JPH0213249A - Manufacture of miniture motor coil - Google Patents

Manufacture of miniture motor coil

Info

Publication number
JPH0213249A
JPH0213249A JP16208188A JP16208188A JPH0213249A JP H0213249 A JPH0213249 A JP H0213249A JP 16208188 A JP16208188 A JP 16208188A JP 16208188 A JP16208188 A JP 16208188A JP H0213249 A JPH0213249 A JP H0213249A
Authority
JP
Japan
Prior art keywords
coil
conductor pattern
insulating sheet
conductor
conductor patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16208188A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeuchi
博 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16208188A priority Critical patent/JPH0213249A/en
Publication of JPH0213249A publication Critical patent/JPH0213249A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve mass productivity of coil by winding conductor patterns formed into an insulating sheet and laminating a plurality of conductor patterns then molding with resin integrally. CONSTITUTION:Conductor pattern 12 is formed through etching on an insulating sheet 10. Then the conductor pattern 12 is subjected to non-electrolytic copper galvanization with a thickness of several micrometers. Thereafter, the conductor pattern 12 is wound with pins 18a servable as a sprocket arranged on an insulating sheet winding jig 18 being inserted into through-holes Rf of each conductor pattern 12. Consequently, connecting terminal sections Tf at the ends of spiral conductor patterns 12 in respective layers are connected one another through the through-holes Rf. The connecting terminal sections Ts at the start of the conductor pattern 12 are connected through separating terminal sections Tfs thus forming a coil where the conductor patterns 12 having symmetrical shape and adjoining in the radial direction of a tubular body 20 are connected in series.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種産業分野、例えばメカトロニクス機器等
の駆動源として事務用、医療用あるいはコンピュータ用
などに広く用いられる小型モータコイルの製造方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a small motor coil that is widely used in various industrial fields, for example, as a drive source for mechatronic equipment, office use, medical use, computer use, etc. .

[従来の技術] エレクトロニクスの発達と磁性材料の性能向上により、
電子機器用の小型モータの技術もより精密化及び強力化
の方向で著しい進歩を遂げている。
[Conventional technology] With the development of electronics and improved performance of magnetic materials,
The technology of small motors for electronic devices has also made significant progress in becoming more precise and powerful.

小型モータは電源の種類により直流モータと交流モータ
に大別される。これらは、磁界中におかれた導体中の電
流に対する電磁力を利用するものであり、これらの自前
者は速度調節が容易、始動トルクが大きい、大幅な小型
化が可能など種々の特長を備えている。
Small motors are broadly classified into DC motors and AC motors depending on the type of power source. These devices utilize electromagnetic force against the current in a conductor placed in a magnetic field, and these proprietary devices have various features such as easy speed adjustment, large starting torque, and the ability to be significantly miniaturized. ing.

ところで、このような小型モータは制御用を目的とされ
ることが多く、このためその制御にかかわる要素として
身動きの速いことが極めて重要な地位を占める。すなわ
ち、ロータの慣性モーメントの小さいことが有力な利点
となる。この目的で可動部分から鉄心を除いてコイルの
みとした構造のものがムービングコイルモータであり、
特にムービングコイル式のマイクロモータにおいては永
久磁石はロータの内側に配置されているのが通例である
Incidentally, such small motors are often used for control purposes, and for this reason, fast movement plays an extremely important role as an element involved in control. That is, a small moment of inertia of the rotor is a significant advantage. For this purpose, a moving coil motor has a structure in which the iron core is removed from the moving part and only the coil is used.
Particularly in moving coil type micromotors, permanent magnets are usually placed inside the rotor.

こうした型式のものをコアレスモータと呼び、第10図
に分解図の一例を示す。
This type of motor is called a coreless motor, and an example of an exploded view is shown in FIG. 10.

先端にコミュテータ(整流子)1が固定されたシャフト
2には中空カップ状菱形ロータコイル3が軸支されてい
る。永久磁石から成るステータ4が図の位置から左方向
に挿入され、ロータコイル3内にすっぽりと収納される
形となり、シャフト2を保持する。ステータ4が遊合し
たロータコイル3は磁路を形成するハウジング5内にさ
らに挿入され、シャフト2先端部のコミュテータ1と電
極6とが摺動自在に接続する。
A hollow cup-shaped rhombic rotor coil 3 is pivotally supported on a shaft 2 to which a commutator 1 is fixed at the tip. A stator 4 made of a permanent magnet is inserted to the left from the position shown in the figure, and is completely housed within the rotor coil 3 to hold the shaft 2. The rotor coil 3 with the stator 4 loosely engaged is further inserted into the housing 5 forming a magnetic path, and the commutator 1 and the electrode 6 at the tip of the shaft 2 are slidably connected.

