JPH02132420A - Control circuit for electrochromic device - Google Patents

Control circuit for electrochromic device

Info

Publication number
JPH02132420A
JPH02132420A JP63285833A JP28583388A JPH02132420A JP H02132420 A JPH02132420 A JP H02132420A JP 63285833 A JP63285833 A JP 63285833A JP 28583388 A JP28583388 A JP 28583388A JP H02132420 A JPH02132420 A JP H02132420A
Authority
JP
Japan
Prior art keywords
circuit
drive circuit
power supply
discharge
ecd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63285833A
Other languages
Japanese (ja)
Other versions
JP2600862B2 (en
Inventor
Keiji Kohata
降幡 恵司
Tatsuo Niwa
達雄 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP28583388A priority Critical patent/JP2600862B2/en
Publication of JPH02132420A publication Critical patent/JPH02132420A/en
Application granted granted Critical
Publication of JP2600862B2 publication Critical patent/JP2600862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PURPOSE:To eliminate a waste of the power consumption of a driving circuit by inhibiting a current from passing a discharging circuit by a relay means while the driving circuit is fed with electricity, and discharging accumulated charges through the discharging circuit only when the electric feeding is stopped. CONSTITUTION:The driving circuit 3 is supplied with electric power from a power source 5 to make an electrochromic device ECD1 into a colored state. In such a case, the relay means 7 inhibits the current from passing through the discharging circuit 6, so the load on the driving circuit 3 is substantially only the ECD1. When energizing from the power source 5 to the driving circuit 3 is stopped, the relay means 7 allows the current to pass through the discharging circuit 6 and the charges accumulated in the ECD1 are discharged through the discharging circuit 6, so that the ECD1 is decolored. Consequently, a resistance which is inserted in parallel to the driving circuit 3 conventionally is eliminated to eliminate an unnecessary current flow, thereby the load capacity on the driving circuit 3 operates without any waste.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、エレクトロクロミックデバイスの電荷量を
制御することにより該デバイスの着色・消色状態の切換
を行う制御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control circuit that switches between colored and uncolored states of an electrochromic device by controlling the amount of charge of the device.

[従来の技術] エレクトロクロミックデバイス(以下、ECDという)
は、電圧を印加すると可逆的に電解酸化または還元反応
を起して着色するエレクトロクロミズム現象を示す物質
を用いて、電圧操作により着・消色操作する電気・光学
的機能要素であり、例えば特開昭52−46098号公
報には、ガラス基板の上に、透明電極膜(陰極)、三酸
化タングステン薄膜、二酸化ケイ素のような絶縁膜、透
明電極膜(陽極)、を順次積層してなる全固体型ECD
が開示されている。
[Prior art] Electrochromic device (hereinafter referred to as ECD)
is an electrical/optical functional element that can be colored or decolored by voltage manipulation using a substance that exhibits an electrochromism phenomenon in which coloring is caused by a reversible electrolytic oxidation or reduction reaction when a voltage is applied. JP-A No. 52-46098 discloses that a transparent electrode film (cathode), a tungsten trioxide thin film, an insulating film such as silicon dioxide, and a transparent electrode film (anode) are successively laminated on a glass substrate. Solid-state ECD
is disclosed.

このようなECDの電荷による光量制御の性質を利用し
て、ECDを例えは自動車の車室内ハックミラーに組合
せ、夜間走行時にスイッチ操作によってECDを着色状
態にするようにした防幻ミラー等か実用化されている。
Taking advantage of the ability of ECD to control the amount of light using electrical charges, ECDs can be put into practical use, for example, by combining them with a hack mirror in the interior of a car, such as an anti-glare mirror where the ECD can be colored by operating a switch when driving at night. has been made into

このようなECDの着色・消色を電気的に制御するため
の従来の制御回路の構成は、基本的に第2図に示す通り
のものであった。すなわち、第2図において、ECD 
1は並列抵抗2と共に駆動回路3の出力端子間に接続さ
れ、この駆動回路3にはスイッチ4を介して直流電源5
から給電されるようになっている。
The configuration of a conventional control circuit for electrically controlling coloring and decoloring of such an ECD is basically as shown in FIG. That is, in FIG. 2, ECD
1 is connected between the output terminals of a drive circuit 3 together with a parallel resistor 2, and a DC power supply 5 is connected to this drive circuit 3 via a switch 4.
Power is supplied from the

