JPH02130218A - Direct injection type compound turbulent flow compression ignition method and impact diffusion type compound turbulent flow compression ignition engine - Google Patents

Direct injection type compound turbulent flow compression ignition method and impact diffusion type compound turbulent flow compression ignition engine

Info

Publication number
JPH02130218A
JPH02130218A JP63284310A JP28431088A JPH02130218A JP H02130218 A JPH02130218 A JP H02130218A JP 63284310 A JP63284310 A JP 63284310A JP 28431088 A JP28431088 A JP 28431088A JP H02130218 A JPH02130218 A JP H02130218A
Authority
JP
Japan
Prior art keywords
combustion chamber
compression ignition
combustion
flow
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63284310A
Other languages
Japanese (ja)
Inventor
Shigeru Onishi
繁 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Clean Engine Laboratory Co
Original Assignee
Nippon Clean Engine Laboratory Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Clean Engine Laboratory Co filed Critical Nippon Clean Engine Laboratory Co
Priority to JP63284310A priority Critical patent/JPH02130218A/en
Publication of JPH02130218A publication Critical patent/JPH02130218A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To enable an effective swirl flow to be formed by providing a straightening part, which has a cascade of blades and is constituted in a propeller shape or in a radial turbine shape of an adiabatic structure, on the bottom part of a combustion chamber. CONSTITUTION:The main opening part of a piston combustion chamber has a flow passage clearance 4' formed by a straightening part 5' projected from the bottom of the combustion chamber. The straightening part 5' has a cascade of blades 12 and is constituted in a propeller shape or in a radial turbine shape of an adiabatic structure so that the axial flow direction of forced air flow caused by compression can be variously changed. Thereby the direction of air flow flowing into the combustion chamber by the action of compression before the top dead center is turned, so that a combined flow field of squish and swirl is formed in the inside of the combustion chamber. Thus, effective swirl flow can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野〕 本発明は内燃機関の燃焼方法に関するものであり、圧縮
着火機関における熱効率の向上と排気有害成分低減技術
を提示するものである。
(Industrial Application Field) The present invention relates to a combustion method for an internal combustion engine, and proposes a technique for improving thermal efficiency and reducing harmful exhaust gas components in a compression ignition engine.

【従来の技術】[Conventional technology]

内燃機関として熱効率が高く省資源的に有利な圧縮着火
方式機関の燃焼型式は、直噴方式と副室方式(渦流室、
予燃焼室)とに大別され、各にの方式が性能上の長所と
短所を有することが知られている。 (発明が解決しようとする問題点〕 直噴方式は燃料と空気の混合を燃料l!J射ノヅルに依
存しているため、高い噴射圧力(200々/cm以上)
を要し、噴射系のコスト、耐久性に不利であり、多孔ノ
ヅルを使用するものでも燃焼特性によって排気中のki
ox sパティキュレートが多く、噴射ノヅルの状態が
多少変化してもエンジン性能が左右される等の問題点を
有している。しかし、熱効率が高い利点を有することも
知られている。 一方渦流室方式はシリンダーヘッドの構造が複雑となり
、噴孔の絞り作用によって直噴式より熱効率が劣り、低
速時にディーゼルノックを起こしやすい問題点を有して
いるが、MO翼、パティキユレートが少なく、噴射系圧
力も比較的低い圧力の単孔ノヅルを使用しつる利点を有
している。したがって直噴式、副室式相方の長所を維持
し問題点を解決すれば高効率、低公害の理想的内燃機関
の出現をみることができる。 (問題点を解決するための手段) 本発明は既述の諸問題点を解決する第1の手段として従
来より直噴式ピストン燃焼室型機関が用いているスワー
ルの形成手段を抜本的に改めたことにある。即ち、従来
よりスワールの生成は吸入行程における吸入空気流路の
形状(ヘリカリ、ダイレクシ冒ナル)または弁、弁座形
状(シェラウド)等によって吸気行程における流入空気
流に旋回的流動を与え、これの運動保存則を利用して圧
縮行程までスワール流として洩存させる手法を用いてい
る、したがって吸気系の抵抗によって給気効率の向上は
望むべくもなく、燃焼における空気利用率の向上と燃焼
改善には必然的に噴射条件(多噴孔、超高圧)への依存
度を大とする傾向となっている。 本発明はスワール生成を従来のごとく吸入行程で行なう
ことなく圧縮行程において圧縮作用にともないピストン
燃焼室内に流入する空気流れを利用して行なうものであ
り、ピストン燃焼室の主題孔部近傍に流れを変えつる装
置を構成することによって、その目的を達成したことを
特徴とするものである。即ち、燃焼室開孔部と整流部と
によって主開孔部に絞り作用を生じせしめ、絞り部の構
造によって流過空気流に方向性、乱れ等を与えるもので
あり、絞り部形状によって任意のスワール流あるいはス
キッシユ流またはその合成流を形成することを特徴とし
ている。 したがって、従来スワールを生成するため必要であった
複雑なeIA系#I造ボ不要となり、吸気抵抗が減する
ことによって給気効率は向上し、吸気作用にともなう損
失は軽減する。 またピストン燃焼室において任意のスワール、スキッシ
ユ、乱n等の条件を達成しうることは、直噴方式におけ
る燃料噴射条件の依存度を大きく軽減しうるものであり
、燃焼反応を支配する物理的な諸条件の整合(燃料噴霧
の微粒化、貫徹性、拡散性)に有利な空気と燃料群との
混合条件を複合的渦流雰囲気によって容易に形成するも
のである。 更に本発明は燃料群を供給する主開孔部とは別に複数個
の細流路を形成し、これによる燃焼室内の空気、ガスの
流動あるいは既燃ガスの排除導を図り、燃焼の改善と同
時に絞り損失の低減をも図るものである。 更に他の特徴は圧縮着火方式機関における従来よりの問
題点であった着火連れ現象を短縮し、デイーゼルノック
を低減する手段として、燃焼室開孔部付近あるいは整流
部を断熱的構造とし、燃焼温度によって高温域を形成し
たことにもある。 また、別の構成として複数の燃焼室を主開孔部を共用し
て放射状に配備するか、あるいは燃焼室内に仕切り壁等
をもって燃焼室を小区画に分割的に構築することとし、
これによって燃焼期間の短縮や排気組成の改曽を図るも
のである。 (実施例〕 本発明の実施例を図について説明すると次のごとくであ
る。 図1は従来の多噴孔ノヅルを使用した例でありピストン
燃焼室C)主開孔部(4)は燃焼室底部より突出した整
流部(5)とによる流路間隙(4)を有した構造であり
、整流部(g)は圧縮にともなう押込み空気流れの細流
的方向を多角的に変えうるよう、翼列(η)を有してプ
ロペラ状またはラジアルタービン状に断熱的構造によっ
て構成されている。 翼列(12)Q形状、ひねり角等は機関の要求するスワ
ール率、スキツシエ率等により流動空気要素と流路間隙
(4)との相関によって決められる・したがって従来の
多噴孔ノヅルを用いる場合には、スワール、スキッシユ
の合成的空気流の場へ多噴孔(11)より噴射される燃
料(点線)は整流部(勃に接触することなく、燃焼室内
に供給することも可能である。このように圧縮作用によ
って上死点前において、燃焼室内に流入する空気流れは
整流部によって転向され、燃焼室内にスキッシユとスワ
ールの合成流の場を形成するものであり、従来方式のご
とくg&%作用に依存した間接的なスワール形成方法よ
り効果的なスワール流を形成する。 図3は単孔ノヅル(7)を用いた燃料噴流am突拡散方
式における例である。 ピストンキャビティ(3)の主開孔!Is (4)内に
ノヅル(7)に対した衝突部(5ンがあり、衝突部は断
熱的構造となっている。衝突部(9上部社中心域にノヅ
ルよりの燃料噴流03)を衝突作用によって拡散せしめ
るための衝突面(14#構成され、外周縁(15)は空
気流れを整流する目的のひねり面(12)が複数個形成
されている。また、キャビティ(9は衝突面縁部(15
)を囲成し、間隙(4)を有する主開孔部(4)とスキ
ツシエ域よりキャビティ内に連通ずるvI数の小径流路
(6)を有している。ノヅル(7′)より供給される圧
縮着火用燃料は火花点火機関用のメタノール、ガソリン
等より粘性が高いことと、供給タイミングが制限をうけ
ること、並びに高い圧力と温度等の条件が厳しく、この
ために衝突拡散により広い範囲の燃料群の貫徹性は期待
し雌い。したがって、これに対し小さく形成された主開
孔部(4)は小さな拡がりの燃料群に適応するものであ
る。今、ピストンの上昇にともない、キャビティ内へキ
ャビティ口と衝突面縁とによって形成さnた間隙を径し
て流入する燃料群は空気流れと共に矢印曲線に示すごと
く衝突部に添ってキャビティ内の底面に軸方向の渦流状
に展開するが、衝突面縁部のひねり部の影響によって旋
回性がIA見られ、渦流は複合的となり燃料と空気の混
合は促進される。衝突作用によって拡散微粒化された燃
料粒子は高温、高圧下で空気中の酸素と急速に反応が進
行するが、特に運転中においては衝突面は燃焼熱によっ
て加熱され、高温状態となるため、衝突部、整流部等を
耐熱材とする必要はあるが、高温衝突面によって着火遅
れ現象は大巾に短縮ざnるのである〇 このように圧縮行程において供給された燃料群は順次空
気と混合し反応しつつ、キャビティ内に展開され複合的
渦流によって流動火炎を形成するが、この場合において
も火炎中には燃料供給前よりキャビティ内に在る空気が
混合し、更に燃焼反応の促aが行なわれる。即ち、キャ
ビティ全体が大ざな複合渦流室的作用を行なうものであ
り、複数の小径流路は更に混合雰囲気を促進し、キャビ
ティ内における燃焼空気利用率を向上せしめるものであ
る。 既述のごとく本燃焼方式は直噴方式でありながら主に空
気流動エネルギーの効果的利用によって圧縮着火による
燃焼雰囲気を構成するものでありピストン燃焼室の主開
孔部が比較的小さく構成することにより、任意のスキッ
シユとスワールを複合的に構成しうることを特徴として
いる。 更にlll!数の副流路を構築することにより、燃焼雰
囲気の改善を行なうものである。 また1図11.12は燃焼室内を軸方向に分割的に形成
するか、または複数の渦流室を独立的に構築して中心域
の主開孔部形状の縁部や衝突部の形状を変えることによ
って独立的な各渦流室の共用開孔部としたものである。 これに各燃焼域に形成した別の小径流路の流路に任意な
指向性を与えることにより、燃焼室内の空気あるいはガ
スの流動、乱れを強化あるいは変化させることが可能で
ありこれによって燃焼条件に変化を与えることができる
。更に小径流路の別の役割り社従来渦流室方式の欠点と
されていた絞り損失を軽減するものでもある。 このようなピストン燃焼室方式においては、熱負荷によ
る問題が懸念ざnるボ、燃焼室をセラミックス等によっ
て作ることにより問題は解決する。 また、セラミックスを用いた渦流燃焼室etm1m温度
を高く維持しつるため、パーティキユレートの発生が少
ない利点を有することは既に公知である。 本発明による効果を列記すれば次のごとくである。 (発明の効果〕 1)圧縮作用によって素焼室内に軸流、旋回流、乱れ等
を任意に形成しうることにより噴射系の依存度少なく、
燃焼が改@されたことにより熱効率が向上した。 2)複合渦流燃焼室をピストンに形成することにより、
シリンダーヘッドにおける各種弁の配置に裕度が生じ流
路の構成が容易となり、流路抵抗が減少することによっ
て充填効率が向上し、比出力が大きくなった。 3)副孔の形成とその流路方向等を変えることによって
、絞り損失が低減し、キャビティ内における空気流動、
乱れ等の整合によって燃焼が改善される、したがって燃
焼期間の短縮、排気成分、燃焼騒音の低減が図れ、絞り
損失の低減との相乗によって熱効率が更に向上した。 4)直噴式ながら複合的渦流室特性を有するため排気中
のHog濃度が低い。 5)直噴方式より低い噴射系圧力と単孔噴射弁の使用に
よって、噴射系コストy低下するとともに、機関の耐久
性、信頼性が向上する。 6)複合渦流室燃焼方式は使用燃料に対して鈍感な特性
を有するため、多種燃料機関としての特性も有するもの
である。 7)渦流室の小量複数化によって大部気筒m閃の複合渦
流燃焼方式が可能となり、これによる副次的効果は大き
なものがある。 以上のごとく本技術は、現在の技術をもって直ちに実行
しうろこと、コストの上昇をみることな(内燃機関とし
ての性能を向上しうること等は、本発明の特長的成果と
いえる
The combustion types of compression ignition engines, which have high thermal efficiency and are advantageous in terms of resource conservation, are direct injection and pre-chamber (vortex chamber,
It is known that each method has advantages and disadvantages in terms of performance. (Problems to be solved by the invention) Since the direct injection system relies on the fuel injection nozzle to mix fuel and air, the injection pressure is high (more than 200 cm/cm).
This is disadvantageous to the cost and durability of the injection system, and even if a porous nozzle is used, the combustion characteristics will reduce the amount of ki in the exhaust.
There are many ox s particulates, and even if the condition of the injection nozzle changes slightly, the engine performance is affected. However, it is also known that it has the advantage of high thermal efficiency. On the other hand, the swirl chamber type has a complicated cylinder head structure, has lower thermal efficiency than the direct injection type due to the throttling action of the nozzle holes, and has the problem of being more likely to cause diesel knock at low speeds, but has fewer MO blades and particulates. Also, the injection system has the advantage of using a single-hole nozzle with relatively low pressure. Therefore, if the advantages of the direct injection type and the pre-chamber type are maintained and the problems are solved, we can see the emergence of an ideal internal combustion engine with high efficiency and low pollution. (Means for Solving the Problems) As a first means for solving the above-mentioned problems, the present invention fundamentally changes the swirl forming means conventionally used in direct injection piston combustion chamber engines. There is a particular thing. That is, conventionally, swirl is generated by giving swirling flow to the incoming air flow during the intake stroke by the shape of the intake air flow path (helical, direxional) or the shape of the valve or valve seat (sheroud). The law of conservation of motion is used to make the swirl flow leak into the compression stroke. Therefore, there is no hope of improving the air supply efficiency due to the resistance of the intake system. inevitably tends to be highly dependent on injection conditions (multiple injection holes, ultra-high pressure). The present invention generates a swirl by using the air flow that flows into the piston combustion chamber due to the compression action during the compression stroke, instead of generating the swirl in the intake stroke as in the conventional case. The object is achieved by configuring a changeable device. In other words, the combustion chamber openings and the rectifying section create a throttling effect on the main opening, and the structure of the throttling section gives directionality, turbulence, etc. to the passing airflow. It is characterized by forming a swirl flow, a squishy flow, or a composite flow thereof. Therefore, the complicated eIA system #I structure that was conventionally necessary to generate a swirl is no longer necessary, the intake resistance is reduced, the air supply efficiency is improved, and the loss associated with the intake action is reduced. In addition, the ability to achieve arbitrary conditions such as swirl, squish, and turbulence in the piston combustion chamber can greatly reduce the dependence on fuel injection conditions in direct injection systems, and the physical The mixed vortex atmosphere can easily create air and fuel mixture conditions that are advantageous for matching various conditions (atomization, penetration, and dispersion of fuel spray). Furthermore, in the present invention, a plurality of narrow channels are formed separately from the main opening for supplying the fuel group, and this is used to flow the air and gas in the combustion chamber or to remove and guide burnt gas, thereby improving combustion. This also aims to reduce aperture loss. Another feature is that, as a means to shorten the ignition phenomenon that has traditionally been a problem in compression ignition engines and reduce diesel knock, the vicinity of the openings in the combustion chamber or the rectifying section has an adiabatic structure, which lowers the combustion temperature. This is also due to the formation of a high-temperature region. In addition, as another configuration, a plurality of combustion chambers may be arranged radially by sharing a main opening, or the combustion chamber may be divided into small sections with a partition wall or the like within the combustion chamber,
This aims to shorten the combustion period and change the exhaust composition. (Embodiment) An embodiment of the present invention will be explained with reference to the drawings as follows. Fig. 1 shows an example using a conventional multi-nozzle nozzle. It has a structure with a flow path gap (4) formed by a straightening part (5) that protrudes from the bottom, and the straightening part (g) has a blade row that can change the trickle direction of the forced air flow due to compression from multiple angles. (η), and is constructed with an adiabatic structure in the shape of a propeller or radial turbine. The Q shape, twist angle, etc. of the blade row (12) are determined by the correlation between the flowing air element and the flow path gap (4) according to the swirl rate, squeezing rate, etc. required by the engine. Therefore, when using a conventional multi-nozzle nozzle In this case, the fuel (dotted line) injected from the multiple injection holes (11) into the synthetic airflow field of swirls and squishes can also be supplied into the combustion chamber without coming into contact with the rectifying section. In this way, the airflow flowing into the combustion chamber before top dead center due to the compression action is diverted by the rectifier, forming a combined flow field of squish and swirl within the combustion chamber, and unlike the conventional method, the airflow flowing into the combustion chamber A more effective swirl flow is formed than the indirect swirl formation method that relies on action. Figure 3 is an example of the fuel jet am sudden diffusion method using a single hole nozzle (7). The main part of the piston cavity (3) There is a collision part (5) against the nozzle (7) in the open hole (4), and the collision part has an adiabatic structure.The collision part (9) has a fuel jet from the nozzle in the center area of the upper part. ) to diffuse the air by collision action.The outer periphery (15) is formed with a plurality of twisted surfaces (12) for the purpose of rectifying the air flow. Surface edge (15
), and has a main opening (4) having a gap (4) and a small-diameter flow path (6) of vI number that communicates with the inside of the cavity from the squeeze region. Compression ignition fuel supplied from the nozzle (7') has a higher viscosity than methanol, gasoline, etc. for spark ignition engines, has restrictions on supply timing, and has severe conditions such as high pressure and temperature. Therefore, it is expected that the penetration of a wide range of fuel groups will be achieved by collision diffusion. Therefore, the main aperture (4), which is formed smaller than this, is adapted to accommodate a small spread of fuel groups. Now, as the piston rises, the fuel group flowing into the cavity through the gap formed by the cavity mouth and the edge of the collision surface flows along the collision part as shown by the arrow curve, along with the air flow. However, due to the influence of the twisted portion of the edge of the collision surface, a swirling property is observed, and the vortex becomes complex and the mixing of fuel and air is promoted. The fuel particles diffused and atomized by the collision action rapidly react with oxygen in the air under high temperature and high pressure, but especially during operation, the collision surface is heated by combustion heat and reaches a high temperature state, so the collision occurs. Although it is necessary to use heat-resistant materials for the parts, flow straighteners, etc., the ignition delay phenomenon can be greatly shortened by the high-temperature collision surface.In this way, the fuel group supplied during the compression stroke mixes with air one after another. While reacting, it expands into the cavity and forms a flowing flame due to a complex vortex flow, but even in this case, the air that is present in the cavity even before the fuel is supplied is mixed into the flame, further promoting the combustion reaction. It will be done. That is, the entire cavity functions roughly like a complex swirl chamber, and the plurality of small-diameter flow passages further promotes a mixed atmosphere and improves the utilization rate of combustion air within the cavity. As mentioned above, although this combustion method is a direct injection method, it mainly creates a combustion atmosphere by compression ignition by effectively utilizing air flow energy, and the main opening of the piston combustion chamber is configured to be relatively small. It is characterized by the fact that any combination of squishy and swirl can be constructed. Even more! The combustion atmosphere is improved by constructing several sub-flow passages. In addition, Figure 11.12 shows that the combustion chamber is divided into parts in the axial direction, or multiple swirl chambers are constructed independently to change the shape of the edges and collision parts of the main opening in the central region. This makes it possible to use a common aperture for each independent swirl chamber. By giving arbitrary directionality to the flow path of another small diameter flow path formed in each combustion zone, it is possible to strengthen or change the flow and turbulence of air or gas within the combustion chamber, thereby improving the combustion conditions. can make a difference. Furthermore, another role of the small-diameter flow path is to reduce throttling loss, which has been considered a drawback of the conventional swirl chamber system. In such a piston combustion chamber system, there is no concern about the problem of heat load, and the problem can be solved by making the combustion chamber of ceramics or the like. Furthermore, it is already known that the vortex combustion chamber etm1m using ceramics has the advantage of generating less particulates because the temperature can be maintained high. The effects of the present invention are listed below. (Effects of the invention) 1) Axial flow, swirling flow, turbulence, etc. can be formed arbitrarily in the bisque firing chamber by compression action, reducing dependence on the injection system.
Thermal efficiency has been improved by improving combustion. 2) By forming a compound swirl combustion chamber in the piston,
The arrangement of the various valves in the cylinder head now has more latitude, making it easier to configure the flow passages, reducing flow passage resistance, improving charging efficiency, and increasing specific output. 3) By changing the formation of the sub-holes and the flow path direction, etc., the throttling loss is reduced and the air flow inside the cavity is improved.
Combustion is improved by matching turbulence, etc., thereby shortening the combustion period, reducing exhaust components and combustion noise, and further improving thermal efficiency due to the synergistic effect of reducing throttle loss. 4) Although it is a direct injection type, it has complex swirl chamber characteristics, so the Hog concentration in the exhaust gas is low. 5) By using a lower injection system pressure than the direct injection system and a single-hole injection valve, the injection system cost y is reduced and the durability and reliability of the engine are improved. 6) Since the composite swirl chamber combustion system has characteristics that are insensitive to the fuel used, it also has characteristics as a multi-fuel engine. 7) By using a small number of swirl chambers, a composite swirl combustion system with m flashes in most cylinders becomes possible, and the secondary effects of this are significant. As described above, this technology can be implemented immediately using current technology and without increasing costs (the ability to improve the performance of an internal combustion engine, etc. is a characteristic result of the present invention).

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の構成を示すシリンダーヘッドの一部と、
ピストン燃焼室を示す断面図ならびに透視図であり、図
1は多噴孔ノヅルを使用して燃焼室中心域の整流部によ
って細流空気流れに旋回性とシれを与える構成例を示す
。 図2は整流部を上部より見たl1ll造例を示し、人は
プリベラ状のひねりを有するもの、Bは多段的に切欠部
を有するもの、0はラジアルタービン翼状の例を示して
いる。 図3は多段的勇欠部を有する断熱構造と衝突拡散燃料な
らびに軸方向空気流れを示す。 図4は圧縮にともなう細流的渦流を矢印曲線で示すもの
であり、図5、図6は4個の副流路を形成した例を示し
たものである。 図7は挟角多孔ノヅルを用いた燃料衝突拡散の例を示し
、図8、図9はキャビティ内に軸流とは異なるガス流動
を発生せしめるための副流路形状の例を示すものである
。 図10のり、罵は衝突部上域の切欠部の例を示し1は主
開孔部形状を4弁状に切欠した例を示すものである。 図11は主開孔部を共用する4個の独立的燃焼室を構築
した例の透視図であり、図12はキャビティ内に軸方向
の仕切り部を構成し、分割的燃焼室を4室形成した例の
透視図である。 図中、(1)−・・シリンダーヘッド部、■・・・燃料
ノヅル、(ジ・・・ピストン燃焼室、(4)−・・主開
孔部、<4−・・流路間隙、(5)−・・衝突部、(5
)・・・整流部または変流部、(6) ・・・小径流路
、(7)・・・単孔ノヅル、(8)・・・挟角多孔ノヅ
ル、(9) ・・・空気流れ方向を示す。(10)−・
・挟角多孔ノヅルよりの噴流を示すものである。(11
)−・・広角多ルノヅルと点線は上死点前の噴流方向、
鎖線は上死点近傍において燃料噴流の一部が高温整流部
に接触する状態を示すものである。(12)−・翼列、
(12)・・・ひねり面、(13)・・・燃料噴流、(
14)−・・衝突面、(15)・・・衝突面縁部、(1
6)−・・仕切り壁を示す0図4 図 7
The drawing shows a part of a cylinder head showing the configuration of the present invention,
FIG. 1 is a cross-sectional view and a perspective view showing a piston combustion chamber, and FIG. 1 shows an example of a configuration in which a multi-nozzle nozzle is used to give swirling and shedding to a trickle air flow by a rectifier in the center area of the combustion chamber. FIG. 2 shows an example of the rectifying section viewed from above, where 1 has a privera-like twist, B has multi-stage notches, and 0 has a radial turbine blade shape. FIG. 3 shows an insulating structure with multi-stage recesses, impingement-diffusion fuel, and axial air flow. FIG. 4 shows a trickle-like vortex flow due to compression using arrow curves, and FIGS. 5 and 6 show an example in which four sub-channels are formed. Figure 7 shows an example of fuel collision diffusion using a narrow-angle porous nozzle, and Figures 8 and 9 show examples of sub-channel shapes for generating gas flow different from axial flow in the cavity. . In FIG. 10, numeral 1 shows an example of a notch in the upper region of the collision part, and 1 shows an example in which the main opening has a four-valve shape. Figure 11 is a perspective view of an example in which four independent combustion chambers are constructed that share the main opening, and Figure 12 is a perspective view of an example in which an axial partition is constructed within the cavity to form four divided combustion chambers. FIG. In the figure, (1)--Cylinder head, ■-Fuel nozzle, (Di-piston combustion chamber, (4)--Main opening, <4--Flow path gap, ( 5)--Collision part, (5
)... Rectifying section or current transformation section, (6)... Small diameter channel, (7)... Single hole nozzle, (8)... Angular multi-hole nozzle, (9)... Air flow. Show direction. (10)-・
・This shows a jet flow from a narrow-angle porous nozzle. (11
)−...The wide-angle multi-nosed crane and the dotted line are the jet direction before top dead center,
The chain line indicates a state in which a portion of the fuel jet comes into contact with the high temperature rectifier near the top dead center. (12)--blade row,
(12)... Twisted surface, (13)... Fuel jet, (
14) --- Collision surface, (15) -- Collision surface edge, (1
6) ---Figure 4 showing the partition wall Figure 7

Claims (6)

【特許請求の範囲】[Claims] (1)ピストン燃焼室型直噴機関において、圧縮作用に
よつて燃焼室内に流入する空気流れ方向を変えることを
目的として、燃焼室主開孔部内域へ燃焼室底部より主開
孔部付近に達するように凸部を設け、その上部に変流部
を形成する事により主開孔部形状と変流部形状との相関
形状により、燃焼室内に流入する空気流に軸流性、旋回
性、乱れ等を与え、これによつて燃焼室内に複合的渦流
を形成することを特徴とした圧縮着火内燃機関の複合渦
流燃焼方式。
(1) In a piston combustion chamber type direct injection engine, for the purpose of changing the flow direction of air flowing into the combustion chamber by compression action, from the bottom of the combustion chamber to the inner area of the main opening of the combustion chamber, near the main opening. By providing a convex part so as to reach the target and forming a current transformation part on the upper part of the convex part, the shape of the main opening and the shape of the current transformation part create an axial flow, a swirling property, and a swirling property in the air flow flowing into the combustion chamber. A composite vortex combustion system for a compression ignition internal combustion engine characterized by providing turbulence, etc., thereby forming a composite vortex within the combustion chamber.
(2)燃焼室主開孔部内に構築された変流部の中心域に
平滑面を形成し、これに燃料噴流を衝突させ衝突作用に
よつて拡散、微粒化された燃料群を順次空気流動によつ
て燃焼室内に展開させることを特徴とした前記特許請求
範囲(1)記載の直噴式衝突拡散圧縮着火内燃機関。
(2) A smooth surface is formed in the center area of the flow transformation section built in the main opening of the combustion chamber, and a fuel jet is impinged on this surface, and the fuel is dispersed and atomized by the collision action, and the air flows sequentially. A direct injection type impingement-diffusion compression ignition internal combustion engine according to claim (1), characterized in that the internal combustion engine is expanded into a combustion chamber by a combustion engine.
(3)ピストン頂面に構築された主開孔部の外域に複数
のキャビティと連通する副開孔部を構築し、燃焼室内に
おけるガス流動に変化を与えることを特徴とする前記特
許請求範囲(1)・(2)記載の複合渦流燃焼方式。
(3) The scope of the above-mentioned claims ( Composite vortex combustion method described in 1) and (2).
(4)ピストン燃焼室上部の主開孔部縁部に複数の切欠
部を設けるか、または衝突部縁部形状を変えるか、ある
いはその両方の形状変化とによつてキャビティ形状に適
合する主開孔部形状を構築したことを特徴とした前記特
許請求範囲(1)・(2)記載の複合渦流燃焼方式内燃
機関。
(4) The main opening is adapted to the shape of the cavity by providing a plurality of notches on the edge of the main opening in the upper part of the piston combustion chamber, or by changing the shape of the edge of the collision part, or by changing the shape of both. A composite swirl combustion internal combustion engine according to claims (1) and (2) above, characterized in that the hole shape is constructed.
(5)ピストン燃焼室上部の主開孔部を共用し、キャビ
ティ内に放射状に仕切り部を設けるかまたは複数個の独
立的渦流室を主開孔部を軸として放射状に形成すること
を特徴とした複合渦流燃焼室方式圧縮着火機関。
(5) The main aperture in the upper part of the piston combustion chamber is shared, and partitions are provided radially within the cavity, or a plurality of independent swirl chambers are formed radially around the main aperture. A compression ignition engine with a combined vortex combustion chamber system.
(6)ピストン燃焼室の主開孔部に位置する整流部ある
いは衝突部を断熱的構造とすることによつて高温度とし
、着火遅れ現象の短縮を図りたることを特徴とした前記
特許請求範囲(1)〜(5)記載の圧縮着火方式内燃機
関。
(6) The scope of the above-mentioned patent characterized in that the rectifying part or the collision part located in the main opening of the piston combustion chamber has an adiabatic structure to raise the temperature to shorten the ignition delay phenomenon. Compression ignition internal combustion engines according to (1) to (5).
JP63284310A 1988-11-09 1988-11-09 Direct injection type compound turbulent flow compression ignition method and impact diffusion type compound turbulent flow compression ignition engine Pending JPH02130218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284310A JPH02130218A (en) 1988-11-09 1988-11-09 Direct injection type compound turbulent flow compression ignition method and impact diffusion type compound turbulent flow compression ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284310A JPH02130218A (en) 1988-11-09 1988-11-09 Direct injection type compound turbulent flow compression ignition method and impact diffusion type compound turbulent flow compression ignition engine

Publications (1)

Publication Number Publication Date
JPH02130218A true JPH02130218A (en) 1990-05-18

Family

ID=17676885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284310A Pending JPH02130218A (en) 1988-11-09 1988-11-09 Direct injection type compound turbulent flow compression ignition method and impact diffusion type compound turbulent flow compression ignition engine

Country Status (1)

Country Link
JP (1) JPH02130218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417125U (en) * 1990-05-31 1992-02-13
KR19990040564A (en) * 1997-11-19 1999-06-05 정몽규 Combustion chamber fuel vortex
EP1605147A1 (en) * 2004-06-07 2005-12-14 Delphi Technologies, Inc. Apparatus for improving combustion
JP2011220210A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Fuel injection device and fuel injection nozzle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417125U (en) * 1990-05-31 1992-02-13
KR19990040564A (en) * 1997-11-19 1999-06-05 정몽규 Combustion chamber fuel vortex
EP1605147A1 (en) * 2004-06-07 2005-12-14 Delphi Technologies, Inc. Apparatus for improving combustion
JP2011220210A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Fuel injection device and fuel injection nozzle

Similar Documents

Publication Publication Date Title
EP3596320B1 (en) A piston for an internal combustion engine
US10731544B2 (en) Internal combustion engine and method for its operation
US5357924A (en) Direct-injection type compression-ignition internal combustion engine
US9909489B1 (en) Piston fluid passages for reduced soot
US4237827A (en) Swirl-chamber diesel engine with piston formed with curved groove at its crown
US4351294A (en) Fluidic diode combustion chamber
CN110578614B (en) Piston design for flow redirection
US5163395A (en) Two stroke diesel engine
JPH02130218A (en) Direct injection type compound turbulent flow compression ignition method and impact diffusion type compound turbulent flow compression ignition engine
US5613471A (en) Diesel engine using fuel jet impingement and diffusion
JP3191514B2 (en) Subchamber engine
EP0828066A1 (en) Combustion chamber of diesel engine
JPH07208170A (en) Auxiliary chamber structure in auxiliary chamber type engine
JP2819054B2 (en) Secondary combustion chamber insulated engine
JP3092393B2 (en) Subchamber engine
US11536221B2 (en) Piston crown for a combustion system and an associated method thereof
JPS6329016A (en) Subchamber type diesel combustion chamber
JPS63129116A (en) Phase flow air charging system internal combustion engine
JPS61106914A (en) Combustion chamber in internal combustion engine
JP3035990B2 (en) Sub-chamber diesel engine
JP3956535B2 (en) Sub-chamber engine
JP3275470B2 (en) Subchamber engine
JPH0143467Y2 (en)
JPH0134656Y2 (en)
JP3163842B2 (en) Subchamber engine