以上のごとく構成されるコアレスモータは、前述したよ
うにロータに鉄心がないことから大幅に軽量化すること
ができ、慣性モーメントが小さくなるため始動・停止・
逆転を繰り返すような用途の場合に特に適する。
As mentioned above, the coreless motor configured as described above can be significantly reduced in weight because the rotor has no iron core, and the moment of inertia is small, so it is possible to start, stop, and
Particularly suitable for applications that involve repeated reversals.

[発明が解決しようとする課題] しかしながら、上記従来のコアレスモータでは、特に中
空カップ状の菱形ロータコイル3の製造が容易ではなく
、極めて煩雑で多大の労力を要する反面、完成コイルと
なるまで工こ施される種々の加工処理の影響で当該ロー
タコイル固有の電気的性能低下が避けられないというの
が実情であった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional coreless motor, it is not easy to manufacture the hollow cup-shaped rhombic rotor coil 3, which is extremely complicated and requires a lot of labor. The reality is that the electrical performance inherent to the rotor coil inevitably deteriorates due to the effects of the various processing operations performed.

すなわち、こうした円筒状のロータコイルを形成するに
は、通常粘着層にて被覆された絶縁銅線を巻線機を用い
て巻回し、これを加熱することによって二次成形を行わ
なければならない。
That is, in order to form such a cylindrical rotor coil, it is necessary to wind an insulated copper wire coated with an adhesive layer using a winding machine and perform secondary forming by heating the wire.

従って、この一連の作業に要する工数が整条となるのみ
ならず、銅線の絶縁皮膜に対して成形治具により加えら
れる力が大きく、これが完成コイルの電気的信頼性を劣
化させる一因となる。
Therefore, not only does this series of operations require a lot of man-hours to straighten the wires, but the force applied by the forming jig to the insulation coating of the copper wire is large, which is one of the factors that deteriorates the electrical reliability of the completed coil. Become.

加えて、上記方法で製造された円筒状コイルは成形後の
機械的強度が非常に弱いという問題があり、特に小型モ
ータ用の場合にはその程度がはなはだしい。
In addition, the cylindrical coil manufactured by the above method has a problem in that its mechanical strength after molding is extremely low, and this is especially the case when used in small motors.

そして、前記銅線に生じるバックテンシジンなどの応力
の影響で二次成形後にコイルが変形し易く、このため寸
法精度も高く維持することができない。
Furthermore, the coil is likely to be deformed after secondary forming due to stress such as back tensidine generated in the copper wire, making it impossible to maintain high dimensional accuracy.

さらに、図示例のように菱形状に巻回しつつ円筒状のロ
ータを形成することはコイル全体の形態にある程度の歪
みの発生を強いるため、完成コイルの形状を設計値どお
りに揃えることは非常に難しくなる。以上の理由から、
従来の方法に基づくロータコイルでは特に高精度モータ
への適用において要望される条件を充分に満たし得ない
というのが実態であった。
Furthermore, forming a cylindrical rotor while winding it in a rhombic shape as shown in the figure forces the overall shape of the coil to be distorted to some extent, so it is very difficult to align the shape of the completed coil to the design value. It becomes difficult. For the above reasons,
The reality is that rotor coils based on conventional methods cannot sufficiently satisfy the requirements particularly when applied to high-precision motors.

発明の目的 本発明は上記従来の課題に鑑みなされたものであり、そ
の目的は電気的制御を高レベルに安定維持でき、かつ寸
法精度及び量産性の優れた小型モータコイルの製造方法
を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a method for manufacturing a small motor coil that can stably maintain electrical control at a high level and has excellent dimensional accuracy and mass productivity. There is a particular thing.

[課題を解決するための手段] 上記目的を達成するために本笥明は、絶縁シートの片面
上に螺旋状のコイル用導体パターンを複数個形成する工
程と、前記各導体パターンの終始端に貫通孔を有する接
続用端子部を形成する工程と、導体パターンの形成及び
接続用端子部の形成が行われた絶縁シートを巻回して筒
状体とし、該筒状体の半径方向で互いに隣接する各導体
パターンの接続用端子部を前記貫通孔を基準に位置合わ
せして仮止めする工程と、前記筒状体の各貫通孔に溶融
金属を注入し凝結させて本止めする工程と、本止め後の
筒状体を一体的に樹脂成形して完成コイルとする工程と
、を含むことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present proposal includes a step of forming a plurality of spiral conductor patterns on one side of an insulating sheet, and a step of forming a plurality of spiral coil conductor patterns on one side of an insulating sheet, A step of forming a connection terminal portion having a through hole, and winding the insulating sheet on which the conductor pattern and the connection terminal portion have been formed into a cylindrical body, and adjoining each other in the radial direction of the cylindrical body. a step of temporarily fixing the connecting terminal portions of each conductor pattern by aligning them with reference to the through holes; a step of injecting molten metal into each through hole of the cylindrical body and condensing it to permanently fix it; The method is characterized by including the step of integrally resin-molding the cylindrical body after the fixing to form a completed coil.

[作用] 以上のごとく構成される本発明は、銅線を巻回してコイ
ルを形成するという従来の常識を覆し、銅線コイルの代
りにコイル用導体パターンを絶縁シート上に形成すると
いう独創的技術によって加工工程の簡略化と高精度並び
に量産性を容易に実現できる。
[Function] The present invention constructed as described above overturns the conventional common sense of forming a coil by winding copper wire, and uses an original method in which a conductor pattern for the coil is formed on an insulating sheet instead of a copper wire coil. Technology makes it easy to simplify the processing process, achieve high precision, and achieve mass production.

すなわち、絶縁シート上に所定間隔で複数個描かれた螺
旋状導体パターンがコイルとしての作用を果たす。導体
パターンが形成された絶縁シートを巻回すると、所定周
期で各導体パターンは互いに重なり合うことになる。
That is, a plurality of spiral conductor patterns drawn at predetermined intervals on an insulating sheet function as a coil. When the insulating sheet on which the conductor patterns are formed is wound, the conductor patterns overlap each other at a predetermined period.

この重なった各導体パターンの終始端には貫通孔が形成
されているため、この貫通孔を基準として位置合せをす
れば絶縁シートの巻回により形成された筒状体の半径方
向に複数の導体パターンが整列重層することとなり、こ
の貫通孔が設けられている接続用端子部を溶接あるいは
ハンダ溶融などの方法にて仮止めする。
A through hole is formed at the beginning and end of each of the overlapping conductor patterns, so if alignment is done using this through hole as a reference, multiple conductors will be formed in the radial direction of the cylindrical body formed by winding the insulating sheet. The patterns are aligned and layered, and the connection terminal portions provided with the through holes are temporarily fixed by welding, solder melting, or the like.

仮止めされた状態で前記貫通孔内に溶融金属を注入し、
凝結させることによって筒状体の形状は一応固定され、
これをその後一体的に樹脂成形することによって完成コ
イルとなる。
Injecting molten metal into the through hole in the temporarily fixed state,
By condensing, the shape of the cylindrical body is temporarily fixed,
This is then integrally molded with resin to form a completed coil.

従って、本発明方法においては1本の銅線を連続的に巻
回していくのではなしに、いわばコイルを所定の短い長
さごとに分割した導体パターンとして形成し、この各導
体パターンをその後相互に接続するという形をとるため
、全体としてのコイル形状の調整や製造工程が太き(容
易化でき、かつ強度や精度面における特性も安定して良
好な状態に保持可能である。
Therefore, in the method of the present invention, instead of continuously winding a single copper wire, the coil is formed into conductor patterns divided into predetermined short lengths, and these conductor patterns are then interconnected. Since it is connected, the adjustment of the overall coil shape and the manufacturing process can be simplified (easier), and the characteristics in terms of strength and accuracy can be maintained in a stable and good condition.

[実施例〕 以下、図面に基づき本発明の好適な実施例を説明する。[Example〕 Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

なお、図示例ではコアレスモーフ用のロータコイルの製
造を対象とする。
Note that the illustrated example is directed to manufacturing a rotor coil for a coreless morph.

本発明方法4において特徴的なことは、従来のコイル製
造技術において当然の前提と考えられていた銅線を巻回
するという思想から脱却し、その代りにプリント技術を
応用してコイルを導体パターンとして描くという手段を
採用したことにある。
What is distinctive about method 4 of the present invention is that it departs from the idea of winding copper wire, which was considered a natural premise in conventional coil manufacturing technology, and instead applies printing technology to form coils with conductive patterns. The reason lies in the fact that we adopted the method of depicting it as .

第1図に本発明方法による絶縁シート上に複数の導体パ
ターンを印刷した状態を示す。
FIG. 1 shows a state in which a plurality of conductor patterns are printed on an insulating sheet by the method of the present invention.

この導体パターンはエツチング処理により形成される。This conductor pattern is formed by etching.

まず、75μm程度の厚さを有する銅箔に約25μm厚
の絶縁シートを貼付した後、銅箔の表面に感光性エツチ
ングレジストを螺旋状導体パターンの形に塗布する。
First, an insulating sheet with a thickness of about 25 μm is attached to a copper foil with a thickness of about 75 μm, and then a photosensitive etching resist is applied to the surface of the copper foil in the form of a spiral conductor pattern.

そして、エツチングレジストが塗布された部分以外をマ
スクで被覆した状態で導体パターン部分を露光する。こ
の露光によってフォトレジストは耐薬品性特に不溶性の
硬膜を作る。その後この銅箔に対して現像処理を行うと
、エツチングレジストが塗布されている部分だけ残して
他の鋼箔部はエツチング液に浸蝕され、この結果第1図
に示すような螺旋状のコイル用導体パターン12が形成
されることになる。
Then, the conductor pattern portion is exposed to light while covering the portion other than the portion coated with the etching resist with a mask. This exposure creates a hardening of the photoresist that is chemically resistant, especially insoluble. When this copper foil is then developed, only the part coated with the etching resist is left, and the other parts of the steel foil are eroded by the etching solution, resulting in the formation of a spiral coil as shown in Figure 1. A conductive pattern 12 will be formed.

ここで、図示例における導体パターン12は4極の場合
を示し、完成後のコイル1層中に4個の導体パターン1
2−1〜12−4が含まれることを意味する。この各サ
イクルA、B、・・・中の各導体パターン12−1〜1
2−4間のピッチは均一に固定されている。
Here, the conductor pattern 12 in the illustrated example shows the case of four poles, and four conductor patterns 1 are included in one layer of the completed coil.
2-1 to 12-4 are included. Each conductor pattern 12-1 to 1 in each cycle A, B, . . .
The pitch between 2 and 4 is fixed uniformly.

そして、このような4極1セツトの導体パターンが連続
的に形成された絶縁シート10は後述のごとく筒状に巻
回されていくため、そのサイクルA、 B、・・・が進
むほど1巻の径は大きくなる。従って、各サイクルにお
ける第1導体パターン12−1から第4導体パターン1
2−4がそれぞれ巻回された筒状体の半径方向で正しく
重なり合うにはサイクルが進むほどその各導体パターン
間のピッチを大きくする必要がある。
The insulating sheet 10 on which such a conductor pattern of one set of four poles is continuously formed is wound into a cylindrical shape as described later, so that as the cycles A, B, etc. progress, the number of turns increases. becomes larger in diameter. Therefore, the first conductor pattern 12-1 to the fourth conductor pattern 1 in each cycle
In order for conductor patterns 2 to 4 to overlap correctly in the radial direction of the wound cylindrical body, it is necessary to increase the pitch between the respective conductor patterns as the cycle progresses.

このため、図示例においても第1サイクルの導体パター
ン間ピッチPAと第2サイクルの導体パターン間ピッチ
PBはPA<PBの関係に設定されている。なお、導体
パターン12そのものの形状は全サイクルを通じて等し
い。
Therefore, also in the illustrated example, the pitch PA between the conductor patterns in the first cycle and the pitch PB between the conductor patterns in the second cycle are set to the relationship PA<PB. Note that the shape of the conductor pattern 12 itself is the same throughout all cycles.

各導体パターン12の終始端はコイル完成後に外部素子
との接続を行うための端子部T「及びTsとされ、この
端子部中央には絶縁シート巻回後に各サイクルにおける
導体パターン相互の位置決め及び連結用の貫通孔Rf’
及びRsがそれぞれ設けられている。そして、図に示す
ように隣接する2個のサイクル(A、B)における前後
段側のそれぞれの導体パターン12A、12Bは、巻回
後の重層時に例えば12A−1の導体パターンと12B
−1の導体パターンとが直列接続されるよう互いに対称
形に配列されている。
The starting and ending ends of each conductor pattern 12 are terminal parts T' and Ts for connecting with external elements after the coil is completed, and the center of this terminal part is used for positioning and connecting the conductor patterns with each other in each cycle after winding an insulating sheet. Through hole Rf'
and Rs are provided, respectively. As shown in the figure, the conductor patterns 12A and 12B on the front and rear stages in two adjacent cycles (A, B) are, for example, 12A-1 conductor pattern and 12B when overlapping after winding.
-1 conductor patterns are arranged symmetrically to each other so as to be connected in series.

そして、後段側のサイクル、図示例では12Bの導体パ
ターンには螺旋状の連続導体パターン終始端に設けた接
続用端子部Tf、Tsの他に、前段側の対応導体パター
ンの下端部と機械的に十分な強度で接続するための分離
端子部Trs、そして貫通孔R[’sが付設されている
In addition to the connection terminals Tf and Ts provided at the starting and ending ends of the spiral continuous conductor pattern, the conductor pattern of 12B in the illustrated example is mechanically connected to the lower end of the corresponding conductor pattern of the previous stage. A separate terminal portion Trs and a through hole R['s are provided for connection with sufficient strength.

第1図には2サイクル(12A、12B)のみの導体パ
ターン図を示しているが、こうした2サイクル1セツト
の導体パターンを(12C,12D)、  (12E、
12F)・・・というように繰り返すことで完成コイル
の層数すなわちコイルの総巻数を任意に設定できるわけ
であり、勿論この時は前述のようにサイクルが進むに従
ってサイクル内の導体パターン間ピッチは拡大していか
なければならない。
Although FIG. 1 shows a conductor pattern diagram for only two cycles (12A, 12B), the conductor patterns for one set of two cycles are (12C, 12D), (12E,
12F)... By repeating this process, the number of layers of the completed coil, that is, the total number of turns of the coil, can be set arbitrarily.In this case, of course, as the cycle progresses, the pitch between the conductor patterns in the cycle will change as described above. We have to expand.

なお、前記絶縁シート10を貫通する貫通孔Rは打抜き
あるいはドリル加工その他任意の方法で形成可能である
The through hole R passing through the insulating sheet 10 can be formed by punching, drilling, or any other method.

こうして導体パターン12の形成が一応完了すると、導
体パターン12の反対側の面すなわち絶縁シート10の
裏面及び接続用端子部T1そして同時に絶縁シート10
の貫通孔Rの壁面にマスクを介して無電解メッキ核とな
る接着剤を塗布する。
When the formation of the conductive pattern 12 is completed in this way, the surface opposite to the conductive pattern 12, that is, the back surface of the insulating sheet 10, the connecting terminal portion T1, and the insulating sheet 10 at the same time.
An adhesive to serve as an electroless plating core is applied to the wall surface of the through hole R through a mask.

この後、絶縁シート10を無電解メツキ槽に清し、数μ
m厚のメツキ加工をする。
After that, the insulating sheet 10 was cleaned in an electroless plating tank and
Perform m-thick plating processing.

第2図にはこうしたメツキ処理がなされた第1図の導体
パターンにおけるA−A−断面を示す。
FIG. 2 shows an AA cross section of the conductor pattern of FIG. 1 which has been subjected to such plating processing.

絶縁シートlO上に形成されている導体パターン12A
−1の中央部に位置する接続用端子部Tf’の貫通孔R
f’の側壁面及び絶縁シート10の裏面にわたって無電
解メツキ14が形成されており、その後の加工処理によ
つて接続用端子部”Ilが悪影響を被ることのないよう
保護作用を果す。
Conductor pattern 12A formed on insulating sheet IO
-1 Through-hole R of the connection terminal part Tf' located in the center
Electroless plating 14 is formed over the side wall surface of f' and the back surface of the insulating sheet 10, and serves to protect the connection terminal portion "Il" from being adversely affected by subsequent processing.

また、接続用端子部Tfの頂面部には後述する絶縁シー
ト10巻回後における端子部相互間を係止するための低
温ハンダペースト16が塗布されている。
Further, a low temperature solder paste 16 is applied to the top surface of the connection terminal portion Tf for securing the terminal portions to each other after the insulating sheet 10 is wound, which will be described later.

以上で導体パターン12及びそれに伴う絶縁シート10
の平伸状態における処理作業が完了し、次に絶縁シート
10の巻込み作業に入る。
The above is the conductor pattern 12 and the accompanying insulation sheet 10.
The processing work in the flat stretched state is completed, and then the winding work of the insulating sheet 10 begins.

第3図に示すように、この巻回処理には絶縁シート巻込
み治具18が用いられ、該治具18上のスプロケット兼
用ピン18aを各導体パターン12の貫通孔Rに挿入し
ながら一層目を巻き、その上に重ねて2層目、3層目と
巻き重ねていく。
As shown in FIG. 3, an insulating sheet winding jig 18 is used for this winding process, and while inserting the sprocket pins 18a on the jig 18 into the through holes R of each conductor pattern 12, Roll it up, layer it on top of it, and then roll it up for a second layer, then a third layer.

既に述べたように、この各層は前記平伸状態における絶
縁シート10上の導体パターン12の1サイクルに対応
しており、この巻回操作によって各サイクルA、  B
、・・・の第1〜第4導体パターン12−1〜12−4
が貫通孔Rを基準に位置決めされ、巻回によって形成さ
れる筒状体20の半径方向で正確に重合することとなる
As already mentioned, each layer corresponds to one cycle of the conductor pattern 12 on the insulating sheet 10 in the flat stretched state, and by this winding operation, each cycle A, B
,...'s first to fourth conductor patterns 12-1 to 12-4
are positioned with reference to the through hole R, and overlap accurately in the radial direction of the cylindrical body 20 formed by winding.

第4図に筒状体20上の各層間における導体パターン1
2の位置関係を、また第5図に直列接続の2つのコイル
を4つ並列に接続した導体パターン12A−1〜12D
−2の接続状態をそれぞれ示す。
FIG. 4 shows a conductor pattern 1 between each layer on the cylindrical body 20.
2 and the conductor patterns 12A-1 to 12D in which four two coils connected in series are connected in parallel.
-2 connection status is shown respectively.

各層における螺旋状導体パターン12の終端における接
続用端子部Tf相互が貫通孔Rfを通じて接続される。
The connection terminal portions Tf at the ends of the spiral conductor pattern 12 in each layer are connected to each other through the through hole Rf.

また、始端における接続用端子部Tsは前述の如く不図
示の分離端子部Trsを介することで筒状体20半径方
向に隣接した対称形状を呈する導体パターン12との直
列相互接続を可能としている。
Further, as described above, the connection terminal portion Ts at the starting end enables series interconnection with the symmetrical conductor pattern 12 adjacent in the radial direction of the cylindrical body 20 via the unillustrated separation terminal portion Trs.

この巻回作業後、筒状体の形状を定めるための仮止め処
理がなされる。この仮止め作業は各導体パターンの接続
用端子部T頂面に塗布されているハンダペースト16を
加熱溶融させることで達成される。
After this winding operation, a temporary fixing process is performed to determine the shape of the cylindrical body. This temporary fixing work is accomplished by heating and melting the solder paste 16 applied to the top surface of the connection terminal portion T of each conductor pattern.

第6図には巻回によって形成された筒状体20の接続用
端子部Tの縦断面を示す。図示例は3層重合の状態を表
わし、各層の接続用端子部T上面と次層の接続用端子部
Tの下面とがそれぞれハンダペースト16を介して密着
状態におかれている。
FIG. 6 shows a longitudinal section of the connection terminal portion T of the cylindrical body 20 formed by winding. The illustrated example shows a state in which three layers are superposed, and the upper surface of the connecting terminal portion T of each layer and the lower surface of the connecting terminal portion T of the next layer are in close contact with each other via solder paste 16.

従って、導体パターン12を低温加熱すれば各層間に位
置するハンダペースト16が溶融し、その凝結により筒
状体20の半径方向における導体パターン相互が接着さ
れるため、全体として特に円周方向における位置決め固
定が為されることが理解できる。
Therefore, if the conductor pattern 12 is heated at a low temperature, the solder paste 16 located between each layer will melt, and the condensation will cause the conductor patterns in the radial direction of the cylindrical body 20 to be bonded to each other. It can be understood that fixation is achieved.

仮止め作業の完了した筒状体20の外観斜視図を第7図
に示す。なお、この図では1サイクルすなわち1巻中の
導体パターン数は4個ではなく約10個前後に設定され
ている。
FIG. 7 shows an external perspective view of the cylindrical body 20 after the temporary fixing work has been completed. In this figure, the number of conductor patterns in one cycle, that is, in one turn, is set to about 10 instead of four.

こうして基本的なコイルの構成が定められるわけである
が、更に貫通孔R内部の電気抵抗を下げ、電流容量を増
加させると共に信頼性の向上を図るために貫通孔R内に
溶融金属を注入し、凝結硬化させる本止めを行う。溶融
金属としてはハンダが手頃である。
In this way, the basic coil configuration is determined, and in order to further lower the electrical resistance inside the through hole R, increase the current capacity, and improve reliability, molten metal is injected into the through hole R. , Perform final fixing to solidify and harden. Solder is an inexpensive molten metal.

次に、第8図に示すように導体パターン12の接続用端
子部Tと外部素子であるモータのブラシ22との間をリ
ード線24で接続した後、筒状体20を金型に入れて一
体的に樹脂成形する。この結果、各導電パターン間の絶
縁部が成形樹脂26にて埋め尽され、これによって機械
的安定性に優れ寸法精度の良い構造体が完成することと
なる。
Next, as shown in FIG. 8, after connecting the connection terminal portion T of the conductor pattern 12 and the brush 22 of the motor, which is an external element, with a lead wire 24, the cylindrical body 20 is placed in a mold. Molded integrally with resin. As a result, the insulating portion between each conductive pattern is filled with the molded resin 26, thereby completing a structure with excellent mechanical stability and high dimensional accuracy.

第9図にこの樹脂成形を施した状態における前記第7図
のB−B−断面を表わす。第1〜4各層における導体パ
ターンが12A−1〜12D−1゜12A−2〜12D
−2というように筒状体20の半径方向で整列接続され
ており、この各グループが連続した一巻のコイルとして
機能することが理解できる。
FIG. 9 shows a cross section taken along line B--B in FIG. 7 in a state where this resin molding has been performed. The conductor pattern in each layer of 1st to 4th is 12A-1 to 12D-1゜12A-2 to 12D
-2, they are aligned and connected in the radial direction of the cylindrical body 20, and it can be understood that each group functions as a continuous one-turn coil.

このように本発明方法においては、平伸状態の絶縁シー
ト状に所定ピッチで単位形状の導体パターンを個々独立
して印刷形成し、これを巻回して各層ごと相互の導体パ
ターンを接続することによって所定巻数のコイルを形成
するという画期的な独創技術の開発によってコイルの電
気的性能を何ら損うことなく所望の巻数及び強度のコイ
ル体を確実に量産でき、単一の導線コイルを延々と巻き
続けるという方法をとっていたために従来回避し得なか
った寸法精度面の誤差や機械的強度並びに電気的信頼性
の劣化という開通を有効に排除可能である。
In this way, in the method of the present invention, unit-shaped conductor patterns are individually printed at a predetermined pitch on a flattened insulating sheet, and the conductor patterns are connected to each other in each layer by winding them. By developing an innovative and original technology to form a coil with a predetermined number of turns, it is possible to reliably mass-produce coil bodies with the desired number of turns and strength without any loss in the electrical performance of the coil, and it is possible to produce a single conductor coil endlessly. It is possible to effectively eliminate errors in dimensional accuracy and deterioration of mechanical strength and electrical reliability, which could not be avoided in the past due to the continuous winding method.

[発明の効果] 以上説明したように本発明によれば、絶縁シート状に形
成した導体パターンを巻回によって複数個重ね合せた後
一体的に樹脂成形するという構成により、所望形状及び
強度の小型モータ用コイルを容易に量産でき、またコイ
ル固有の電気特性も良好に設定保持できるという効果を
奏する。
[Effects of the Invention] As explained above, according to the present invention, a compact structure having a desired shape and strength can be obtained by stacking a plurality of conductor patterns formed in the shape of an insulating sheet by winding and then integrally molding them with resin. This has the effect that motor coils can be easily mass-produced, and the electrical characteristics specific to the coils can also be maintained at good settings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に係る導体パターン図、第2図は第
1図のA−A−断面図、 第3図は本発明方法に係る絶縁シート10の巻回及び仮
止め作業図、 第4図は絶縁シート巻回後の筒状体20半径方向におけ
る導体パターン12の位置関係説明図、第5図は筒状体
20巻回後の導体パターン12の接続関係説明図、 第6図は筒状体20における接続用端子部Tの断面図、 第7図は仮止めされた筒状体20の外観斜視図、第8図
は樹脂成形された本発明方法に係るロータコイルの縦断
面図、 第9図は樹脂成形後の第7図B−B−断面図、第10図
は従来のコアレスモータの分解斜視図である。 10 ・・・ 絶縁シート 12 ・・・ コイル用導体パターン T ・・・ 接続用端子部 R・・・ 貫通孔 20 ・・・ 筒状体 25 ・・・ 成形樹脂
1 is a diagram of a conductor pattern according to the method of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 4 is an explanatory diagram of the positional relationship of the conductor pattern 12 in the radial direction of the cylindrical body 20 after winding the insulating sheet, FIG. 5 is an explanatory diagram of the connection relationship of the conductor pattern 12 after the cylindrical body 20 is wound, and FIG. A cross-sectional view of the connection terminal portion T in the cylindrical body 20, FIG. 7 is an external perspective view of the temporarily fixed cylindrical body 20, and FIG. 8 is a longitudinal cross-sectional view of the resin-molded rotor coil according to the method of the present invention. , FIG. 9 is a sectional view taken along line B-B in FIG. 7 after resin molding, and FIG. 10 is an exploded perspective view of a conventional coreless motor. 10... Insulating sheet 12... Coil conductor pattern T... Connection terminal portion R... Through hole 20... Cylindrical body 25... Molded resin

Claims (1)

【特許請求の範囲】 絶縁シートの片面上に螺旋状のコイル用導体パターンを
複数個形成する工程と、 前記各導体パターンの終始端に貫通孔を有する接続用端
子部を形成する工程と、 導体パターンの形成及び接続用端子部の形成が行われた
絶縁シートを巻回して筒状体とし、該筒状体の半径方向
で互いに隣接する各導体パターンの接続用端子部を前記
貫通孔を基準に位置合わせして仮止めする工程と、 前記筒状体の各貫通孔に溶融金属を注入し凝結させて本
止めする工程と、 本止め後の筒状体を一体的に樹脂成形して完成コイルと
する工程と、を含むことを特徴とする小型モータコイル
の製造方法。
[Scope of Claims] A step of forming a plurality of spiral conductor patterns for a coil on one side of an insulating sheet, a step of forming a connection terminal portion having a through hole at the beginning and end of each of the conductor patterns, and a conductor. The insulating sheet on which the pattern has been formed and the connecting terminal portions have been formed is wound to form a cylindrical body, and the connecting terminal portions of the conductor patterns adjacent to each other in the radial direction of the cylindrical body are set with reference to the through hole. A process of aligning and temporary fixing, a process of injecting molten metal into each through hole of the cylindrical body and condensing it, and final fixing, and an integral resin molding of the cylindrical body after final fixing to complete the process. A method for manufacturing a small motor coil, the method comprising: forming a coil into a coil.
JP16208188A 1988-06-28 1988-06-28 Manufacture of miniture motor coil Pending JPH0213249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16208188A JPH0213249A (en) 1988-06-28 1988-06-28 Manufacture of miniture motor coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16208188A JPH0213249A (en) 1988-06-28 1988-06-28 Manufacture of miniture motor coil

Publications (1)

Publication Number Publication Date
JPH0213249A true JPH0213249A (en) 1990-01-17

Family

ID=15747724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16208188A Pending JPH0213249A (en) 1988-06-28 1988-06-28 Manufacture of miniture motor coil

Country Status (1)

Country Link
JP (1) JPH0213249A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493157A (en) * 1992-09-18 1996-02-20 Victor Company Of Japan, Ltd. Brushless motor having coreless coil assembly
WO2000049702A1 (en) * 1999-02-20 2000-08-24 Embest Co., Ltd. A film coil and manufacturing method for motors and generators
JP5017627B2 (en) * 2005-05-27 2012-09-05 並木精密宝石株式会社 Cylindrical coil and cylindrical micromotor using the same
JP2014512169A (en) * 2011-04-11 2014-05-19 アライド モーション テクノロジーズ インコーポレイテッド Flexible winding and manufacturing method for electric motor
JP2020171111A (en) * 2019-04-02 2020-10-15 イビデン株式会社 Motor coil substrate and motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493157A (en) * 1992-09-18 1996-02-20 Victor Company Of Japan, Ltd. Brushless motor having coreless coil assembly
WO2000049702A1 (en) * 1999-02-20 2000-08-24 Embest Co., Ltd. A film coil and manufacturing method for motors and generators
JP5017627B2 (en) * 2005-05-27 2012-09-05 並木精密宝石株式会社 Cylindrical coil and cylindrical micromotor using the same
JP2014512169A (en) * 2011-04-11 2014-05-19 アライド モーション テクノロジーズ インコーポレイテッド Flexible winding and manufacturing method for electric motor
US10498183B2 (en) 2011-04-11 2019-12-03 Allied Motion Technologies Inc. Flexible winding for an electric motor and method of producing
JP2020171111A (en) * 2019-04-02 2020-10-15 イビデン株式会社 Motor coil substrate and motor

Similar Documents

Publication Publication Date Title
US4340833A (en) Miniature motor coil
US5012571A (en) Method of manufacturing spirally layered and aligned printed-circuit armature coil
JPWO2003036665A1 (en) Thin transformer and manufacturing method thereof
JP2002083732A (en) Inductor and method of manufacturing the same
US6759845B2 (en) Weak-magnetic field sensor using printed circuit board manufacturing technique and method of manufacturing the same
US7518282B2 (en) Rotor, vibration motor having the same, and fabrication method thereof
US6753682B2 (en) Weak-magnetic field sensor using printed circuit board manufacturing technique and method of manufacturing the same
JPH0213249A (en) Manufacture of miniture motor coil
JPH056829A (en) Thin transformer
US5943760A (en) Stepper motor and method of manufacture
JPH0373224B2 (en)
JPS63262038A (en) Printed coil for motor with fg coil
JP2003521861A (en) Membrane coils for motors and generators
JP2009027102A (en) Stacked coil, vibration sensor using stacked coil, and manufacturing method of the stacked coil
JP2938379B2 (en) Manufacturing method of winding stator
CN114337172A (en) Axial flux type PCB winding permanent magnet synchronous motor and stator thereof
JPH06105493A (en) Coreless coil
JPH038311A (en) Laminated transformer
JP2002034229A (en) Coreless linear motor
JP2558513Y2 (en) coil
JPH0619296Y2 (en) Print coil for linear actuator
JP2001258192A (en) Winding stator and its manufacture
JPS6185807A (en) Manufacture of coil
JPH118955A (en) Terminal with terminal pins, coil device and motor
JPS59162737A (en) Motor coil