通常の動作において、スイッチ4を閉成して電源5から
駆動回路3に給電すると、駆動回路3はその内部のコン
トローラの制御に従ってその出力端子間に所定の指示電
圧を出力してECDIに印加する。これによりECD 
1か着色または消色する。スイッヂ4を開成するが、或
は電源5か何等かの理由で直流電圧を失した場合、駆動
回路3への給電が断たれるので駆動回路3からの指示電
圧出力かなくなり、ECD 1が着色状態にあったとす
ると、そこに蓄えられていた電荷か抵抗2を介して放電
され、したがってECD 1は消色状態に戻る。この場
合、自動車用の用途では運転上の安全対策として、電源
5からの給電が断たれた際にECD 1が必す消色され
るように、前記抵抗2は常にECD 1の両端間に接続
されている。
In normal operation, when the switch 4 is closed and power is supplied from the power supply 5 to the drive circuit 3, the drive circuit 3 outputs a predetermined command voltage between its output terminals and applies it to ECDI under the control of its internal controller. . This allows ECD
1 or color or decolor. When the switch 4 is opened, or if the DC voltage is lost due to the power supply 5 or some other reason, the power supply to the drive circuit 3 is cut off, so there is no command voltage output from the drive circuit 3, and the ECD 1 becomes colored. If so, the charge stored therein will be discharged through the resistor 2, and the ECD 1 will therefore return to its bleached state. In this case, as a driving safety measure in automotive applications, the resistor 2 is always connected across the ECD 1 so that the ECD 1 is necessarily decolored when the power supply from the power supply 5 is cut off. has been done.

[発明が解決しようとする課題] ところで、従来の制御回路では、駆動回路3の出力端子
間にECDIのみならず放電抵抗2が常に接続されてい
るため、着色動作時にも抵抗2を介して電流が流れる。
[Problems to be Solved by the Invention] By the way, in the conventional control circuit, not only the ECDI but also the discharge resistor 2 is always connected between the output terminals of the drive circuit 3. flows.

この電流はECDの着色に寄与しない無駄な電流であり
、また電源からの給電が断たれたときのECDIの消色
を速くする目的で抵抗2の抵抗値をノ」1さくずればす
るほと大きくなり、その分たけ駆動回路3の負担か大き
くなる。
This current is a wasteful current that does not contribute to the coloring of the ECD, and in order to speed up the decolorization of the ECDI when the power supply is cut off, it is possible to reduce the resistance value of resistor 2 by 1. This increases the load on the drive circuit 3 accordingly.

すなわち、従来の制御回路では、抵抗2に流れる余分な
電流のために無駄な電力を消費するたりてなく、駆動回
路3の負荷容量に余裕を持たせなりればならす、また抵
抗2におりる発熱も電子部品に悪い影響を与えている。
In other words, in the conventional control circuit, there is no need to waste power due to the extra current flowing through the resistor 2, and the load capacity of the drive circuit 3 must have a margin. Heat generation also has a negative effect on electronic components.

しかもこの抵抗2の抵抗値は、電源からの給電か断たれ
たときのECDの消色速度だけに着目して定めるわりに
はいかす、駆動回路の負荷容量との兼合いで或る程度の
大きさか必要であるので、電源からの給電が断たれてか
らECDが完全に消色されるまでの時間を或る程度以下
に短くすることはできなかったのが実状である。
Moreover, the resistance value of this resistor 2 should be set to a certain degree in consideration of the load capacity of the drive circuit, rather than being determined by focusing only on the erasing speed of the ECD when the power supply from the power supply is cut off. In reality, it has not been possible to shorten the time from when the power supply is cut off until the ECD is completely erased below a certain level because of this necessity.

この発明は、電源からの給電が断たれたとぎにECDか
必ず消色されるという安全機能を失うことなしにこれら
の諸問題点を解決することを目的とするものである。
The object of the present invention is to solve these problems without losing the safety function that the ECD is always erased when the power supply is cut off.

[課題を解決するための手段] 請求項1に記載した発明によれば、前述の課題を達成す
るために、電源からの給電を受りてECDに電荷を与え
ることにより前記ECDを着色状態にする駆動回路と:
前記駆動回路の出力側にて前記ECDの蓄積電荷を放電
させるための放電回路と,前記駆動回路が電源から給電
を受りている間は前記放電回路への電流の通過を阻止し
、!8電が断たれたときのみ前記放電回路を通して前記
ECDの蓄積電荷を放電させるリレー手段とを備えた制
御回路か提供される。
[Means for Solving the Problem] According to the invention set forth in claim 1, in order to achieve the above-mentioned problem, the ECD is colored by receiving power from a power source and applying electric charge to the ECD. With the drive circuit:
A discharge circuit for discharging the accumulated charge of the ECD on the output side of the drive circuit; and a discharge circuit that blocks current from passing through the discharge circuit while the drive circuit is receiving power from a power source; 8. A control circuit is provided, comprising a relay means for discharging the accumulated charge of the ECD through the discharge circuit only when the power is cut off.

詰求項2に記載の発明によれば、前記リレー手段は、前
記駆動回路への給電入力の有無を検出する検出手段と、
この検出手段によって制御されるスイッチング手段とを
備えており、前記給電入力か有る間は前記スイッチング
手段により前記放電回路を高インピーダンス状態にし、
前記給電入力が断たれたときは前記スイッチング手段に
より前記放電回路を低インピーダンス状態にするように
なされている。
According to the invention set forth in claim 2, the relay means includes a detection means for detecting the presence or absence of power supply input to the drive circuit;
switching means controlled by the detection means, and the switching means puts the discharge circuit in a high impedance state while the power supply input is present;
When the power supply input is cut off, the switching means brings the discharge circuit into a low impedance state.

請求項3に記載の発明によれば、前記検出手段は前記駆
動回路への給電入力によってイ」勢されるリレーコイル
若しくは半導体回路を有し、前記スイッチング手段は前
記リレーコイルか付勢されたとき若しくは前記半導体回
路が入力電圧を検出したとぎのみ開成する常閉接点を有
しており、前記放電回路が前記駆動回路の出力端間に前
記常閉接点を介して接続されている。
According to the invention as set forth in claim 3, the detection means includes a relay coil or a semiconductor circuit that is activated by power input to the drive circuit, and the switching means includes a relay coil or a semiconductor circuit that is activated when the relay coil is activated. Alternatively, the semiconductor circuit has a normally closed contact that opens only when an input voltage is detected, and the discharge circuit is connected between the output terminals of the drive circuit via the normally closed contact.

更に請求項4に記載の発明によれば、前記放電回路は、
前記スイッチング手段と直列に接続された抵抗器を有し
ている。
Furthermore, according to the invention set forth in claim 4, the discharge circuit comprises:
It has a resistor connected in series with the switching means.

[作用] 請求項1に記載した発明に係る制御回路においては、駆
動回路は電源からの給電を受けるとECDに電荷を与え
、これにより前記ECDを所定の着色状態にする。この
場合、リレー手段が放電回路への電流の通過を阻止する
のて、駆動回路の負荷としては実質的に前記ECDのみ
となる。
[Function] In the control circuit according to the invention described in claim 1, when the drive circuit receives power from the power source, it applies a charge to the ECD, thereby making the ECD a predetermined colored state. In this case, since the relay means blocks the passage of current to the discharge circuit, the ECD is essentially the only load on the drive circuit.

前記駆動回路に対する電源からの給電が断たれると、前
記リレー手段が放電回路への電流の通過を許容し、前記
駆動回路の出力側にて前記ECDの蓄積電荷が放電回路
を通して放電され、その結果ECDが消色状態になる。
When the power supply to the drive circuit is cut off, the relay means allows current to pass through the discharge circuit, and at the output side of the drive circuit, the accumulated charge of the ECD is discharged through the discharge circuit, and its As a result, the ECD becomes decolored.

