18,4410 d, = 1.4000 r, = 29.9330 ds= 0.5500 r, : 27.8420 d+= 2.5000 j12= 1.60300 n+=1.83400 Q3= 1.56013 j14= 1.79500 ns = 1.80518 F/4.65 ~ F/6.4 ~ 37.16 ~ 65.48 = 46.99 = 45.29 = 25.43 r+.

「12 r+s r+t 「16 r+e = −74,0800 d、。 = 0.4970 = −71,0280 dz  =1.4000   na=1.69680=
−75,0820 d、、  =1.0000 =oo(絞り) dl3 =1.0000 = −89,7660(非球面) dl4 =2.2500   nミニ1.59270=
−18,5670 dl、t  =0.2000 = 48.1400 d、、  = 2.5000   j18: 1.71
285= −28,8620 d、、  =0.8830 = −12,9000 dla  = 1.2500   ns= 1.740
77= 30.6950 d、、  =0.3540 ν6 νフ ν8 ν9 = 56.49 〜35.29 = 43.19 = 27.79 「2゜ 〜34.4110 dao  = 3.250Oneo  = 1.603
00 1/1o= 65.48r、、  =−13,2
500 dz+=Dz(可変) r、、  =−:11.7310 d2.  = 2.350On+ +  = 1.80
518   vI+ = 25.43r2s  =−2
0,0930 d23 =0.1500 r、、  =−35,3150 dl4 = 1.1400  neo  = 1.73
500 17+□= 49.82rgs  =−40,
9110 (lag  =4.0600 ris =−15,1790(非球面)d、、  =1
.100On、1= 1.72916 17,3= 5
4.68rzt  = 641.4940 非球面係数 (第14面) A、、=−0,41714x 10−’ 、 B+、=
0.42167 X 10−’C,4=0.92130
  x  10−’  、 D、、=0.17517 
 x  10−1゜(第26面) Az6=0.83684  X 10−5 、  B2
6=0.74530  X 10−’C2,=−0,4
1430xlO−’    D28=0.32416X
lO−”f      30.28    49.1 
     77.8D、      1.830   
 9.310    18.850D2   14.0
60    5.850    0.250’/)、/
FW=0.392 、  ’l”+2wIPW= 1.
257β3.  ”2.61    、   e  2
 =13.197ただしrl、 r2.・・・はレンズ
各面の曲率半径、d1d2.・・・は各レンズの肉厚お
よびレンズ間隔、n1n2.・・・は各レンズの屈折率
、シ3.シ2.・・・は各レンズのアツベ数である。
"12 r+s r+t "16 r+e = -74,0800 d,. = 0.4970 = -71,0280 dz =1.4000 na=1.69680=
-75,0820 d,, =1.0000 =oo (aperture) dl3 =1.0000 = -89,7660 (aspherical surface) dl4 =2.2500 n mini 1.59270=
-18,5670 dl, t = 0.2000 = 48.1400 d,, = 2.5000 j18: 1.71
285 = -28,8620 d,, =0.8830 = -12,9000 dla = 1.2500 ns = 1.740
77 = 30.6950 d,, =0.3540 ν6 νfu ν8 ν9 = 56.49 ~ 35.29 = 43.19 = 27.79 "2° ~ 34.4110 dao = 3.250 Oneo = 1.603
00 1/1o=65.48r,, =-13,2
500 dz+=Dz (variable) r,, =-: 11.7310 d2. = 2.350On+ + = 1.80
518 vI+ = 25.43r2s =-2
0,0930 d23 =0.1500 r,, =-35,3150 dl4 = 1.1400 neo = 1.73
500 17+□= 49.82rgs =-40,
9110 (lag = 4.0600 ris = -15,1790 (aspherical surface) d,, = 1
.. 100On, 1= 1.72916 17,3= 5
4.68rzt = 641.4940 Aspheric coefficient (14th surface) A,, =-0,41714x 10-', B+, =
0.42167 x 10-'C,4=0.92130
x 10-', D,, = 0.17517
x 10-1° (26th surface) Az6=0.83684 x 10-5, B2
6=0.74530 X 10-'C2,=-0,4
1430xlO-' D28=0.32416X
lO-”f 30.28 49.1
77.8D, 1.830
9.310 18.850D2 14.0
60 5.850 0.250'/),/
FW=0.392, 'l''+2wIPW=1.
257β3. ”2.61, e 2
=13.197 However, rl, r2. ... is the radius of curvature of each lens surface, d1d2. ... is the thickness of each lens and the lens interval, n1n2. ... is the refractive index of each lens, and C3. C2. ... is the Atsube number of each lens.

実施例1および実施例2は第1図に示すレンズ構成で、
広角端が画角62°稈度を含むものである。
Example 1 and Example 2 have the lens configuration shown in FIG.
The wide-angle end includes an angle of view of 62 degrees.

実施例1の広角端、中間焦点距離、望遠端における収差
状況は夫々第5図、第6図、第7図に示す通りであり又
実施例2の広角端、中間焦点距離、望遠端における収差
状況は夫々第8図、第9図、第10図に示す通りである
。これら収差曲線図より明らかなように極めて良好な光
学性能を有している。又像点分布の径も、その波長ごと
に小さくなっている6 実施例3乃至実施例6も第1図に示すレンズ構成で広角
端の画角58°程度から望遠端の画角18゜程度まで包
括するものである。これら実施例は、全長が短いばかり
か、レンズの外径が小で携帯に便利な構成である。
The aberrations at the wide-angle end, intermediate focal length, and telephoto end of Example 1 are as shown in FIGS. 5, 6, and 7, respectively, and the aberrations at the wide-angle end, intermediate focal length, and telephoto end of Example 2 are as shown in FIGS. The situation is as shown in FIGS. 8, 9, and 10, respectively. As is clear from these aberration curve diagrams, it has extremely good optical performance. The diameter of the image point distribution also decreases with each wavelength.6 In Examples 3 to 6, the angle of view at the wide-angle end is about 58° and the angle of view at the telephoto end is about 18° with the lens configuration shown in Figure 1. It is comprehensive. These embodiments have not only a short overall length but also a small outer diameter of the lens, making them convenient to carry.

実施例3の広角端、中間焦点距離、望遠端における収差
状況は夫々第11図、第12図、第13図に、実施例4
の広角端、中間焦点距離、望遠端における収差状況は夫
々第14図、第15図、第16図に、実施例5の広角端
、中間焦点距離、望遠端における収差状況は夫々第17
図、第18図第19図に、実施例6の広角端、中間焦点
距離望遠端における収差状況は夫々第20図、第21図
、第22図に示す通りである。
The aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of Example 3 are shown in FIGS. 11, 12, and 13, respectively.
The aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of Example 5 are shown in FIGS. 14, 15, and 16, respectively, and the aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of Example 5 are shown in FIG.
18 and 19, and the aberration conditions at the wide-angle end and intermediate focal length telephoto end of Example 6 are as shown in FIGS. 20, 21, and 22, respectively.

実施例7は第2図に示すレンズ構成で広角端のが画角が
58°程度で、口径比が大であり広角側で明るいレンズ
系を構成している。この実施例は、開口絞りの径を一定
にし絞り機構の簡単化を図ったもので、−力先学性能も
良好になっている。
Example 7 has a lens configuration shown in FIG. 2, with an angle of view of about 58 degrees at the wide-angle end, a large aperture ratio, and a bright lens system at the wide-angle end. In this embodiment, the diameter of the aperture diaphragm is kept constant, the diaphragm mechanism is simplified, and the power-ahead performance is also improved.

この実施例の広角端、中間焦点距離、望遠端における収
差状況は夫々第23図、第24図、第25図に示す通り
である。
The aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of this embodiment are as shown in FIGS. 23, 24, and 25, respectively.

以上の各実施例は、変倍率が高く結像性能が良好である
ことが特徴である。条件(3)に示す第3レンズ群の横
倍率が高く、像面に対する縦倍率の寄与が大きいことも
特徴であり、製造上重要である。又第3レンズ群の偏芯
感度の効きが比較的小さく、これも大きな長所になって
いる。更に条件(1)にて示す第ルンズ群の屈折力か弱
(なっていて3〜4の変倍率であるにもかかわらず、結
像性能が極めて良好で、望遠端の望遠比に無理がないこ
とも特徴の−っである。
Each of the above embodiments is characterized by a high magnification ratio and good imaging performance. Another feature is that the third lens group shown in condition (3) has a high lateral magnification and a large contribution of the vertical magnification to the image plane, which is important in terms of manufacturing. Furthermore, the effect of eccentricity sensitivity of the third lens group is relatively small, which is also a great advantage. Furthermore, although the refractive power of the lens group shown in condition (1) is weak (and the magnification ratio is 3 to 4), the imaging performance is extremely good, and the telephoto ratio at the telephoto end is reasonable. This is also a characteristic feature.

実施例8は、第3図に示すレンズ構成で、非常に小型で
結像性能は良好である。
Example 8 has a lens configuration shown in FIG. 3, which is very small and has good imaging performance.

この実施例の広角端、中間焦点距離、望遠端における収
差状況は、夫々第26図、第27図、第28図に示す通
りである。
The aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of this example are as shown in FIGS. 26, 27, and 28, respectively.

実施例9および実施例11も第3図に示すレンズ構成で
、広角端での画角が73°程度で、この種のズームレン
ズとしては最も広角である。実施例9の広角端、中間焦
点距離、望遠端の収差状況は、夫々第29図、第30図
、第31図に又実施例11の広角端、中間焦点距離、望
遠端の収差状況は夫々第35図、第36図、第37図に
示す通りである。
Examples 9 and 11 also have the lens configuration shown in FIG. 3, and the angle of view at the wide-angle end is about 73°, which is the widest angle for this type of zoom lens. The aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of Example 9 are shown in FIGS. 29, 30, and 31, respectively, and the aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of Example 11 are shown, respectively. As shown in FIGS. 35, 36, and 37.

実施例10は第3図に示すレンズ構成で広角端での画角
が62°程度で、変倍率が3程度の高変倍率ズームレン
ズであり、小型化と結像性能に特徴がある。この実施例
の広角端、中間焦点距離、望遠端の収差状況は、夫々第
32図、第33図、第34図に示す通りである。
Embodiment 10 is a high zoom lens with a lens configuration shown in FIG. 3, an angle of view of about 62 degrees at the wide-angle end, and a variable magnification of about 3, and is characterized by its compact size and imaging performance. The aberration conditions at the wide-angle end, intermediate focal length, and telephoto end of this example are as shown in FIGS. 32, 33, and 34, respectively.

これら実施例9〜11はいずれも広角端でも軸上間隔を
詰めてあり全系の全長を短くしレンズ外径を縮小してレ
ンズ系を大幅に小型化している。
In all of these Examples 9 to 11, the axial spacing is narrowed even at the wide-angle end, the overall length of the entire system is shortened, and the outer diameter of the lens is reduced, thereby significantly reducing the size of the lens system.

尚以上の実施例は、いずれも夫々第ルンズ群第2レンズ
群、第3レンズ群に強い作用を有する空気レンズが設け
られており収差補正上からは高次の収差発生面となり多
くの自由度を与えながら微妙な収差バランスを達成する
ようにしている。
In each of the above embodiments, air lenses with strong effects are provided in the second lens group and the third lens group, respectively, and from the perspective of aberration correction, they become high-order aberration generating surfaces and have many degrees of freedom. The aim is to achieve a delicate balance of aberrations while giving

本発明のレンズ系において、変倍比なより大きくしたり
、性能を一層向上させるためには非球面を設けること・
が効果的である。即ち第ルンズ群G、又は第2レンズ群
G2に非球面を採用することによってレンズ成分の負担
を軽くし屈折力を弱めることが出来るので余裕のある設
計が可能で光学性能の向上をはかることが出来る。
In the lens system of the present invention, in order to increase the variable power ratio or further improve the performance, it is necessary to provide an aspherical surface.
is effective. In other words, by adopting an aspheric surface for the lens group G or the second lens group G2, it is possible to lighten the load on the lens components and weaken the refractive power, which allows for a generous design and improves optical performance. I can do it.

非球面の形状としては、光軸方向をX軸に、光軸に垂直
な方向をy軸に採り、その面の光軸近傍での曲率半径(
基準球面の半径)をrmとした時、次の式にて示される
ものである。
The shape of an aspheric surface is defined by taking the optical axis direction as the X axis and the direction perpendicular to the optical axis as the Y axis, and the radius of curvature of the surface near the optical axis (
When rm is the radius of the reference spherical surface, it is expressed by the following equation.

xk= y”k/(rm+r+、J7’石−万”;T’
 )  + Aky’ k+B工y6エ+C++3”m
 +Dmy”ただしA工、B、、C工、D、は非球面係
数でkは非球面かに番目の面であることを示す。
xk= y"k/(rm+r+, J7' stone - million";T'
) + Aky' k+B engineering y6e+C++3"m
+Dmy'' However, A, B, C, and D are aspherical coefficients, and k indicates the 5th surface of the aspherical surface.

[発明の効果] 本発明は、正、正、負の3群構成で、各レンズ群がズー
ミング時に移動するようにして、小型化と高変倍率化を
可能にし、さらに最適な厚肉レンズ構成によって広角端
から望遠端まで極めて良好な光学性能を有するズームレ
ンズを実現し得たものである。又第2レンズ群の構成に
特色を持たせて更に小型となし、広角端の画角が76°
程度のレンズ系や逆に望遠端の画角が18°程度のレン
ズ系を実現し得たものである。
[Effects of the Invention] The present invention has a positive, positive, and negative three lens group configuration, and each lens group moves during zooming, which enables miniaturization and high variable magnification, and furthermore provides an optimal thick lens configuration. This makes it possible to realize a zoom lens with extremely good optical performance from the wide-angle end to the telephoto end. In addition, the second lens group has a unique structure, making it even more compact, and the angle of view at the wide-angle end is 76°.
This makes it possible to realize a lens system with an angle of view of about 18 degrees at the telephoto end, or conversely, a lens system with an angle of view of about 18 degrees at the telephoto end.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1乃至実施例6の断面図、第2
図は本発明の実施例7の断面図、第3図は本発明の実施
例8乃至実施例11の断面図、第4図は本発明の基本構
成と各群の移動状況を示す図、第5図乃至第37図は本
発明の各実施例の収差曲線図、第38図は従来の4群ズ
ームレンズの構成と各群の動きを示す図である。 出願人 オリンパス光学工業株式会社 代理人   向    見  − 第3 図 第4 図 第38図 球面収差 第5図 非点収差  倍串の色収差 歪曲組着 第6 図 第9 図 第10図 第7図 第8図 第11図 第12図 第13図 第15図 球面収差 第14図 非点収差 倍:9一つ色収差 歪 曲収差 球面収差 第16図 非点収差  倍率の色収差 曲収差 第17図 第21図 第22図 球回収 差 第25図 非点収差  倍率の色収差 歪曲収差 第23図 第24図 第27図 第28図 球W1収差 第29図 IF Jへ収差   倍率の色収差 歪曲収差 球面収差 第30図 1ド点収差   倍率の色収差 歪曲収差 第33図 球面収差 第34図 非点収差  倍率の色町l差 歪曲収差 第31図 第32図 第35図 第36図 37図 倍率の色!!2差 歪曲収差
FIG. 1 is a sectional view of Examples 1 to 6 of the present invention, and FIG.
3 is a sectional view of Embodiment 7 of the present invention, FIG. 3 is a sectional view of Embodiments 8 to 11 of the present invention, FIG. 5 to 37 are aberration curve diagrams of each embodiment of the present invention, and FIG. 38 is a diagram showing the configuration of a conventional four-group zoom lens and the movement of each group. Applicant Olympus Optical Co., Ltd. Agent Mukai - Figure 3 Figure 4 Figure 38 Spherical aberration Figure 5 Astigmatism Double skewer chromatic aberration Distortion assembly Figure 9 Figure 10 Figure 7 Figure 8 Fig. 11 Fig. 12 Fig. 13 Fig. 15 Spherical aberration Fig. 14 Astigmatism Magnification: 9 One Chromatic aberration Distortion Spherical aberration Fig. 16 Astigmatism Chromatic aberration of magnification Curvature aberration Fig. 17 Fig. 21 Fig. 22 Figure Sphere Recovery Difference Figure 25 Astigmatism Lateral Chromatic Aberration Distortion Figure 23 Figure 24 Figure 27 Figure 28 Sphere W1 Aberration Figure 29 IF J Aberration Lateral Chromatic Aberration Distortion Spherical Aberration Figure 30 1 Dot Aberration Chromatic aberration Distortion of magnification Fig. 33 Spherical aberration Fig. 34 Astigmatism Color town of magnification Distortion aberration Fig. 31 Fig. 32 Fig. 35 Fig. 36 Fig. 37 Fig. Color of magnification! ! 2-difference distortion aberration

Claims (1)

【特許請求の範囲】 物体側より順に正の屈折力の第1レンズ群と、正の屈折
力の第2レンズ群と、負の屈折力の第3レンズ群とより
構成され、各レンズ群間の各々の光軸上の間隔を変化さ
せることによって変倍を行なうレンズ系で、次の条件を
満足することを特徴とするコンパクトな高変倍率ズーム
レンズ。 (1)0.05<ρ_1/ρ_W<0.9 (2)1.0<ρ_1_2_W/ρ_W<2.0(3)
2.0<β_3_T<5.0 ただしρ_1は第1レンズ群の屈折力、ρ_1_2_W
は広角端における第1レンズ群と第2レンズ群の合成の
屈折力、ρ_Wは広角端における全系の屈折力、β_3
_Tは望遠端における第3レンズ群の横倍率である。
[Claims] Consisting of, in order from the object side, a first lens group with positive refractive power, a second lens group with positive refractive power, and a third lens group with negative refractive power, and between each lens group A compact high-power zoom lens which is a lens system that changes magnification by changing the distance on each optical axis, and which satisfies the following conditions. (1) 0.05<ρ_1/ρ_W<0.9 (2) 1.0<ρ_1_2_W/ρ_W<2.0(3)
2.0<β_3_T<5.0 where ρ_1 is the refractive power of the first lens group, ρ_1_2_W
is the combined refractive power of the first lens group and the second lens group at the wide-angle end, ρ_W is the refractive power of the entire system at the wide-angle end, β_3
_T is the lateral magnification of the third lens group at the telephoto end.
JP63287806A 1988-11-16 1988-11-16 Compact high-magnification zoom lens Expired - Fee Related JP2903473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287806A JP2903473B2 (en) 1988-11-16 1988-11-16 Compact high-magnification zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287806A JP2903473B2 (en) 1988-11-16 1988-11-16 Compact high-magnification zoom lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7315793A Division JP3032955B2 (en) 1995-11-10 1995-11-10 Compact high-magnification zoom lens

Publications (2)

Publication Number Publication Date
JPH02135312A true JPH02135312A (en) 1990-05-24
JP2903473B2 JP2903473B2 (en) 1999-06-07

Family

ID=17721995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287806A Expired - Fee Related JP2903473B2 (en) 1988-11-16 1988-11-16 Compact high-magnification zoom lens

Country Status (1)

Country Link
JP (1) JP2903473B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287507A (en) * 1989-04-28 1990-11-27 Asahi Optical Co Ltd High variable magnification zoom lens for compact camera covering wide angle
JPH0495912A (en) * 1990-08-07 1992-03-27 Canon Inc Zoom lens of simple constitution
JPH05264903A (en) * 1991-03-04 1993-10-15 Olympus Optical Co Ltd Wide-angle zoom lens
US5331463A (en) * 1991-03-04 1994-07-19 Olympus Optical Co., Ltd. Wide angle zoom lens system
US5483380A (en) * 1992-10-26 1996-01-09 Olympus Optical Co., Ltd. Compact zoom lens system having high zoom ratio and wide view angle
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
JPH08211289A (en) * 1995-11-10 1996-08-20 Olympus Optical Co Ltd Compact high variable magnifying power zoom lens
US5640276A (en) * 1993-09-03 1997-06-17 Olympus Optical Co., Ltd. Four-unit zoom lens system having a high zoom ratio
US5777799A (en) * 1995-07-21 1998-07-07 Olympus Optical Co., Ltd. Three-lens-group zoom lens system having a zoom ratio exceeding 3.5
US5786944A (en) * 1995-07-06 1998-07-28 Minolta Co., Ltd. Zoom lens system
KR20020049639A (en) * 2000-12-19 2002-06-26 이계안 Structure for sealing a side glass of bus
US6958866B2 (en) 2001-06-08 2005-10-25 Pentax Corporation Zoom lens system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371226A (en) * 1986-09-13 1988-03-31 東芝テック株式会社 Electromotive cooker
JPS6380149A (en) * 1986-09-19 1988-04-11 Matsushita Seiko Co Ltd Air conditioner
JPS6380148A (en) * 1986-09-24 1988-04-11 Matsushita Electric Works Ltd Double-structure hood for discharger apparatus
JPS63147536A (en) * 1986-12-11 1988-06-20 Kuraray Co Ltd Production of polyvinyl alcohol-based hydrated gel
JPS63161423A (en) * 1986-12-25 1988-07-05 Olympus Optical Co Ltd Compact zoom lens with high variable power rate
JPS63168133A (en) * 1987-08-20 1988-07-12 松下電器産業株式会社 Coffee brewer
JPS63168132A (en) * 1987-08-20 1988-07-12 松下電器産業株式会社 Coffee brewer
JPS63225294A (en) * 1987-03-16 1988-09-20 株式会社日立製作所 Display driver

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371226A (en) * 1986-09-13 1988-03-31 東芝テック株式会社 Electromotive cooker
JPS6380149A (en) * 1986-09-19 1988-04-11 Matsushita Seiko Co Ltd Air conditioner
JPS6380148A (en) * 1986-09-24 1988-04-11 Matsushita Electric Works Ltd Double-structure hood for discharger apparatus
JPS63147536A (en) * 1986-12-11 1988-06-20 Kuraray Co Ltd Production of polyvinyl alcohol-based hydrated gel
JPS63161423A (en) * 1986-12-25 1988-07-05 Olympus Optical Co Ltd Compact zoom lens with high variable power rate
JPS63225294A (en) * 1987-03-16 1988-09-20 株式会社日立製作所 Display driver
JPS63168133A (en) * 1987-08-20 1988-07-12 松下電器産業株式会社 Coffee brewer
JPS63168132A (en) * 1987-08-20 1988-07-12 松下電器産業株式会社 Coffee brewer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287507A (en) * 1989-04-28 1990-11-27 Asahi Optical Co Ltd High variable magnification zoom lens for compact camera covering wide angle
JPH0495912A (en) * 1990-08-07 1992-03-27 Canon Inc Zoom lens of simple constitution
JPH05264903A (en) * 1991-03-04 1993-10-15 Olympus Optical Co Ltd Wide-angle zoom lens
US5331463A (en) * 1991-03-04 1994-07-19 Olympus Optical Co., Ltd. Wide angle zoom lens system
US5483380A (en) * 1992-10-26 1996-01-09 Olympus Optical Co., Ltd. Compact zoom lens system having high zoom ratio and wide view angle
US5640276A (en) * 1993-09-03 1997-06-17 Olympus Optical Co., Ltd. Four-unit zoom lens system having a high zoom ratio
JPH08179215A (en) * 1994-12-22 1996-07-12 Canon Inc Zoom lens
US5786944A (en) * 1995-07-06 1998-07-28 Minolta Co., Ltd. Zoom lens system
US5777799A (en) * 1995-07-21 1998-07-07 Olympus Optical Co., Ltd. Three-lens-group zoom lens system having a zoom ratio exceeding 3.5
JPH08211289A (en) * 1995-11-10 1996-08-20 Olympus Optical Co Ltd Compact high variable magnifying power zoom lens
KR20020049639A (en) * 2000-12-19 2002-06-26 이계안 Structure for sealing a side glass of bus
US6958866B2 (en) 2001-06-08 2005-10-25 Pentax Corporation Zoom lens system

Also Published As

Publication number Publication date
JP2903473B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
US5691851A (en) Zoom lens
JP3253405B2 (en) Two-group zoom lens
US5574599A (en) Zoom lens and zooming method
JP3067481B2 (en) Zoom lens
JP3173277B2 (en) Zoom lens
US5568321A (en) Zoom lens
JPH10333034A (en) Optical system
US5270866A (en) Compact zoom lens
JP2001194586A (en) Zoom lens and photographing device using the same
JPH07120677A (en) Compact three-group zoom lens
JPH02135312A (en) Compact zoom lens of high variable magnification
JPH0527166A (en) Two-group zoom lens
JP2000275523A (en) Zoom lens system
JP2000121942A (en) Zoom lens
JP3387687B2 (en) Zoom lens
JPH11190821A (en) Zoom lens
JP3331223B2 (en) Small two-group zoom lens
JP3432050B2 (en) High zoom 3 group zoom lens
JP3472508B2 (en) Projection lens, image enlargement projection system using the same, video projector, rear projector, and multi-vision system
JPH0850245A (en) Zoom lens
US4618219A (en) Zoom lens
JP2001083420A (en) Zoom lens
JP3183047B2 (en) Zoom lens
JP2000214380A (en) Photographing lens
JPH0829688A (en) Zoom lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees