JPH0213024B2 - - Google Patents

Info

Publication number
JPH0213024B2
JPH0213024B2 JP56037252A JP3725281A JPH0213024B2 JP H0213024 B2 JPH0213024 B2 JP H0213024B2 JP 56037252 A JP56037252 A JP 56037252A JP 3725281 A JP3725281 A JP 3725281A JP H0213024 B2 JPH0213024 B2 JP H0213024B2
Authority
JP
Japan
Prior art keywords
evaporation
deposited
temperature
vacuum
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56037252A
Other languages
Japanese (ja)
Other versions
JPS57152465A (en
Inventor
Yoshio Shimozato
Kenichi Yanagi
Shigeo Itano
Tetsuyoshi Wada
Heizaburo Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3725281A priority Critical patent/JPS57152465A/en
Publication of JPS57152465A publication Critical patent/JPS57152465A/en
Publication of JPH0213024B2 publication Critical patent/JPH0213024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉄鋼材料、特に鋼帯に亜鉛Znを連
続的に真空蒸着する方法に関するものである。 従来、鋼帯にZnを真空蒸着する場合には、Zn
の鋼帯に対する密着性が低いため、蒸着圧力をで
きるだけ低くし、鋼帯の温度はできるだけ高くし
て蒸着する必要があると言われており、蒸着圧力
については10-4〜10-6Torrが適正であるとされ
ていた。 しかしながら、適正といわれる10-4
10-6Torrの真空度では勿論、これより圧力の大
きい10-2Torrの真空中で蒸着するのさえ真空を
維持するために大容量の真空ポンプを多数必要と
し、かつ真空容器も、リーク量、放出ガス量共に
小さなものとする必要があるため、設備費、操業
費共に高価となる欠点があつた。又、このような
10-4〜10-6Torrのような圧力の小さい真空下で
鋼帯の温度を200℃以上にした場合に、蒸発した
Zn蒸気が鋼帯に蒸着する際に発生する凝縮およ
び凝固潜熱により鋼帯温度が上昇し、蒸着した
Znが再び鋼帯上から蒸発する、いわゆる再蒸発
を生じ、再蒸発したZn蒸気が真空室内の駆動部
あるいはシール装置に付着堆積し、運転に支障を
来たすという欠点があつた。従来、この再蒸発を
防止するためには、蒸着時に鋼帯を冷却して蒸着
Znの潜熱による昇温を防止する方法、あるいは
保護カバーを設けて駆動部やシール装置へのZn
付着を防止する方法等が考えられているが、鋼帯
の冷却は真空中での冷却であり、冷却効率が低
く、急速冷却はできないし、又、カバーによる付
着防止は、Znが裏回りの大きい金属であるため
カバー裏側にも入り込んで駆動部等へ付着し、付
着防止効果が小さい等の欠点があつた。 以上のような事情に鑑み、本発明者らは蒸着亜
鉛の再蒸発防止の観点から、蒸着圧力と被蒸着物
温度について検討した結果、比較的圧力の大きい
真空度の下においても蒸着被膜の密着性を確保
し、再蒸発が小さく、さらに工業的にも安価かつ
容易に蒸着可能な最適範囲を見出した。すなわ
ち、本発明は、鉄鋼材料に亜鉛を真空蒸着する方
法において、被蒸着物である鉄鋼材料の表面を還
元処理し、該被蒸着物の温度(T゜K)および蒸着
圧力(PTorr)を以下の関係を満たす範囲内に調
整して蒸着することを特徴とする亜鉛の真空蒸着
方法である。 本発明の実験結果をとりまとめた第1図によつ
て詳細に説明する。第1図における曲線:1は、
Znの温度(T゜K)とその温度におけるZnの飽和
蒸気圧(PsTorr)をプロツトしたものであり、
〔logPs=−(6850/T)−0.755logT+11.24〕と表
される。通常、真空中における金属の蒸発速度
は、(1)式によつて求められる。 G=C・√・(Ps−P)…(1) G:蒸発速度 C:定数 M:蒸発金属の原子量 T:蒸発金属の温度 Ps: 〃 温度Tにおける飽和蒸気圧 P:蒸着圧力 (1)式でPがPsに近くなると蒸発速度は小さくな
りP=Psであれば蒸発は全く生じないことにな
る。実際には、P≒Psになると(1)式は適用され
ず、拡散によつてある程度は蒸発することになる
が、その量は非常に小さくP>Psであれば、実際
上はほとんど再蒸発は問題とならない。すなわち
曲線1より左側の領域では再蒸発は問題になら
ず、曲線1は再蒸発が問題となる限界線である。 従つて、再蒸発を避けるためには、被蒸着物温
度を低く、又、蒸着圧力を高くすれば良いが、次
いでその限界値について実験を実施した。その結
果、被蒸着物温度は80℃以上であれば蒸着Zn被
膜の密着性は良好であり、第1図、直線2に示す
ようにこれは蒸着圧力には無関係であることが明
らかとなつた。すなわち直線2は皮膜の密着性が
確保できる低温側の限界線である。ただし、皮膜
の靭性等、より高性能の皮膜を得るためには基板
温度は200℃以上が好ましいことを明らかとなつ
た。 一方、第1図、直線3に示すように、被蒸着物
温度が400℃を越えるとFe−Zn合金が形成され皮
膜性能が阻害されるため、被蒸着物温度は400℃
を越えてはならないことも明らかとなつた。すな
わち直線3は合金化が生じる限界線である。 また蒸着圧力については、皮膜生能上許容しう
る限り、高い圧力の方が設備費上および操業上有
利となるので、種々試験した結果、30Torrまで
は皮膜性能を阻害することなく蒸着可能であるこ
とが明らかとなつた。但し第1図直線4で示すよ
うに、蒸着圧力が30Torrを越えると蒸発源には
激しい沸とうを生じ、この結果、溶融Znがスプ
ラツシユとなつて飛び散り、被蒸着物に粒状の
Znとなつて付着し蒸着不良となることが明らか
となつた。直線4は蒸発源の沸とうが生じる限界
線である。一方、低圧力側では、皮膜性能上の限
界はないが、第1図直線5で示すように
10-2Torrよりも低圧力になると、前述のように
真空系の装置が高価になると共に再蒸発防止のた
めの被蒸着物温度範囲が狭くなり、Znの目付量
に制限を受けることになる。例えば、被蒸着物が
0.3mmtの鋼帯の場合には、最大80g/m2までし
か蒸着することができず、これ以上の目付量にな
ると蒸着終了時の温度が、再蒸発が問題となる領
域となる。直線5は真空系コストおよびZnの目
付量範囲が問題となる限界線である。 以上、説明したように、本発明は第1図中、直
線および曲線1〜5で囲まれた斜線で示す領域内
の蒸着圧力および被蒸着物温度で蒸着を行うこと
により皮膜性能、装置および操業上いずれも問題
のない蒸着方法を提供するものである。 すなわち、本発明は特に排気系を安価なものに
することができる10-2〜30Torrのような圧力の
大きい真空度でZnの真空蒸着を可能にしたとこ
ろに大きな工業的価値を見出すことができる方法
である。 なお、鋼板は何らかの方法で還元処理である前
処理を行うが、この前処理法は特に限定されるも
のではなく、ガス還元処理、イオンボンバードメ
ント、電子線照射等いずれの方法を用いてもよい
が、工業的にはガス還元処理が適している。 実施例 1 内径450φのベルジヤーを有するバツチ式蒸着
装置により、軟鋼板へのZn蒸着を行つた。黒鉛
製のルツボから蒸発されたZnを0.3mmt×70mm×
120mmの基板に、蒸着圧力、基板温度を変えて蒸
着した。蒸着前処理としては、大気中で溶剤脱脂
した後、蒸着装置内に入れH2ガス中で700℃×
5minの還元処理を実施した。 種々の条件で蒸着した後、皮膜密着性の評価
は、180゜密着曲げを行つた後、曲げ部にスコツチ
テープを貼つて引剥がし、剥離の有無を観察し
た。又、Fe−Zn合金層生成の有無は、断面を光
学顕微鏡で観察して判定した。膜厚は、電解式膜
厚計で測定した。膜厚は各圧力レベルで、再蒸発
がない場合に10μとなるような条件で蒸着し、目
標膜厚と実測値との差から再蒸発の有無を判定し
た。 実施結果を第1表に示す。第1表中、各欄は
The present invention relates to a method for continuously vacuum-depositing zinc Zn onto steel materials, particularly steel strips. Conventionally, when vacuum depositing Zn on steel strip, Zn
Because of the low adhesion to the steel strip, it is said that it is necessary to keep the deposition pressure as low as possible and the temperature of the steel strip as high as possible, and the deposition pressure is 10 -4 to 10 -6 Torr. It was considered appropriate. However, 10 -4 ~ which is said to be appropriate
Of course, in a vacuum of 10 -6 Torr, even in a vacuum with a higher pressure of 10 -2 Torr, many large-capacity vacuum pumps are required to maintain the vacuum, and the vacuum container also has a large amount of leakage. However, since it is necessary to reduce the amount of gas emitted, there is a drawback that both equipment costs and operating costs are high. Also, something like this
When the temperature of the steel strip is raised to 200℃ or higher under a vacuum with a low pressure such as 10 -4 to 10 -6 Torr, the evaporation occurs.
The temperature of the steel strip increases due to the condensation and solidification latent heat generated when Zn vapor is deposited on the steel strip, and
There was a drawback that Zn evaporated from the steel strip again, so-called re-evaporation, and the re-evaporated Zn vapor adhered and deposited on the drive part or sealing device in the vacuum chamber, causing problems in operation. Conventionally, in order to prevent this re-evaporation, the steel strip was cooled during deposition.
A method to prevent temperature rise due to the latent heat of Zn, or by providing a protective cover to protect Zn from drive parts and sealing devices.
Methods have been considered to prevent adhesion, but steel strips are cooled in a vacuum, which has low cooling efficiency and cannot be cooled rapidly.Furthermore, preventing adhesion with a cover is difficult because Zn is on the underside. Since it is a large metal, it can penetrate into the back side of the cover and adhere to drive parts, etc., and has disadvantages such as low adhesion prevention effect. In view of the above circumstances, the present inventors investigated the deposition pressure and temperature of the deposited object from the viewpoint of preventing re-evaporation of deposited zinc. As a result, the inventors found that the adhesion of the deposited film even under relatively high pressure vacuum conditions. We have found an optimal range that ensures high performance, low re-evaporation, and allows easy and inexpensive vapor deposition on an industrial scale. That is, the present invention provides a method for vacuum evaporating zinc onto a steel material, in which the surface of the steel material to be deposited is subjected to a reduction treatment, and the temperature (T°K) and deposition pressure (PTorr) of the material to be deposited are set as below. This is a vacuum evaporation method for zinc, which is characterized in that the evaporation is performed while adjusting the evaporation within a range that satisfies the following relationship. This will be explained in detail with reference to FIG. 1, which summarizes the experimental results of the present invention. The curve in Figure 1: 1 is
This is a plot of the temperature of Zn (T°K) and the saturated vapor pressure of Zn (P s Torr) at that temperature.
It is expressed as [logP s =-(6850/T)-0.755logT+11.24]. Usually, the evaporation rate of metal in vacuum is determined by equation (1). G=C・√・(P s − P)…(1) G: Evaporation rate C: Constant M: Atomic weight of evaporated metal T: Temperature of evaporated metal P s :〃 Saturated vapor pressure at temperature T P: Vapor deposition pressure ( In equation 1), when P approaches Ps , the evaporation rate decreases, and if P= Ps , no evaporation occurs at all. In reality, when P≒P s , equation (1) does not apply, and some amount of evaporation will occur due to diffusion, but the amount is very small and if P>P s , practically no evaporation occurs. Re-evaporation is not a problem. That is, in the region to the left of curve 1, re-evaporation is not a problem, and curve 1 is the limit line where re-evaporation becomes a problem. Therefore, in order to avoid re-evaporation, it is sufficient to lower the temperature of the object to be deposited and increase the deposition pressure, but an experiment was then conducted to find the limit values. As a result, it was found that the adhesion of the deposited Zn film was good when the temperature of the object to be deposited was 80°C or higher, and as shown in Figure 1, straight line 2, this was found to be unrelated to the deposition pressure. . That is, the straight line 2 is the limit line on the low temperature side where the adhesion of the film can be ensured. However, it has become clear that the substrate temperature is preferably 200°C or higher in order to obtain a film with higher performance such as film toughness. On the other hand, as shown in Figure 1, straight line 3, if the temperature of the deposited material exceeds 400℃, Fe-Zn alloy is formed and the film performance is inhibited.
It has also become clear that the limit should not be exceeded. That is, straight line 3 is the limit line where alloying occurs. Regarding the deposition pressure, as long as it is permissible in terms of film performance, higher pressures are more advantageous in terms of equipment costs and operation.As a result of various tests, it was found that deposition up to 30 Torr is possible without impeding film performance. It became clear. However, as shown by straight line 4 in Figure 1, when the deposition pressure exceeds 30 Torr, intense boiling occurs in the evaporation source, and as a result, molten Zn scatters in the form of a splash, leaving granular particles on the object to be deposited.
It has become clear that Zn adheres to the surface, resulting in poor evaporation. Straight line 4 is the limit line where boiling of the evaporation source occurs. On the other hand, on the low pressure side, there is no limit to film performance, but as shown by straight line 5 in Figure 1,
When the pressure is lower than 10 -2 Torr, as mentioned above, the vacuum system becomes expensive, the temperature range of the material to be deposited to prevent re-evaporation becomes narrower, and the basis weight of Zn is limited. . For example, if the material to be deposited is
In the case of a 0.3 mmt steel strip, only a maximum of 80 g/m 2 can be deposited, and if the weight exceeds this, the temperature at the end of the deposition becomes a region where re-evaporation becomes a problem. Straight line 5 is a limit line where the cost of the vacuum system and the range of the basis weight of Zn become a problem. As explained above, the present invention improves film performance, equipment, and operation by performing vapor deposition at the vapor deposition pressure and temperature of the material to be vaporized within the shaded area surrounded by straight lines and curves 1 to 5 in FIG. All of the above provide a problem-free vapor deposition method. In other words, the present invention has great industrial value in that it enables the vacuum deposition of Zn at high pressures such as 10 -2 to 30 Torr, which can make the exhaust system inexpensive. It's a method. Note that the steel plate is pretreated by some method as reduction treatment, but this pretreatment method is not particularly limited, and any method such as gas reduction treatment, ion bombardment, electron beam irradiation, etc. may be used. However, gas reduction treatment is suitable industrially. Example 1 Zn was vapor-deposited onto a mild steel plate using a batch-type vapor deposition apparatus having a bell jar with an inner diameter of 450φ. Zn evaporated from a graphite crucible is 0.3mmt×70mm×
Vapor deposition was performed on a 120 mm substrate by varying the deposition pressure and substrate temperature. As a pre-evaporation treatment, after degreasing with solvent in the air, it was placed in the evaporation equipment and heated at 700℃ in H2 gas.
Reduction treatment was performed for 5 min. After vapor deposition under various conditions, film adhesion was evaluated by bending the film closely at 180°, applying Scotch tape to the bent part, peeling it off, and observing whether or not there was any peeling. Moreover, the presence or absence of Fe--Zn alloy layer formation was determined by observing the cross section with an optical microscope. The film thickness was measured using an electrolytic film thickness meter. The film thickness was deposited at each pressure level under conditions such that it would be 10μ in the absence of re-evaporation, and the presence or absence of re-evaporation was determined from the difference between the target film thickness and the measured value. The implementation results are shown in Table 1. In Table 1, each column is

【表】 を示しており、密着性については、〇:密着性良
好、〓:密着性良好だが、曲げ部に微小クラツク
あり、×:密着性不良、−:膜厚=0のため評価せ
ず、を示す。膜厚の項のは再蒸発を示し、A
は合金化を示す。
[Table] shows the adhesion, 〇: Good adhesion, 〓: Good adhesion, but there are small cracks at the bent part, ×: Poor adhesion, -: Not evaluated because film thickness = 0. , is shown. The film thickness term indicates re-evaporation, and A
indicates alloying.

【表】【table】

Claims (1)

【特許請求の範囲】 1 鉄鋼材料に亜鉛を真空蒸着する方法におい
て、被蒸着物である鉄鋼材料の表面を還元処理
し、該被蒸着物の温度(T゜K)および蒸着圧力
(PTorr)を以下の関係を満たす範囲内に調整し
て蒸着することを特徴とする亜鉛の真空蒸着方
法。 353≦T≦673 10-2<P≦30 logP≧−(6850/T)−0.755logT+11.24
[Claims] 1. In a method of vacuum evaporating zinc onto a steel material, the surface of the steel material to be deposited is subjected to reduction treatment, and the temperature (T°K) and deposition pressure (PTorr) of the material to be deposited are adjusted. A method for vacuum vapor deposition of zinc, characterized in that the vapor deposition is adjusted within a range that satisfies the following relationship. 353≦T≦673 10 -2 <P≦30 logP≧−(6850/T)−0.755logT+11.24
JP3725281A 1981-03-17 1981-03-17 Vacuum depositing method for zinc Granted JPS57152465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3725281A JPS57152465A (en) 1981-03-17 1981-03-17 Vacuum depositing method for zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3725281A JPS57152465A (en) 1981-03-17 1981-03-17 Vacuum depositing method for zinc

Publications (2)

Publication Number Publication Date
JPS57152465A JPS57152465A (en) 1982-09-20
JPH0213024B2 true JPH0213024B2 (en) 1990-04-03

Family

ID=12492446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3725281A Granted JPS57152465A (en) 1981-03-17 1981-03-17 Vacuum depositing method for zinc

Country Status (1)

Country Link
JP (1) JPS57152465A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE155643T1 (en) * 1984-03-19 1986-01-30 Mitsubishi Jukogyo K.K. DEVICE FOR VAPORIZATION.
JP2525165B2 (en) * 1987-01-09 1996-08-14 日新製鋼株式会社 Method for manufacturing high strength galvanized steel sheet

Also Published As

Publication number Publication date
JPS57152465A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
JPS6483656A (en) Method and vacuum painting machine for applying film to base layer
US4414085A (en) Method of depositing a high-emissivity layer
JPH0213024B2 (en)
US3854984A (en) Vacuum deposition of multi-element coatings and films with a single source
US3594214A (en) Method of applying a zinc coating to a sheet-steel base
US4963237A (en) Method for electrochemical activation of IVD aluminum coatings
US9051642B2 (en) Process for coating a substrate, plant for implementing the process and feeder for feeding such a plant with metal
Egert et al. A study of ion plating parameters, coating structure, and corrosion protection for aluminum coatings on uranium
CN115029669A (en) Method for improving deposition efficiency by adopting high-power pulse magnetron sputtering of liquid metal
US3652325A (en) Vapor deposition process
JPH0673543A (en) Continuous vacuum vapor deposition device
US3647524A (en) Vapor phase metal plating process
Schiller et al. Plasma-activated high-rate electron-beam evaporation for coating metal strips
JP2694058B2 (en) Arc vapor deposition equipment
JPS6157905B2 (en)
JPH0610335B2 (en) Aluminum plated steel plate with excellent heat resistance
JP2685772B2 (en) High corrosion resistance A1-Ti alloy vapor deposition plated product and method for producing the same
KR0140835B1 (en) Manufacturing method of al-cr alloy deposited steel sheet by single source
KR0138042B1 (en) Method for manufacturing al-mn alloy coated steel sheet with single vapor source
JPH11189872A (en) Formation of coating of base material by condensation
JPH05320874A (en) Formation of vapor deposited plating layer and vapor deposited al-zn alloy plating material
JP2575747B2 (en) High corrosion resistance A1-Cr alloy deposited product and method for producing the same
KR0138045B1 (en) Method for manufacturing tin vacuum deposited steel plate
JPH0784650B2 (en) Vacuum deposition method and vacuum deposition apparatus
JPH05311396A (en) Formation of chromium nitride film