このようにして、前記リレー手段は駆動回路が給電を受
けているかぎり放電回路に電流を殆ど或は全く流さず、
したがって駆動回路から放電回路に無駄な電流が流れる
ことはなく、放電回路が発熱することもない。しかも駆
動回路の負荷容量はECDに対応した無駄のないものと
することができる。また放電回路は駆動回路への給電か
断たれたとぎのみ電流を通すようになるので、その放電
時定数を自由に選んでECDの消色速度を任意に設定す
ることが可能となる。
In this way, the relay means conducts little or no current through the discharge circuit as long as the drive circuit is powered;
Therefore, no unnecessary current flows from the drive circuit to the discharge circuit, and the discharge circuit does not generate heat. In addition, the load capacity of the drive circuit can be made efficient and compatible with ECD. Further, since the discharge circuit passes current only when the power supply to the drive circuit is cut off, it is possible to freely select the discharge time constant and arbitrarily set the color erasing speed of the ECD.

請求項2に記載した発明に係る制御回路においては、前
記リレー手段が検出手段とスイッチング手段とを備えて
おり、前記検出手段が前記駆動回路への給電入力の存在
を検出している間は前記スイッチング手段によって前記
放電回路が高インピダンス状態にされ、前記検出手段か
前記駆動回路への給電入力が断たれたことを検出したと
きは前記スイッチング手段により前記放電回路か低イン
ピーダンス状態にされ、ECDからの放電電荷が放電さ
れるようになる。
In the control circuit according to the invention set forth in claim 2, the relay means includes a detection means and a switching means, and while the detection means detects the presence of the power supply input to the drive circuit, the relay means includes a detection means and a switching means. The switching means puts the discharge circuit into a high impedance state, and when the detection means detects that the power supply input to the drive circuit is cut off, the switching means puts the discharge circuit into a low impedance state, and the ECD The discharge charge of 1000 yen comes to be discharged.

請求項3に記載した発明に係る制御回路においては、前
記検出手段のリレーコイル若しくは半導体回路が前記駆
動回路への給電入力によって付勢されている間は前記ス
イッチング手段の常閉接点が開成しており、これによっ
て放電回路への電流の通過が阻止される。駆動回路への
給電か断たれると、リレーコイル若しくは半導体回路か
消勢されるので常閉接点が復帰閉成し、前記放電回路に
ECDからの放電電荷が流れる。
In the control circuit according to the invention set forth in claim 3, while the relay coil or the semiconductor circuit of the detection means is energized by the power supply input to the drive circuit, the normally closed contact of the switching means is opened. This prevents the passage of current to the discharge circuit. When the power supply to the drive circuit is cut off, the relay coil or the semiconductor circuit is deenergized, so the normally closed contact returns and closes, and the discharged charge from the ECD flows into the discharge circuit.

請求項4に記載した発明に係る制御回路においては、前
記放電回路中に前記スイッチング手段と直列に接続され
た抵抗器を有しており、ECDからの電荷の放電がこの
抵抗器の抵抗値によフて定まる放電時定数に従って行わ
れるようになる。
In the control circuit according to the invention set forth in claim 4, the discharge circuit includes a resistor connected in series with the switching means, and the discharge of the charge from the ECD changes to the resistance value of the resistor. The discharge is performed according to the discharge time constant determined by the upgrade.

例えば前記スイッチング手段として有接点リレーの常閉
接点を使用する場合、前記抵抗器は、接点開閉時の接点
間の火花放電を抑制する接点保護の働きもする。この場
合、前記抵抗器の抵抗値をECDの目標消色速度との兼
合いで適当に選定することにより、リレー接点の電流容
量を小さくするこども可能である。
For example, when a normally closed contact of a contact relay is used as the switching means, the resistor also functions as contact protection to suppress spark discharge between the contacts when the contacts are opened and closed. In this case, by appropriately selecting the resistance value of the resistor in consideration of the target decoloring speed of the ECD, it is possible to reduce the current capacity of the relay contact.

本発明の実施例を図面と共に説明すれば以下の通ってあ
る。
Embodiments of the present invention will be described below with reference to the drawings.

[実施例] 第1図は本発明の実施例を示しており、1はECD、3
は駆動回路、4は電源スイッヂ、5は直疏電源であり、
これらは第1図のものと同様であるので説明は省略する
。駆動回路3の出力端子問には、ECDIと並列に放電
回路6か接続され、また駆動回路の電源入力端子間には
高入力インビダンスの電圧検出リレー7か接続されてい
る。
[Example] FIG. 1 shows an example of the present invention, where 1 is ECD, 3 is
is a drive circuit, 4 is a power switch, 5 is a direct line power supply,
Since these are the same as those in FIG. 1, their explanation will be omitted. A discharge circuit 6 is connected in parallel with the ECDI between the output terminals of the drive circuit 3, and a voltage detection relay 7 with a high input impedance is connected between the power input terminals of the drive circuit.

前記放電回路6は、前記リレー7の常閉接点7aと抵抗
器8との直列回路からなり、接点7aは駆動回路の電源
入力端子間に所定の直流電圧が印加されてない状態では
開成状態となっている。
The discharge circuit 6 is composed of a series circuit of a normally closed contact 7a of the relay 7 and a resistor 8, and the contact 7a is in an open state when a predetermined DC voltage is not applied between the power input terminals of the drive circuit. It has become.

いま、電源スイッヂ4を閉成すると、駆動回路3の電源
入力端子間に電源5から所定の直流電圧が給電され、駆
動回路3か作動すると共に、リレ7が付勢されることに
よりその常閉接点7aが開成される。このようにして駆
動回路3の負荷はECD 1のみとなり、駆動回路3か
ら出力される指示電圧に従ってECD Iか効率よく着
色・消色制御される。
Now, when the power switch 4 is closed, a predetermined DC voltage is supplied from the power supply 5 between the power input terminals of the drive circuit 3, the drive circuit 3 is activated, and the relay 7 is energized, so that it is normally closed. Contact 7a is opened. In this way, the load on the drive circuit 3 becomes only the ECD 1, and the ECD I is efficiently controlled for coloring and decoloring according to the instruction voltage outputted from the drive circuit 3.

電源スイッチ4を開成するが、或は何等かの原因で電源
5の直流電源出力か消失して、駆動回路3への電源から
の給電か断たれると、駆動回路3からの指示電圧出力が
失われると共に、リレー7が消勢されるのでその接点7
aが閉成状態に復帰する。これによりECD 1の両端
間に放電回路6か形成され、もしECDIが着色状態で
あれはその蓄積電荷か放電回路の抵抗8と閉じている接
点7aとを通って放電されることになる。このようにし
てECDIを必ず消色状態にすることかできる。ここで
、前記放電回路6中の抵抗は消色速度の調整と接点保護
の機能を兼ねており、常閉接点7aとして充分な電流容
量のものを用いれは抵抗8を導体に置換えて消色を瞬時
に行わせるようにするこども可能である。
When the power switch 4 is opened, or if the DC power output of the power supply 5 disappears for some reason and the power supply from the power supply to the drive circuit 3 is cut off, the command voltage output from the drive circuit 3 will be interrupted. At the same time, relay 7 is deenergized, so its contact 7
a returns to the closed state. Thereby, a discharge circuit 6 is formed between both ends of the ECD 1, and if the ECDI is in a colored state, its accumulated charge will be discharged through the resistor 8 of the discharge circuit and the closed contact 7a. In this way, it is possible to ensure that the ECDI is in the decolorized state. Here, the resistor in the discharge circuit 6 has the functions of adjusting the decoloring speed and protecting the contacts, and if a one with sufficient current capacity is used as the normally closed contact 7a, the resistor 8 can be replaced with a conductor to perform decoloring. It is possible for children to make it happen instantly.

