JPH02132857A - Circuit built-in photodetector - Google Patents

Circuit built-in photodetector

Info

Publication number
JPH02132857A
JPH02132857A JP63286529A JP28652988A JPH02132857A JP H02132857 A JPH02132857 A JP H02132857A JP 63286529 A JP63286529 A JP 63286529A JP 28652988 A JP28652988 A JP 28652988A JP H02132857 A JPH02132857 A JP H02132857A
Authority
JP
Japan
Prior art keywords
epitaxial layer
type
layer
transistor
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63286529A
Other languages
Japanese (ja)
Other versions
JPH0724300B2 (en
Inventor
Motohiko Yamamoto
元彦 山本
Masaru Kubo
勝 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63286529A priority Critical patent/JPH0724300B2/en
Publication of JPH02132857A publication Critical patent/JPH02132857A/en
Publication of JPH0724300B2 publication Critical patent/JPH0724300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a photodetecting element which is high in both photosensitivity and response speed by a method wherein a photodiode section is formed of an epitaxial layer which is large in thickness and high in resistivity, and on the other hand a transistor section is formed of an epitaxial layer which is small in thickness and low in resistivity. CONSTITUTION:An epitaxial layer of a photodiode section A is as thick as the sum of the thickness of N-type epitaxial layers 8 and 9 both high in resistivity, and an epitaxial layer of a transistor section B is almost as thick as the N-type epitaxial layer 9. The epitaxial layer of the photodiode section A is high in resistivity as it has been epitaxially grown, and the epitaxial layer of the transistor section B is made sufficiently low in resistivity by injecting the properly concentrated impurity when an N-type diffusion layer 11 is formed. By this constitution, a photodiode excellent in photoelectric conversion efficiency and high in the speed of response can be obtained, and a transistor section can be made to serve as a high speed transistor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は信号処理回路を内蔵し次受光素子の元感度を増
加し、かつ応答速度を高速化する構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a structure that incorporates a signal processing circuit, increases the original sensitivity of a secondary light receiving element, and increases the response speed.

(従来の技術) 回路内蔵受光素子は、光センサ,光アイソレータ等に広
く用いられている。第6図は従来の一般的な回路内蔵受
光素子の構造の断面図の一例を示す。同図において一枚
のP型半導体基板10表面には受光素子であるホトダイ
オード部AとNPNトランジスタB等の信号処理回路構
成素子とが形成されている。ホトダイオード部人は、P
型半導体基板1に埋込まれたN型埋込拡散層2,その上
に成長させ九N型エピタキシャル層4,その表面のP型
拡散層6(ホトダイオードの一方の電極となる)及びコ
レクタ補償拡散層5(ホトダイオードの他方の電極とな
る)等から構成される。Nf’Nトランジスタ部Bは、
P型半導体基板1に埋込まれたN型埋込拡散層2−1,
その上に成長させたN型エピタキシャル層4−1,その
表面のP型拡散層6−1(}ランジスタのベースとなる
),その中のN型拡散層7(トランジスタの工きツタと
なる)及びN型エピタキシャル層4及び4−1の側方の
コレクタ補償拡散層5,5,・・・等から構成される。
(Prior Art) Photodetectors with built-in circuits are widely used in optical sensors, optical isolators, and the like. FIG. 6 shows an example of a cross-sectional view of the structure of a conventional general light-receiving element with a built-in circuit. In the figure, a photodiode section A, which is a light receiving element, and signal processing circuit components such as an NPN transistor B are formed on the surface of one P-type semiconductor substrate 10. The photodiode club member is P.
N-type buried diffusion layer 2 buried in type semiconductor substrate 1, nine N-type epitaxial layer 4 grown thereon, P-type diffusion layer 6 on its surface (which becomes one electrode of the photodiode), and collector compensation diffusion. It is composed of layer 5 (which becomes the other electrode of the photodiode), etc. The Nf'N transistor part B is
N-type buried diffusion layer 2-1 buried in P-type semiconductor substrate 1,
An N-type epitaxial layer 4-1 grown on it, a P-type diffusion layer 6-1 on its surface (becomes the base of the transistor), and an N-type diffusion layer 7 therein (becomes the base of the transistor) and collector compensation diffusion layers 5, 5, . . . on the sides of the N-type epitaxial layers 4 and 4-1.

ホトダイオード部AとNPN}ランジスタ部Bとその他
の素子との間は、素子間分離P型拡散層3,3,・・・
によって分離される。なお、図において点線20は、エ
ピタキシャル成長を行なう前のP型半導体基板1の表面
を示す。
Between the photodiode section A and NPN} transistor section B and other elements, element isolation P-type diffusion layers 3, 3, . . .
separated by In the figure, a dotted line 20 indicates the surface of the P-type semiconductor substrate 1 before epitaxial growth.

(発明が解決しようとする課題) 最近のデータ伝送の高速化,S/N比向上等の要求から
回路内蔵受光素子の高光感度化,応答速度の高速化等が
望まれている。
(Problems to be Solved by the Invention) Recent demands for higher data transmission speeds, improved S/N ratios, etc. have led to demands for higher optical sensitivity and faster response speeds for light-receiving elements with built-in circuits.

前述の第6図のような構造においては、ホトダイオード
部AのN型エピタキシャル層4とNPNトランジスタ部
BoN型エピタキシャル層4−1の厚さは同一になって
いる。
In the structure shown in FIG. 6 described above, the thickness of the N-type epitaxial layer 4 of the photodiode section A and the BoN-type epitaxial layer 4-1 of the NPN transistor section are the same.

光感度を上げるには、ホトダイオード部AのN濫エピタ
キシャルMj4の厚さを、信号用として使用する光の波
長に応じ十分厚くする必要がある。
In order to increase the optical sensitivity, it is necessary to make the thickness of the N-type epitaxial layer Mj4 of the photodiode section A sufficiently thick according to the wavelength of the light used for signal purposes.

しかし、N型エピタキシャル層4があ′!シ厚くなると
、この層の中の空乏層化していない部分を、発生し九光
キャリアが拡散により走行する時間が長くなシ応答速度
の高速化を妨げる。ま九、N型エピタキシャル層4−1
の厚さを厚くすると、NPN}ランジスタ部BON屋エ
ピタキシャル層4−1の厚さも厚くなり、NPN}ラン
ジスタのコレクタ抵抗の増大となり、応答速度高速化の
障害となる。
However, the N-type epitaxial layer 4 is missing! When the layer becomes thicker, the non-depleted portions of the layer are generated, and the time taken for optical carriers to travel due to diffusion is longer, which impedes an increase in the response speed. 9. N-type epitaxial layer 4-1
If the thickness of the NPN transistor is increased, the thickness of the BON epitaxial layer 4-1 of the NPN transistor section also becomes thick, which increases the collector resistance of the NPN transistor, which becomes an obstacle to increasing the response speed.

一方、回路内蔵受光素子の応答速度高速化には、ホトダ
イオード部の接合容量の低減が有効であり、そのために
は、N型エピタキシャル層4の比抵抗を高くすることが
必要である。しかし、N型エピタキシャル層4−1の比
抵抗が高くなると,NPNトランジスタのコレクタ抵抗
が増大し、応答速度高速化に対して、反対の結果となる
On the other hand, reducing the junction capacitance of the photodiode portion is effective for increasing the response speed of the photodetector with a built-in circuit, and for this purpose, it is necessary to increase the specific resistance of the N-type epitaxial layer 4. However, when the resistivity of the N-type epitaxial layer 4-1 increases, the collector resistance of the NPN transistor increases, which has the opposite effect on increasing the response speed.

以上のことから、回路内蔵受光素子の高光感度と、高速
の応答速度を両立させるためには、ホトダイオード部A
のN型エピタキシャル層4は高比抵抗でかつ厚く、NP
N}ランジスタ部BoN型エピタキシャル層4−1は低
比抵抗でかつ薄くする必要があるが、従来のような構造
では、前記の相反する条件を満足させることは困難であ
った。
From the above, in order to achieve both high light sensitivity and high response speed of the photodetector with a built-in circuit, it is necessary to
The N-type epitaxial layer 4 has a high specific resistance and is thick, and is
N} The BoN type epitaxial layer 4-1 in the transistor section needs to have a low resistivity and be thin, but it is difficult to satisfy the above contradictory conditions with a conventional structure.

(!l題を解決するための手段) 本発明においては前述の問題を解決するため、ホトダイ
オード部のエピタキシャル層は、N型埋込拡散層の上に
高比抵抗のエピタキシャル層を二層堆積して厚くし、N
PN}ランジスタ部Bは、下部エピタキシャル層下にP
型埋込拡散層を設け、さらに上部エピタキシャル層下に
N型埋込拡散層を設け、上部エピタキシャル層部分に深
いN型拡散層を設けた。
(Means for Solving the Problem) In the present invention, in order to solve the above-mentioned problem, the epitaxial layer of the photodiode section is formed by depositing two high resistivity epitaxial layers on the N-type buried diffusion layer. Make it thicker, then
PN} The transistor part B has P transistor under the lower epitaxial layer.
A type buried diffusion layer was provided, an N type buried diffusion layer was further provided under the upper epitaxial layer, and a deep N type diffusion layer was provided in the upper epitaxial layer portion.

(作用) 前述のような構成によって、ホトダイオード部のN型エ
ピタキシャル層は高比抵抗で厚く、また、NPN}ラン
ジスタ部の実効エピタキシャル層は,P型埋込拡散層上
部の深いN型拡散層によシ補償された部分となるから、
回路内蔵受光素子の高光感度化.応答速度の高速化を同
時に実現できる。
(Function) With the above-mentioned configuration, the N-type epitaxial layer in the photodiode part has a high resistivity and is thick, and the effective epitaxial layer in the NPN transistor part is in the deep N-type diffusion layer above the P-type buried diffusion layer. Because it will be a compensated part,
High light sensitivity of photodetector with built-in circuit. At the same time, it is possible to achieve faster response speed.

(実施例) 第1のは本発明の一実施例の断面図であり、第2図乃至
第4図は第1図の構造を得るまでの各工程の断面因であ
る。
(Example) The first is a cross-sectional view of an example of the present invention, and FIGS. 2 to 4 are cross-sectional views of each process until the structure shown in FIG. 1 is obtained.

まず、最初に第2図に示されるように、P箆半導体基板
1の表面のホトダイオード部予定領域咽の左方)には第
一のNffi埋込拡散M2、NPN}ランジスタ部予定
領域(図の右方)にはP型埋込拡散層12を形成する。
First, as shown in FIG. 2, the first Nffi buried diffusion M2, NPN} transistor region (to the left of the photodiode region on the surface of the semiconductor substrate 1) (in the figure) A P-type buried diffusion layer 12 is formed on the right side).

このときホトダイオードと信号処理回路素子とを分離す
る部分(図の左方)にもP型埋込拡散層12を形成する
At this time, a P-type buried diffusion layer 12 is also formed in a portion separating the photodiode and the signal processing circuit element (left side in the figure).

次に、第3図に示されるように、全面に例えばlOOΩ
α程度の高比抵抗の第一のN型エピタキシャル層8を成
長させる。このとき、図の左方の素子分離用のP型埋込
拡散層l2と、図の右方のNPN}ランジスタ部予定領
域のPfi埋込拡散層12は、いずれもNffiエピタ
キシャル層8の内部に拡散し、最初のP型半導体基板1
0表面である点線20よク上部K拡がる。第一のN型埋
込拡散層2も、N型エピタキシャル層8の中に拡散する
Next, as shown in FIG. 3, for example, lOOΩ is applied to the entire surface.
A first N-type epitaxial layer 8 having a high specific resistance of approximately α is grown. At this time, the P-type buried diffusion layer 12 for element isolation on the left side of the figure and the Pfi buried diffusion layer 12 in the NPN} transistor region on the right side of the figure are both inside the Nffi epitaxial layer 8. Diffused, the first P-type semiconductor substrate 1
The upper part K expands beyond the dotted line 20, which is the 0 surface. The first N-type buried diffusion layer 2 also diffuses into the N-type epitaxial layer 8 .

その後、NPN}ランジスタ部予定領域の表面に第二の
N型埋込拡散層10を形成する。
Thereafter, a second N-type buried diffusion layer 10 is formed on the surface of the region where the NPN transistor portion is to be formed.

さらに、第4因に示されるように、例えば100゛Ω個
程度の高比抵抗の第二のN型エピタキシャル層9を全面
に成長させる。そして、NPN}ランジスタ部予定領域
には、例えば10備程度の比抵抗Kなるように適当な不
純物濃度の、深いNffi拡散層11を形成する。この
とき、第二のN型埋込拡散層lOは、P型埋込拡散層1
0及びN型拡散層11の内部にある程度拡散する。同因
において点線30はN型エピタキシャル層8が成長され
之ときの表面を示す。
Furthermore, as shown in the fourth factor, a second N-type epitaxial layer 9 having a high specific resistance of, for example, about 100 Ω is grown over the entire surface. Then, a deep Nffi diffusion layer 11 having an appropriate impurity concentration so as to have a specific resistance K of about 10, for example, is formed in the region where the NPN transistor portion is to be formed. At this time, the second N-type buried diffusion layer lO is the P-type buried diffusion layer 1.
It diffuses to some extent inside the 0 and N type diffusion layers 11. In the same way, a dotted line 30 indicates the surface on which the N-type epitaxial layer 8 is grown.

このようにして形成され九基板の表面から,各素子問の
分離用のP型拡散層13.13,・・・、コレクタ補償
拡散層5.5・・・、ホトダイオードの電極6及びNP
N }ランジスタのベース6−1用のP型拡散層、エミ
ッタ拡散層7等を形成すると、第1図の構造が得られる
〇 第1図において、ホトダイオード部人のエピタキシャル
層は、高比抵抗のN型エビタキシ.ヤル層8と高比抵抗
のN型エピタキシャル層9の合計の厚さを有する。NP
N}ランジスタ部Bのエピタキシャル層の厚さは、高比
抵抗のN型エピタキシャル層9の厚さと略々同等になっ
ている。また、それぞれのエピタキシャル層の比抵抗は
、ホトダイオード部Aでは、エピタキシャル底長された
11の高比抵抗であク、トランジスタ部Bでは、N型拡
散層11を形成する際、適切な濃度の不純物を注入する
ことにより、十分に低い比抵抗とすることができる。
From the surface of the nine substrates formed in this way, P-type diffusion layers 13, 13, . . . for isolation between each element, collector compensation diffusion layers 5, 5, .
N }By forming the P-type diffusion layer for the base 6-1 of the transistor, the emitter diffusion layer 7, etc., the structure shown in Fig. 1 is obtained. In Fig. 1, the epitaxial layer of the photodiode section has a high specific resistance. Type N shrimp. The total thickness of the layer 8 and the high resistivity N-type epitaxial layer 9 is the same. NP
The thickness of the epitaxial layer of the N} transistor portion B is approximately equal to the thickness of the high resistivity N-type epitaxial layer 9. In addition, the specific resistance of each epitaxial layer is a high specific resistance of 11 in the photodiode section A, which is the epitaxial bottom length, and in the transistor section B, when forming the N-type diffusion layer 11, an appropriate concentration of impurity is added. By injecting , a sufficiently low resistivity can be achieved.

第5図は第1図の構造の改良され九もので、ホトダイオ
ード部AのN型エピタキシャル層8及び9の周囲の上部
をコレクタ補償拡散層5によって、ま次、下部を第二の
N型埋込拡散層10によって包囲してある。この場合は
、第1図の構造に比してコレクタ補償拡散層5を浅くす
ることができるので、チップ面積を縮小できる。ホトダ
イオード部Aの直列抵抗は、コレクタ補償拡散層5が深
い場合と同様に低くすることができる。
FIG. 5 shows an improved structure of FIG. 1, in which the upper part around the N-type epitaxial layers 8 and 9 of the photodiode section A is covered with a collector compensation diffusion layer 5, and the lower part is covered with a second N-type buried layer. It is surrounded by a diffusion layer 10. In this case, since the collector compensation diffusion layer 5 can be made shallower than in the structure shown in FIG. 1, the chip area can be reduced. The series resistance of the photodiode section A can be made as low as in the case where the collector compensation diffusion layer 5 is deep.

(発明の効果〕 本発明によれば、ホトダイオード部は高比抵抗で厚膜の
エピタキシャル層を有し、その比抵抗及び厚さを、実際
の使用状態のバイアス電圧において、完全に空乏層化す
るように設定しておけば、いわゆるp−i−n型の構造
とすることができ、光電又換効率′のよい応答速度の速
いホトダイオードを得ることができる。また、トランジ
スタ部は、実効的に低比抵抗で薄膜のエピタキシャル層
を有し、高速なトランジスタとなる。両者を結合するこ
とにより、集積度の高い光感度.応答速度ともにすぐれ
九回路内蔵受元素子を得ることができる。
(Effects of the Invention) According to the present invention, the photodiode portion has a thick epitaxial layer with high resistivity, and its resistivity and thickness are completely reduced to a depletion layer at a bias voltage under actual use. If this setting is made, a so-called p-i-n type structure can be obtained, and a photodiode with good photoelectric conversion efficiency and a fast response speed can be obtained.In addition, the transistor section can be effectively It has a thin epitaxial layer with low resistivity and is a high-speed transistor. By combining the two, it is possible to obtain a highly integrated nine-circuit receiving element with excellent photosensitivity and response speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図,第3図.
第4図は第1図の構造を得るための各工程を示す断面図
、第5図は他の実施例の断面図、第6図は従来の構造の
断面図である。 1・・・P型半導体基板、2・・・N型埋込拡散層、4
.4−1・・・Nfiエピタキシャル層、5・・・コレ
クタ補償拡散層、訃・・N型エピタキシャル層(高比抵
抗)、9・・・N型エピタキシャル層(高比抵抗)、1
0・・・N型埋込拡散層、11・・・N型拡散層、12
・・・P型埋込拡散層、l3・・・素子間分離用P型拡
散層、A・・・ホトダイオード、B・・・トランジスタ
第3図
Figure 1 is a sectional view of an embodiment of the present invention, Figures 2 and 3.
FIG. 4 is a sectional view showing each step to obtain the structure shown in FIG. 1, FIG. 5 is a sectional view of another embodiment, and FIG. 6 is a sectional view of a conventional structure. 1... P-type semiconductor substrate, 2... N-type buried diffusion layer, 4
.. 4-1 Nfi epitaxial layer, 5 Collector compensation diffusion layer, N type epitaxial layer (high resistivity), 9 N type epitaxial layer (high resistivity), 1
0...N-type buried diffusion layer, 11...N-type diffusion layer, 12
...P-type buried diffusion layer, l3...P-type diffusion layer for element isolation, A...photodiode, B...transistor Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1、一枚の基板の上に形成された受光素子と信号処理回
路とよりなり、受光素子は第一の導電型を有する層と、
これに埋込まれた第二の導電型の層と、その上に積層さ
れた第二の導電型の高比抵抗の厚い複数のエピタキシャ
ル層とを有し、信号処理回路は第一の導電型を有する厚
い層と、これに埋込まれた第二の導電型の層と、その上
に設けられた第二の導電型の低比抵抗の薄い層とを有す
ることを特徴とする回路内蔵受光素子
1. Consists of a light-receiving element and a signal processing circuit formed on one substrate, and the light-receiving element includes a layer having a first conductivity type,
The signal processing circuit has a second conductivity type layer embedded therein and a plurality of thick epitaxial layers of the second conductivity type with high specific resistance laminated thereon. A light receiving device with a built-in circuit, characterized in that it has a thick layer having a second conductivity type, a second conductivity type layer embedded therein, and a second conductivity type low resistivity thin layer provided thereon. element
JP63286529A 1988-11-11 1988-11-11 Light receiving element with built-in circuit Expired - Fee Related JPH0724300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286529A JPH0724300B2 (en) 1988-11-11 1988-11-11 Light receiving element with built-in circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286529A JPH0724300B2 (en) 1988-11-11 1988-11-11 Light receiving element with built-in circuit

Publications (2)

Publication Number Publication Date
JPH02132857A true JPH02132857A (en) 1990-05-22
JPH0724300B2 JPH0724300B2 (en) 1995-03-15

Family

ID=17705589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286529A Expired - Fee Related JPH0724300B2 (en) 1988-11-11 1988-11-11 Light receiving element with built-in circuit

Country Status (1)

Country Link
JP (1) JPH0724300B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265866A (en) * 1985-05-20 1986-11-25 Sharp Corp Circuit built-in light-receiving element
JPS62131570A (en) * 1985-12-03 1987-06-13 Sharp Corp Semiconductor light receiving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265866A (en) * 1985-05-20 1986-11-25 Sharp Corp Circuit built-in light-receiving element
JPS62131570A (en) * 1985-12-03 1987-06-13 Sharp Corp Semiconductor light receiving device

Also Published As

Publication number Publication date
JPH0724300B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
KR100460404B1 (en) Circuit-incorporating photosensitive device
JPH04245478A (en) Photosemiconductor device
JPH01205564A (en) Optical semiconductor device and its manufacture
JPH02132857A (en) Circuit built-in photodetector
JPH09260715A (en) Photodiode built-in semiconductor integrated circuit
JPH02238664A (en) Photodetector with built-in circuit
JPH04271172A (en) Optical semiconductor device
JPS61265866A (en) Circuit built-in light-receiving element
JPH02142181A (en) Photodetector incorporated in circuit
JP2620655B2 (en) Optical semiconductor device
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JPH04242980A (en) Light-receiving element
JPH02196463A (en) Photodetector with built-in circuit
JPH0513800A (en) Semiconductor device
JP2839413B2 (en) Photodetector with built-in circuit
JP2657119B2 (en) Optical semiconductor device
KR100208644B1 (en) Optical semiconductor device
JPH02271667A (en) Photodetector device with built-in circuit
JPS622575A (en) Semiconductor photo detector
JPH04146671A (en) Photodetective element incorporating circuit
JPH02260657A (en) Manufacture of circuit built-in photodetector
JPH02271666A (en) Photodetector device with built-in circuit
JPH06291352A (en) Light receiving device and circuit-built-in light receiving device
JP2000223735A (en) Semiconductor light receiving device and its manufacture
JPH09260501A (en) Semiconductor integrated circuit with built-in photodiode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees