JPH02132303A - Probe driving device - Google Patents

Probe driving device

Info

Publication number
JPH02132303A
JPH02132303A JP28567388A JP28567388A JPH02132303A JP H02132303 A JPH02132303 A JP H02132303A JP 28567388 A JP28567388 A JP 28567388A JP 28567388 A JP28567388 A JP 28567388A JP H02132303 A JPH02132303 A JP H02132303A
Authority
JP
Japan
Prior art keywords
probe
electrodes
sample
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28567388A
Other languages
Japanese (ja)
Inventor
Miyoko Watanabe
渡辺 美代子
Kuniyoshi Tanaka
田中 国義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28567388A priority Critical patent/JPH02132303A/en
Publication of JPH02132303A publication Critical patent/JPH02132303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To put a probe close to a material smoothly without any collision between the both and to suppress noises of a signal small by switching the wires of respective electrodes of a cylindrical piezoelectric element, applying a voltage to outside and inside electrodes, and moving the probe roughly in a Z direction. CONSTITUTION:On the external surface of the cylindrical piezoelectric body 11 where the probe 50 is fitted, X electrodes 21 and 22, Y electrodes 31 and 32, and a Z electrode 41 are formed and on internal surface of the piezoelectric body 11, an electrode 41 is formed. Changeover switches 23, 24, 33, and 35 which are switched associatively are switched to contact sides S1 to move the probe 50 finely in X, Y, and Z directions. Further, the changeover switches 23, 24, 33, and 34 are switched to contact sides S2 to set all the outside electrodes 21, 22, 31, 32, and 41 at the same potential and the voltage is applied between the outside and inside electrodes 42 to move the probe 11 in the Z direction large (roughly). The rough movement is used to put the probe 112 and sample close to each other and the fine movement is used to tunnel current detection, thereby suppressing the collision between the probe and sample.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、走査型トンネル顕微鏡等に用いられる探針を
x,y,z方向に駆動する探針駆動装置に係わり、特に
円筒型圧電素子を用いた探針駆動装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a probe driving device for driving a probe used in a scanning tunneling microscope, etc. in the x, y, and z directions. In particular, the present invention relates to a probe driving device using a cylindrical piezoelectric element.

(従来の技術) 近年、固体表面の1つ1つの原子を測定する方法として
、走査型トンネル顕微鏡(STM)が開発されている。
(Prior Art) In recent years, a scanning tunneling microscope (STM) has been developed as a method for measuring individual atoms on the surface of a solid.

このSTMは、先端が尖った導電性の探針を試料の表面
より3〜10人上で走査しながら、探針・試料間に流れ
るトンネル電流を測定することにより、試料表面の構造
と電子状態を原子レベルで測定するものである。
This STM measures the structure and electronic state of the sample surface by measuring the tunnel current flowing between the probe and the sample while scanning a conductive probe with a sharp tip from 3 to 10 people above the sample surface. is measured at the atomic level.

STMでは上にも述べたように探針を試料表面上3〜1
0人で走査(駆動)する必要があるが、この探針の駆動
には圧電素子が用いられている。
In STM, as mentioned above, the probe is placed 3 to 1 times above the sample surface.
Although it is necessary to scan (drive) the probe by one person, a piezoelectric element is used to drive the probe.

このような用途に用いられる圧電素子としては、当初は
3方向(X,Y,Z)に設置された3脚型が主に用いら
れていたが、最近では、応答速度の速い円筒型が用いら
れている(レビュー・オブ・サイエンティフィック・イ
ンストゥルメント誌,57巻, 1888ページ)。こ
の円筒型圧電素子は、第5図に示すように、円筒状の圧
電体11の外側にX電極21.22とY電極31.32
を形成すると共に、内側にZ電極42を形成したもので
ある。探針50は圧電体11の一端に接着され、圧電体
11の他端は固定端に固定されている。この構成では、
X電極21.22間に電圧を印加することにより探針5
0のX方向の空間的位置が変化し、Y電極31.32間
に電圧を印加することにより探針50のY方向の空間的
位置が変化する。さらに、Z電極42とX電極21.2
2及びY電極31,32との間に電圧を印加することに
より、探針50のZ方向の空間的位置が変化することに
なる。
Initially, the piezoelectric element used for such applications was mainly a three-legged type installed in three directions (X, Y, Z), but recently a cylindrical type with a faster response speed has been used. (Review of Scientific Instruments, Volume 57, Page 1888). As shown in FIG.
, and a Z electrode 42 is formed inside. The probe 50 is bonded to one end of the piezoelectric body 11, and the other end of the piezoelectric body 11 is fixed to a fixed end. In this configuration,
By applying a voltage between the X electrodes 21 and 22, the probe 5
The spatial position of the probe 50 in the X direction changes, and by applying a voltage between the Y electrodes 31 and 32, the spatial position of the probe 50 in the Y direction changes. Furthermore, the Z electrode 42 and the X electrode 21.2
By applying a voltage between the probe 2 and the Y electrodes 31 and 32, the spatial position of the probe 50 in the Z direction changes.

しかし、このような圧電素子では、X,YJ向に比して
、一般に2方向の感度が高すぎる。
However, in such a piezoelectric element, the sensitivity in two directions is generally too high compared to the X and YJ directions.

このことは、Z電極に印加する電圧に対してZ方向の伸
縮率が大きすぎることであり、っまりZ微小のZ変位に
対し、Z電極に加える電圧変化が小さくなってしまう。
This means that the expansion/contraction ratio in the Z direction is too large with respect to the voltage applied to the Z electrode, and the voltage change applied to the Z electrode becomes small for a very small Z displacement.

このため、実際の表面測定の際、Z信号のノイズが大き
くなる問題がある。
For this reason, there is a problem that noise in the Z signal becomes large during actual surface measurement.

これを解決するために、第6図に示すように、円筒状の
圧電体]1の外側にもZ電極41を設け、Z電極41.
42間に印加する電圧によりZ方向の変位を持たせる構
成が考えられている。
In order to solve this problem, as shown in FIG. 6, a Z electrode 41 is provided also on the outside of the cylindrical piezoelectric body 1, and the Z electrode 41.
A configuration in which displacement in the Z direction is caused by a voltage applied between 42 has been considered.

この構成では、2方向の変位に寄与する電極の幅はZ電
極41の幅であり、この幅が第5図(X,Y電極の幅)
に比して短いので、Z方向の感度を低くすることができ
る。つまり、Z微小の変位に対して2電極41,42間
に加える電圧変化を大きくすることができる。
In this configuration, the width of the electrode that contributes to displacement in two directions is the width of the Z electrode 41, and this width is shown in FIG.
Since the length is shorter than , the sensitivity in the Z direction can be lowered. In other words, it is possible to increase the voltage change applied between the two electrodes 41 and 42 for a small Z displacement.

ところで、探針を試料表面の3〜10人上に設置する場
合、まず目視により探針と試料との距離をある程度小さ
くし、その後に試料をネジ或いはマイクロメータで探針
に近付ける。この場合、試料の探針への接近スピードが
速いために、試料と探針との衝突を招く虞れがある。探
針と試料との間に流れるトンネル電流をモニタしてもト
ンネル電流の検出範囲は極めて微小距離であり、トンネ
ル電流を検出して試料の移動を停止した時には既に探針
と試料とが衝突しているのが現状である。つまり、第5
図及び第6図に示す圧電素子にあっては、探針と試料と
を接近させる際にこれらの衝突を招く問題があった。
By the way, when installing the probe 3 to 10 times above the sample surface, first the distance between the probe and the sample is reduced to some extent by visual inspection, and then the sample is brought closer to the probe using a screw or a micrometer. In this case, since the speed at which the sample approaches the probe is fast, there is a risk of collision between the sample and the probe. Even if the tunnel current flowing between the probe and the sample is monitored, the detection range of the tunnel current is extremely small, and by the time the tunnel current is detected and the sample stops moving, the probe and sample have already collided. The current situation is that In other words, the fifth
The piezoelectric elements shown in FIG. 6 and FIG. 6 have a problem in that when the probe and the sample are brought close to each other, they collide.

また、この問題を解決するために、上記圧電素子以外に
別の圧電素子(粗動用圧電素子)を設けることがある。
Moreover, in order to solve this problem, another piezoelectric element (coarse movement piezoelectric element) may be provided in addition to the piezoelectric element described above.

試料,探針間の距離が太きいとき、ネジ或いはマイクロ
メータでこの距離を近付け、距離が小さいとき(探針,
試料間の接近の最終段階)は、粗動用圧電素子に印加す
る電圧によって制御する。しかしながら、この場合、圧
電素子が1つ多く必要となり、STMのユニットがより
複雑に、より大型になる。
When the distance between the sample and the probe is large, use a screw or micrometer to close this distance, and when the distance is small (the probe,
The final stage of the approach between the samples) is controlled by the voltage applied to the coarse movement piezoelectric element. However, in this case, one more piezoelectric element is required, making the STM unit more complex and larger.

STMユニットの簡略化,小型化は、防振という意味に
おいて、重要な要素であり、圧電素子を1つ多く設置す
ることによって、STMの信号のノイズが大きくなると
いう問題がある。
Simplification and miniaturization of the STM unit are important factors in terms of vibration isolation, and there is a problem in that installing one more piezoelectric element increases the noise of the STM signal.

なお、上記の問題点は、STMに限るものではなく、探
針と試料との間の静電容量を検出する走査型静電容量顕
微鏡(SCaM)、さらに探針の原子と試料の原子との
間の引力及び斥力を測定して絶縁体表面の形状を測定す
る原子間力顕微鏡(AFM)においても同様に言えるこ
とである。
Note that the above problems are not limited to STM, but also apply to scanning capacitance microscopy (SCaM), which detects the capacitance between the tip and the sample, and also to the scanning capacitance microscope (SCaM), which detects the capacitance between the tip and the sample. The same can be said of an atomic force microscope (AFM) that measures the shape of the surface of an insulator by measuring the attractive and repulsive forces between them.

(発明が解決しようとする課題) このように従来、STMを初めとする表面測定装置にお
いては、探針,試料間の距離を小さく (例えば、トン
ネル電流が流れ始める程度まで小さく)する際、ネジや
マイクロメータを用いたのでは、探針と試料との衝突を
招く虞れがある。探針と試料との衝突を防ぐために、別
の圧電素子を用いたのでは、STMユニットの大型化,
複雑化を招くと共に、圧電素子を付加した分だけノイズ
が大きくなる。つまり、探針と試料との衝突を防止しよ
うとすると信号のノイズか大きくなり、逆に信号のノイ
ズを低減しようとすると衝突を免れないという問題があ
った。
(Problem to be Solved by the Invention) Conventionally, in surface measurement devices such as STM, when reducing the distance between the probe and the sample (for example, to the extent that tunneling current begins to flow), it is difficult to If a micrometer is used, there is a risk of collision between the probe and the sample. Using another piezoelectric element to prevent the probe from colliding with the sample would increase the size of the STM unit.
This results in complexity, and the addition of the piezoelectric element increases noise. In other words, there is a problem in that attempts to prevent collisions between the probe and the sample increase signal noise, and conversely, attempts to reduce signal noise make it impossible to avoid collisions.

本発明は、上記事情を考慮してなされたもので、その目
的とするところは、探針,試料の衝突を招くことなく、
これらの接近をスムーズに行うことができ、且つ信号の
ノイズを小さく抑えることのできる探針駆動装置を提供
することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to avoid collisions between the probe and the sample.
It is an object of the present invention to provide a probe driving device that can smoothly perform these approaches and can suppress signal noise to a small level.

[発明の構成] (課題を解決するための手段) 本発明の骨子は、前記第6図に示す如き円筒型圧電素子
の電極の配線を切替えることにより、効果的な探針の移
動を実現することにある。
[Structure of the Invention] (Means for Solving the Problems) The gist of the present invention is to realize effective movement of the probe by switching the wiring of the electrodes of the cylindrical piezoelectric element as shown in FIG. There is a particular thing.

即ち本発明は、探針を保持して該探針をX,Y,Z方向
に駆動する探針駆動装置において、探針が取付けられる
筒状圧電体の外面に第1及び第2のX電極,第1及び第
2のY電極,第1のZ電極をそれぞれ形成すると共に、
該圧電体の内面に第2のZ電極を形成してなる圧電素子
と、この圧電素子の前記第1及び第2のX電極間,第1
及び第2のY電極間,第1及び第2のZ電極間にそれぞ
れ独立に電圧を印加する第1の電圧印加手段と、前記第
1及び第2のX電極,第1及び第2のY電極,さらに前
記第1の2電極を共通接続し、これらの電極と前記第2
の2電極との間に電圧を印加する第2の電圧印加手段と
を設けるようにしたものである。
That is, the present invention provides a probe driving device that holds a probe and drives the probe in X, Y, and Z directions, in which first and second X electrodes are provided on the outer surface of a cylindrical piezoelectric body to which the probe is attached. , first and second Y electrodes, and first Z electrode, respectively, and
a piezoelectric element formed by forming a second Z electrode on the inner surface of the piezoelectric body; and a first
and a first voltage applying means for independently applying a voltage between the second Y electrodes and between the first and second Z electrodes, the first and second X electrodes, the first and second Y electrodes, and The electrodes and the first two electrodes are commonly connected, and these electrodes and the second electrode are connected in common.
A second voltage applying means for applying a voltage between the two electrodes is provided.

(作 用) 本発明によれば、第1の電圧印加手段により、探針をx
,y,z方向に変位させることができ、このとき変位量
は印加電圧に対して小さいものとなる。この微動を利用
することにより、探針を試料表面で走査することができ
、トンネル電流等の検出が可能となる。また、第2の電
圧印加手段により、Z電極は勿論のことX,Y電極もZ
電極として機能することになり、圧電素子のZ方向スト
ロークを大きくすることができる。
(Function) According to the present invention, the first voltage applying means moves the probe to
, y, and z directions, and at this time, the amount of displacement is small relative to the applied voltage. By utilizing this micro-movement, the probe can be scanned over the sample surface, making it possible to detect tunnel currents and the like. In addition, by the second voltage application means, not only the Z electrode but also the X and Y electrodes are
Since it functions as an electrode, the stroke of the piezoelectric element in the Z direction can be increased.

この粗動を利用することにより、衝突を招くことなく探
針を試料表面にスムーズに近付けることができる。
By utilizing this coarse movement, the probe can be smoothly brought close to the sample surface without causing a collision.

具体的には、第2の電圧印加手段により、探針,試料間
にトンネル電流が流れ始めるまで、マイクロメータ等に
より探針を試料に近付ける。
Specifically, the probe is brought close to the sample using a micrometer or the like until a tunnel current begins to flow between the probe and the sample using the second voltage application means.

このときの探針の移動速度はマイクロメータ程には速く
なく、さらにZストロークは十分太きくとれる。従って
、試料,探針間に流れるトンネル電流等をモニタするこ
とによりこれらの衝突を防ぎ、探針を試料表面にスムー
ズに近付けることかできる。
The moving speed of the probe at this time is not as fast as a micrometer, and the Z stroke can be made sufficiently thick. Therefore, by monitoring the tunnel current flowing between the sample and the probe, it is possible to prevent these collisions and to bring the probe closer to the sample surface smoothly.

なお、試料,探針間の距離が十分小さくなりた後は、第
2の電圧印加手段による印加電圧を徐々に小さくして最
終的に零にする。これと同時に、トンネル電流をモニタ
し、該電流が一定となるようにマイクロメータ等により
試料を探針に近付ける。また、この後に圧電素子の電極
を切替える(第1の電圧印加手段)ことにより、Z方向
の伸縮率が小さくなり、このため小さいノイズで試料表
面の構造及び電子状態を測定することができる。
Note that after the distance between the sample and the probe becomes sufficiently small, the voltage applied by the second voltage applying means is gradually reduced until it is finally zero. At the same time, the tunnel current is monitored and the sample is brought close to the probe using a micrometer or the like so that the current remains constant. Furthermore, by switching the electrodes of the piezoelectric element (first voltage application means) after this, the expansion/contraction rate in the Z direction is reduced, and therefore the structure and electronic state of the sample surface can be measured with small noise.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の一実施例に係わる探針駆動装置を示す
概略構成図である。図中10は円筒型圧電素子であり、
その構成は前記第6図と同様である。即ち、円筒状の圧
電体11の外面に第1及び第2のX電極21,22、第
1及び第2のY電極’31,32、さらに第1のZ電極
41が被着されている。圧電体11の内面には、第2の
2電極42が被着されている。
FIG. 1 is a schematic configuration diagram showing a probe driving device according to an embodiment of the present invention. 10 in the figure is a cylindrical piezoelectric element,
Its configuration is the same as that shown in FIG. 6 above. That is, the first and second X electrodes 21 and 22, the first and second Y electrodes '31 and 32, and the first Z electrode 41 are attached to the outer surface of the cylindrical piezoelectric body 11. Two second electrodes 42 are attached to the inner surface of the piezoelectric body 11 .

ここで、各電極21,22,31.32,41.42の
配置関係は第2図に示す如くなっている。即ち、第2図
(a)に圧電素子10の上側の断面を示す如く、X電極
21.22は圧電体11の軸方向(Z方向)と直交する
X方向に対向して設けられており、Y電極31.32は
軸方向及びX方向にそれぞれ直交するY方向に対向して
設けられている。また、Z電極41,42は、第2図(
b)に圧電素子1oの下側の断面を示す如く、圧電体1
1の内外面に環状に設けられており、さらに2電極42
は内面全面に設けられている。
Here, the arrangement relationship of each electrode 21, 22, 31.32, 41.42 is as shown in FIG. That is, as shown in the cross section of the upper side of the piezoelectric element 10 in FIG. The Y electrodes 31 and 32 are provided facing each other in the Y direction perpendicular to the axial direction and the X direction. In addition, the Z electrodes 41 and 42 are arranged as shown in FIG.
As shown in b), a cross section of the lower side of the piezoelectric element 1o, the piezoelectric body 1
1, and two electrodes 42 are provided in an annular manner on the inner and outer surfaces of the
is provided on the entire inner surface.

X電極21.22間には切替えスイッチ23.24の各
接点S1を介して可変電圧電源(X電源)25が接続さ
れ、またX電極21.22間は切替えスイッチ23.2
4の各接点s2を介して短絡されている。同様に、Y電
極31,32間には切替えスイッチ33.34の各接点
S1を介して可変電圧電源(Y電源)35が接続され、
またY電極31.32間は切替えスイッチ33.34の
各接点S2を介して短絡されている。ここで、切替えス
イッチ23,24,33.34は連動して切替わるもの
であり、図ではS,に切替わった状態を示している。ま
た、Z電極41,.42間には、可変電圧電源(Z電源
)45が接続され、Z電極41は切替えスイッチ23,
24,33.34の接点S2側にそれぞれ接続されてい
る。なお、各電源25,35.45は正負の反転も可能
なものである。
A variable voltage power supply (X power supply) 25 is connected between the X electrodes 21.22 via each contact S1 of a changeover switch 23.24, and a changeover switch 23.2 is connected between the X electrodes 21.22.
They are short-circuited through each contact s2 of 4. Similarly, a variable voltage power supply (Y power supply) 35 is connected between the Y electrodes 31 and 32 via each contact S1 of a changeover switch 33.34.
Further, the Y electrodes 31 and 32 are short-circuited via each contact S2 of the changeover switch 33 and 34. Here, the changeover switches 23, 24, 33, and 34 are switched in conjunction with each other, and the figure shows a state in which they are switched to S. In addition, the Z electrodes 41, . 42, a variable voltage power supply (Z power supply) 45 is connected, and the Z electrode 41 is connected to the changeover switch 23,
24, 33, and 34 are connected to the contact S2 side, respectively. It should be noted that each power source 25, 35, 45 can also be reversed in positive and negative polarity.

このような構成であれば、切替えスイッチ,を23,2
4,33.  34をS,側に切替えることにより、通
常と同様に探針50をX,Y,Z方向に微動することが
できる。また、切替えスイッチ2B, 24,33.3
4を82側に切替えることにより、外側の全ての電極2
1,22,31,32.41を同じ電位に設定し、外側
と内側の電極との間に電圧を印加することになり、探針
をZ方向に大きく移動(粗動)することができる。つま
り、探針50を試料表面に対し相対的に小さいスピード
(≦1 O A /see )で、且つ大きな距離(〜
5μm)動かすことができる。この粗動を、探針と試料
との接近に用い、微動をトンネル電流検出に用いること
により、探針の効果的な駆動が可能となる。
In such a configuration, the changeover switch should be set to 23, 2.
4,33. By switching 34 to the S side, the probe 50 can be slightly moved in the X, Y, and Z directions in the same way as usual. In addition, changeover switches 2B, 24, 33.3
4 to the 82 side, all the outer electrodes 2
1, 22, 31, 32, and 41 are set to the same potential, and a voltage is applied between the outer and inner electrodes, the probe can be moved largely (coarse movement) in the Z direction. In other words, the probe 50 is moved at a relatively small speed (≦1 O A /see) and a large distance (~
5 μm). By using this coarse movement to bring the probe closer to the sample, and by using the fine movement to detect tunnel current, it becomes possible to drive the probe effectively.

第3図は本装置をSTMに適用した例を示す図である。FIG. 3 is a diagram showing an example in which this device is applied to STM.

図中60は試料、70はマイクロメータ、80はSTM
本体を示している。この装置では、試料60を探針50
に十分近付けた後、探針50,試料60間のトンネル電
流を測定しながら、探針50を試料60表面上でX,Y
方向に走査する。トンネル電流が設定された値になるよ
うに、第4図に示す如くトンネル電流測定器90と圧電
素子10(この場合はZ電極41.42)との間にフィ
ードバック回路が働いている。つまり、トンネル電流が
設定された値より小さい時は、探針50が試料60に近
付くように圧電素子10は伸びる。また、トンネル電流
が設定された値より大きくなれば、探針50が試料60
から遠ざかり、トンネル電流が設定された値になるよう
に制御される。そして、このときの圧電素子10のZ方
向の伸縮量、つまりZ印加電圧を測定することにより試
料6oの表面状態がall定されることになる。
In the figure, 60 is the sample, 70 is the micrometer, and 80 is the STM.
Shows the main body. In this device, the sample 60 is
After bringing the probe 50 close enough to the surface of the sample 60, move the probe 50 over the surface of the sample 60 in
Scan in the direction. As shown in FIG. 4, a feedback circuit operates between the tunnel current measuring device 90 and the piezoelectric element 10 (in this case, the Z electrodes 41 and 42) so that the tunnel current reaches a set value. That is, when the tunneling current is smaller than the set value, the piezoelectric element 10 extends so that the probe 50 approaches the sample 60. Further, if the tunneling current becomes larger than the set value, the probe 50 will move toward the sample 60.
The tunnel current is controlled so that it becomes the set value. Then, by measuring the amount of expansion and contraction in the Z direction of the piezoelectric element 10 at this time, that is, the Z applied voltage, the surface state of the sample 6o is all determined.

この装置において、探針,試料間をトンネル電流検出の
初期状態にセットするには次のようにする。まず、最初
に探針50を試料60に近付ける際、切替えスイッチ2
3,24,33.34をそれぞれS2側に切替える。マ
イクロメータ70により探針,試料間が数μmの距離と
なるまで試料60を探針50に近付ける。次いで、探針
,試料間のトンネル電流をモニタしながら、Z電源45
により圧電素子10を伸ばし、探針50を試料60に十
分に(トンネル電流が流れるまで)近付ける。
In this device, the initial state for tunnel current detection between the probe and the sample can be set as follows. First, when bringing the probe 50 close to the sample 60, switch 2
3, 24, 33, and 34 are respectively switched to the S2 side. The sample 60 is brought close to the probe 50 using a micrometer 70 until the distance between the probe and the sample is several μm. Next, while monitoring the tunnel current between the probe and the sample, turn on the Z power supply 45.
The piezoelectric element 10 is extended and the probe 50 is brought sufficiently close to the sample 60 (until a tunnel current flows).

これにより、探針,試料間はトンネル電流検出範囲内に
セットされるが、この状態では圧電素子10が伸び切っ
ている場合もある。従って、前記第4図に示すフィード
バック回路を利用し、以下のようにして圧電素子10を
定常状態に戻す。即ち、Z電源45の電圧を徐々に低く
して圧電素子10を縮めると共に、その分だけマイクロ
メータ70により試料60を探針50側に移動し、最終
的にZ電源45の電圧を零にする。
As a result, the distance between the probe and the sample is set within the tunnel current detection range, but in this state the piezoelectric element 10 may be fully extended. Therefore, using the feedback circuit shown in FIG. 4, the piezoelectric element 10 is returned to a steady state as follows. That is, the voltage of the Z power source 45 is gradually lowered to contract the piezoelectric element 10, and the sample 60 is moved toward the probe 50 by that amount using the micrometer 70, and finally the voltage of the Z power source 45 is brought to zero. .

この状態では、Z電源45の電圧は零であり、探針,試
料間はトンネル電流検出範囲内に設定されることになる
In this state, the voltage of the Z power supply 45 is zero, and the distance between the probe and the sample is set within the tunnel current detection range.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記圧電素子の各電極に接続される電源及
び切替えスイッチは、前記第1図に示す構成に限定され
るものではなく、第1及び第2の電圧印加手段を選択的
に実施できる構成であれば適宜変更可能である。また、
圧電素子を構成する圧電体は必ずしも円筒状に限るもの
ではなく、筒状であればよい。また、本発明はSTMに
限らず、SCaMやAFM等にも適用できるのは勿論の
ことである。その他、本発明の要旨を逸脱しない範囲で
、種々変形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the power source and changeover switch connected to each electrode of the piezoelectric element are not limited to the configuration shown in FIG. 1, but may be configured to selectively implement the first and second voltage application means. If so, it can be changed as appropriate. Also,
The piezoelectric body constituting the piezoelectric element is not necessarily limited to a cylindrical shape, but may have a cylindrical shape. Furthermore, it goes without saying that the present invention is applicable not only to STM but also to SCaM, AFM, etc. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、円筒型圧電素子の
各電極の配線を切替え、x,y,z電極にそれぞれ独立
に電圧を印加する第1の電圧印加と、圧電体の外側の電
極と内側の電極とに電圧を印加する第2の電圧印加との
2つのモ−ドを選択して用いるようにしているので、X
,Y,Z方向の微動とZ方向の粗動が可能となる。
[Effects of the Invention] As detailed above, according to the present invention, the wiring of each electrode of the cylindrical piezoelectric element is switched, and the first voltage application is performed to independently apply a voltage to each of the x, y, and z electrodes. Since two modes are selected and used: the second voltage application that applies voltage to the outer electrode and the inner electrode of the piezoelectric body, X
, Y, and Z directions and coarse movement in the Z direction are possible.

従って、探針,試料の衝突を招くことなく、これらの接
近をスムーズに行うことができ、且つ信号のノイズを小
さく抑えることのできる探針駆動装置を実現することが
できる。
Therefore, it is possible to realize a probe driving device that can smoothly approach the probe and the sample without causing a collision, and can suppress signal noise to a small level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる探針駆動装置を示す
概略構成図、第2図は同実施例装置の水平断面を示す図
、第3図は本発明をSTMに適用した例を示す図、第4
図は第3図に示すSTMのフィードバック回路を示す図
、第5図及び第6図はそれぞれ従来の探針駆動装置を示
す概略構成図である。 10・・・円筒型圧電素子、11・・・圧電体、21.
22・・・X電極、31.32・・・Y電極、41.4
2・・・Z電極、25.35.45・・・電源、23,
24,33.34・・・切替えスイッチ、50・・・探
針、60・・・試料、70・・・マイクロメータ、80
・・・STM本体、90・・・トンネル電流測定器。 第 3図 第4図 第 5図
Fig. 1 is a schematic configuration diagram showing a probe driving device according to an embodiment of the present invention, Fig. 2 is a diagram showing a horizontal cross section of the same embodiment device, and Fig. 3 is an example in which the present invention is applied to STM. Figure shown, 4th
This figure shows a feedback circuit of the STM shown in FIG. 3, and FIGS. 5 and 6 are schematic configuration diagrams showing conventional probe driving devices, respectively. 10... Cylindrical piezoelectric element, 11... Piezoelectric body, 21.
22...X electrode, 31.32...Y electrode, 41.4
2...Z electrode, 25.35.45...power supply, 23,
24, 33. 34... Changeover switch, 50... Probe, 60... Sample, 70... Micrometer, 80
... STM main body, 90 ... tunnel current measuring device. Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)探針が取付けられる筒状圧電体の外面に第1及び
第2のX電極、第1及び第2のY電極、第1のZ電極を
それぞれ形成すると共に、該圧電体の内面に第2のZ電
極を形成してなる圧電素子と、 この圧電素子の前記第1及び第2のX電極間、第1及び
第2のY電極間、第1及び第2のZ電極間にそれぞれ独
立に電圧を印加する第1の電圧印加手段と、 前記第1及び第2のX電極、第1及び第2のY電極、さ
らに前記第1のZ電極を共通接続し、これらの電極と前
記第2のZ電極との間に電圧を印加する第2の電圧印加
手段とを具備してなることを特徴とする探針駆動装置。
(1) First and second X electrodes, first and second Y electrodes, and first Z electrodes are formed on the outer surface of the cylindrical piezoelectric material to which the probe is attached, and on the inner surface of the piezoelectric material. a piezoelectric element formed by forming a second Z electrode; and a piezoelectric element formed between the first and second X electrodes, between the first and second Y electrodes, and between the first and second Z electrodes, A first voltage applying means for independently applying a voltage, the first and second X electrodes, the first and second Y electrodes, and the first Z electrode are commonly connected, and these electrodes and the A probe driving device comprising a second voltage applying means for applying a voltage between the second Z electrode and the second Z electrode.
(2)前記探針は、被検査試料の表面に近接して配置さ
れ、該試料との間に流れるトンネル電流の検出に供され
るものであることを特徴とする請求項1記載の探針駆動
装置。
(2) The probe according to claim 1, wherein the probe is placed close to the surface of a sample to be inspected and is used to detect a tunnel current flowing between the probe and the sample. Drive device.
(3)前記第1の電圧印加手段は前記探針のX、Y、Z
方向の微動に供され、前記第2の電圧印加手段は前記探
針のZ方向の粗動に供されることを特徴とする請求項1
記載の探針駆動装置。
(3) The first voltage applying means applies the X, Y, and Z of the probe.
Claim 1, wherein the second voltage applying means is used to coarsely move the probe in the Z direction.
The probe driving device described.
JP28567388A 1988-11-14 1988-11-14 Probe driving device Pending JPH02132303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28567388A JPH02132303A (en) 1988-11-14 1988-11-14 Probe driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28567388A JPH02132303A (en) 1988-11-14 1988-11-14 Probe driving device