[発明の効果] 以上に述へたように、本発明によれは、駆動回路への電
源からの給電が断たれたときにECDを確実に消色状態
にすることができ、また駆動回路が電源から給電を受り
ている間はリレー手段によって放電回路への電流の通過
を阻止し、給電か断たれたときのみ放電回路を通してE
CDの蓄積電荷を放電させるようにしたから、着色動作
中に駆動回路が余分ノサ負荷を負わずに済み、その分た
りECDの着色効率とレスポンスが向上し、無駄な電力
消費と発熱を抑制するこどもできる。更に本発明では駆
動回路への電源からの給電が断たれたときのみ放電回路
が形成されるので、駆動回路の負荷容量と無関係に放電
時定数を目標の消色速度が得られるように決定すること
ができ、駆動回路の負荷を増加することなく電源からの
給電が断たれたとぎの消色を瞬時に行わせるようにする
こども可能となる。
[Effects of the Invention] As described above, according to the present invention, when the power supply from the power supply to the drive circuit is cut off, the ECD can be reliably brought into the decolorized state, and the drive circuit can The relay means prevents current from passing through the discharge circuit while receiving power from the power supply, and only passes the electric current through the discharge circuit when the power supply is cut off.
Since the accumulated charge of the CD is discharged, the drive circuit does not have to bear any extra load during the coloring operation, which improves the coloring efficiency and response of the ECD, and suppresses wasteful power consumption and heat generation. Children can do it. Furthermore, in the present invention, since the discharge circuit is formed only when the power supply to the drive circuit is cut off, the discharge time constant is determined so as to obtain the target decoloring speed regardless of the load capacity of the drive circuit. This makes it possible for children to instantly erase the color when the power supply is cut off without increasing the load on the drive circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るECDの制御回路を示す
回路図、第2図は従来OECDの制御回路を示す回路図
てある。 (主要部分の符号の説明) 1・・・ECD (エレクトロクロミックデバイス)、
3・・・駆動回路、4・・・電源スイッチ、5・・・直
流電源6・・・放電回路、7・・・電圧検出リレー 7
a・・・常閉リレー接点、8・・・抵抗器。
FIG. 1 is a circuit diagram showing a control circuit of an ECD according to an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a control circuit of a conventional OECD. (Explanation of symbols of main parts) 1... ECD (electrochromic device),
3... Drive circuit, 4... Power switch, 5... DC power supply 6... Discharge circuit, 7... Voltage detection relay 7
a... Normally closed relay contact, 8... Resistor.

Claims (4)

【特許請求の範囲】[Claims] (1)電源からの給電を受けてエレクトロクロミックデ
バイスに電荷を与えることにより前記デバイスを着色状
態にする駆動回路と;前記駆動回路の出力側にて前記デ
バイスの蓄積電荷を放電させるための放電回路と;前記
駆動回路が電源から給電を受けている間は前記放電回路
への電流の通過を阻止し、給電が断たれたときのみ前記
放電回路を通して前記デバイスの蓄積電荷を放電させる
リレー手段とを備えたことを特徴とするエレクトロクロ
ミックデバイスの制御回路。
(1) A drive circuit that applies electric charge to the electrochromic device in response to power supply from a power source to turn the device into a colored state; and a discharge circuit that discharges the accumulated charge of the device on the output side of the drive circuit. and; relay means that blocks current from passing through the discharge circuit while the drive circuit is receiving power from a power source, and discharges the accumulated charge of the device through the discharge circuit only when the power supply is cut off. A control circuit for an electrochromic device, characterized by comprising:
(2)前記リレー手段が、前記駆動回路への給電入力の
有無を検出する検出手段と、この検出手段によって制御
されるスイッチング手段とを備え、前記給電入力が有る
間は前記スイッチング手段により前記放電回路を高イン
ピーダンス状態にし、前記給電入力が断たれたときは前
記スイッチング手段により前記放電回路を低インピーダ
ンス状態にするようにした請求項1に記載のエレクトロ
クロミックデバイスの制御回路。
(2) The relay means includes a detection means for detecting the presence or absence of a power supply input to the drive circuit, and a switching means controlled by the detection means, and while the power supply input is present, the switching means causes the discharge to occur. 2. The control circuit for an electrochromic device according to claim 1, wherein the circuit is placed in a high impedance state, and when the power supply input is cut off, the switching means causes the discharge circuit to be placed in a low impedance state.
(3)前記検出手段として、前記駆動回路への給電入力
によって付勢されるリレーコイル若しくは半導体回路を
有し、前記スイッチング手段として、前記リレーコイル
が付勢されたとき若しくは前記半導体回路が入力電圧を
検出したときのみ開成する常閉接点を有し、前記放電回
路が前記駆動回路の出力端間に前記常閉接点を介して接
続されている請求項2に記載のエレクトロクロミックデ
バイスの制御回路。
(3) The detection means includes a relay coil or a semiconductor circuit that is energized by power input to the drive circuit, and the switching means includes a relay coil or a semiconductor circuit that is energized when the relay coil is energized or when the semiconductor circuit 3. The control circuit for an electrochromic device according to claim 2, further comprising a normally closed contact that opens only when detecting , and wherein the discharge circuit is connected between output terminals of the drive circuit via the normally closed contact.
(4)前記放電回路が、前記スイッチング手段と直列に
接続された抵抗器を有する請求項2に記載のエレクトロ
クロミックデバイスの制御回路。
(4) The control circuit for an electrochromic device according to claim 2, wherein the discharge circuit includes a resistor connected in series with the switching means.
JP28583388A 1988-11-14 1988-11-14 Control circuit for electrochromic device Expired - Lifetime JP2600862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28583388A JP2600862B2 (en) 1988-11-14 1988-11-14 Control circuit for electrochromic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28583388A JP2600862B2 (en) 1988-11-14 1988-11-14 Control circuit for electrochromic device

Publications (2)

Publication Number Publication Date
JPH02132420A true JPH02132420A (en) 1990-05-21
JP2600862B2 JP2600862B2 (en) 1997-04-16

Family

ID=17696670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28583388A Expired - Lifetime JP2600862B2 (en) 1988-11-14 1988-11-14 Control circuit for electrochromic device

Country Status (1)

Country Link
JP (1) JP2600862B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US8254013B2 (en) 2011-03-16 2012-08-28 Soladigm, Inc. Controlling transitions in optically switchable devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9482922B2 (en) 2011-03-16 2016-11-01 View, Inc. Multipurpose controller for multistate windows
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US10120258B2 (en) 2013-06-28 2018-11-06 View, Inc. Controlling transitions in optically switchable devices
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US10254618B2 (en) 2011-10-21 2019-04-09 View, Inc. Mitigating thermal shock in tintable windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US10520784B2 (en) 2012-04-17 2019-12-31 View, Inc. Controlling transitions in optically switchable devices
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931183B1 (en) * 2006-09-06 2009-12-10 주식회사 엘지화학 Electrochromic device driving device and control method thereof

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9946138B2 (en) 2009-12-22 2018-04-17 View, Inc. Onboard controller for multistate windows
US11016357B2 (en) 2009-12-22 2021-05-25 View, Inc. Self-contained EC IGU
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US11754902B2 (en) 2009-12-22 2023-09-12 View, Inc. Self-contained EC IGU
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US9436055B2 (en) 2009-12-22 2016-09-06 View, Inc. Onboard controller for multistate windows
US10268098B2 (en) 2009-12-22 2019-04-23 View, Inc. Onboard controller for multistate windows
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US10001691B2 (en) 2009-12-22 2018-06-19 View, Inc. Onboard controller for multistate windows
US9927674B2 (en) 2011-03-16 2018-03-27 View, Inc. Multipurpose controller for multistate windows
US9482922B2 (en) 2011-03-16 2016-11-01 View, Inc. Multipurpose controller for multistate windows
US10712627B2 (en) 2011-03-16 2020-07-14 View, Inc. Controlling transitions in optically switchable devices
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US11520207B2 (en) 2011-03-16 2022-12-06 View, Inc. Controlling transitions in optically switchable devices
US11640096B2 (en) 2011-03-16 2023-05-02 View, Inc. Multipurpose controller for multistate windows
US10908470B2 (en) 2011-03-16 2021-02-02 View, Inc. Multipurpose controller for multistate windows
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US11668991B2 (en) 2011-03-16 2023-06-06 View, Inc. Controlling transitions in optically switchable devices
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US8864321B2 (en) 2011-03-16 2014-10-21 View, Inc. Controlling transitions in optically switchable devices
US8254013B2 (en) 2011-03-16 2012-08-28 Soladigm, Inc. Controlling transitions in optically switchable devices
US10948797B2 (en) 2011-03-16 2021-03-16 View, Inc. Controlling transitions in optically switchable devices
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US10254618B2 (en) 2011-10-21 2019-04-09 View, Inc. Mitigating thermal shock in tintable windows
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11687045B2 (en) 2012-04-13 2023-06-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11735183B2 (en) 2012-04-13 2023-08-22 View, Inc. Controlling optically-switchable devices
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US11796886B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US11592724B2 (en) 2012-04-17 2023-02-28 View, Inc. Driving thin film switchable optical devices
US9921450B2 (en) 2012-04-17 2018-03-20 View, Inc. Driving thin film switchable optical devices
US9081247B1 (en) 2012-04-17 2015-07-14 View, Inc. Driving thin film switchable optical devices
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US11927867B2 (en) 2012-04-17 2024-03-12 View, Inc. Driving thin film switchable optical devices
US10520785B2 (en) 2012-04-17 2019-12-31 View, Inc. Driving thin film switchable optical devices
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US10520784B2 (en) 2012-04-17 2019-12-31 View, Inc. Controlling transitions in optically switchable devices
US10895796B2 (en) 2012-04-17 2021-01-19 View, Inc. Driving thin film switchable optical devices
US10802372B2 (en) 2013-02-21 2020-10-13 View, Inc. Control method for tintable windows
US11126057B2 (en) 2013-02-21 2021-09-21 View, Inc. Control method for tintable windows
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US11899331B2 (en) 2013-02-21 2024-02-13 View, Inc. Control method for tintable windows
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US10539854B2 (en) 2013-02-21 2020-01-21 View, Inc. Control method for tintable windows
US11940705B2 (en) 2013-02-21 2024-03-26 View, Inc. Control method for tintable windows
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US10401702B2 (en) 2013-06-28 2019-09-03 View, Inc. Controlling transitions in optically switchable devices
US11829045B2 (en) 2013-06-28 2023-11-28 View, Inc. Controlling transitions in optically switchable devices
US11835834B2 (en) 2013-06-28 2023-12-05 View, Inc. Controlling transitions in optically switchable devices
US10120258B2 (en) 2013-06-28 2018-11-06 View, Inc. Controlling transitions in optically switchable devices
US11579509B2 (en) 2013-06-28 2023-02-14 View, Inc. Controlling transitions in optically switchable devices
US10514582B2 (en) 2013-06-28 2019-12-24 View, Inc. Controlling transitions in optically switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US11112674B2 (en) 2013-06-28 2021-09-07 View, Inc. Controlling transitions in optically switchable devices
US10969646B2 (en) 2013-06-28 2021-04-06 View, Inc. Controlling transitions in optically switchable devices
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US10451950B2 (en) 2013-06-28 2019-10-22 View, Inc. Controlling transitions in optically switchable devices
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11709409B2 (en) 2015-10-06 2023-07-25 View, Inc. Controllers for optically-switchable devices
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US11300848B2 (en) 2015-10-06 2022-04-12 View, Inc. Controllers for optically-switchable devices
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US10809587B2 (en) 2015-10-06 2020-10-20 View, Inc. Controllers for optically-switchable devices
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US11482147B2 (en) 2016-04-29 2022-10-25 View, Inc. Calibration of electrical parameters in optically switchable windows
US11493819B2 (en) 2017-04-26 2022-11-08 View, Inc. Displays for tintable windows
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11467464B2 (en) 2017-04-26 2022-10-11 View, Inc. Displays for tintable windows
US11513412B2 (en) 2017-04-26 2022-11-29 View, Inc. Displays for tintable windows
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness

Also Published As

Publication number Publication date
JP2600862B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
JPH02132420A (en) Control circuit for electrochromic device
KR100931183B1 (en) Electrochromic device driving device and control method thereof
KR100733925B1 (en) ECD control apparatus
JPS60169347A (en) Drive device for antiglaring mirror for vehicle
CN106575801A (en) Battery state of charge indicator with auxiliary cell
CN106663820A (en) Battery state of charge indicator with an indicator circuit
EP0705734A1 (en) An electrochromic antiglare mirror
JPH0546953B2 (en)
JPH0332493B2 (en)
JP3467409B2 (en) Drive device for EC panel for rearview mirror
JPH0630576Y2 (en) Defogger device for automobile
JP2001105976A (en) Automatic anti-glare mirror
JPS63192024A (en) Method and circuit for driving ec glare-proof mirror
JP2603131Y2 (en) Electrochromic mirror
KR100819793B1 (en) Direct-current voltage control circuit for inverter utilizing two direct-current voltage levels measured at different locations
JP2000138023A (en) Reverse voltage protection device
JP2009134151A (en) Antiglare mirror
JP2000287471A (en) Motor drive control circuit
JPS62123429A (en) Electrochromism driving circuit for glare-proof mirror
JPH0746911Y2 (en) Driving circuit for electrochromic antiglare mirror
JPH02123910A (en) Power breaker
JPH0637397Y2 (en) Automatic control device for EC anti-glare mirror for automobiles
JPS646496Y2 (en)
JP2503490B2 (en) ECD color drive circuit
JPH056293B2 (en)