Publications (1)

Publication Number Publication Date
JPH02132303A true JPH02132303A (en) 1990-05-21

Family

ID=17694570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28567388A Pending JPH02132303A (en) 1988-11-14 1988-11-14 Probe driving device

Country Status (1)

Country Link
JP (1) JPH02132303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122806A (en) * 1990-09-14 1992-04-23 Mitsubishi Electric Corp Micromotion scanning mechanism of interatomic force microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122806A (en) * 1990-09-14 1992-04-23 Mitsubishi Electric Corp Micromotion scanning mechanism of interatomic force microscope

Similar Documents

Publication Publication Date Title
EP1123526B1 (en) Micromechanical component comprising an oscillating body
US4785177A (en) Kinematic arrangement for the micro-movements of objects
Chang et al. An ultra-precision XY/spl Theta//sub Z/piezo-micropositioner. II. Experiment and performance
JPH0212381B2 (en)
Guliyev et al. Quasi-monolithic integration of silicon-MEMS with piezoelectric actuators for high-speed non-contact atomic force microscopy
JP3735701B2 (en) Electrical measurement prober and method of measuring electrical characteristics using the prober
Bergander et al. Micropositioners for microscopy applications based on the stick-slip effect
JPH0651831A (en) Two-dimensional position adjusting device
DE60122834T2 (en) Torsion-tilt component
JPH02132303A (en) Probe driving device
JP4410700B2 (en) Scanning probe microscope
JPH0483104A (en) Scanning tunneling microscope
US5831264A (en) Electrostrictive actuator for scanned-probe microscope
JP3331385B2 (en) Capacitive sensor
Alunda et al. A simple way to higher speed atomic force microscopy by retrofitting with a novel high-speed flexure-guided scanner
JPH02271204A (en) Sample moving table
JP3106239B2 (en) Probe scanning device
JPS63236992A (en) Piezoelectric-element fine adjustment mechanism
JPH0293304A (en) Microscopic device
JPS6123676B2 (en)
JPS63153405A (en) Scanning type tunnel microscope
JP2624008B2 (en) Scanning tunnel microscope
JPH04348204A (en) Scanning probe apparatus
JPH01224603A (en) Wide-range scanning type tunnel microscope
JPH02262001A (en) Piezoelectric-element driving type probe apparatus and driving method thereof