JPH0213001B2 - - Google Patents

Info

Publication number
JPH0213001B2
JPH0213001B2 JP57127351A JP12735182A JPH0213001B2 JP H0213001 B2 JPH0213001 B2 JP H0213001B2 JP 57127351 A JP57127351 A JP 57127351A JP 12735182 A JP12735182 A JP 12735182A JP H0213001 B2 JPH0213001 B2 JP H0213001B2
Authority
JP
Japan
Prior art keywords
powder
less
sintered
density
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57127351A
Other languages
Japanese (ja)
Other versions
JPS5920401A (en
Inventor
Tatsuya Tomioka
Takeo Hisada
Shunji Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12735182A priority Critical patent/JPS5920401A/en
Publication of JPS5920401A publication Critical patent/JPS5920401A/en
Publication of JPH0213001B2 publication Critical patent/JPH0213001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉末冶金用合金粉末に係り、特に高密
度、高強度の焼結体を与え得る粉末冶金用合金粉
末に関するものである。 近年、金属粉末から粉末冶金手法によつて成形
し、焼結して得られる焼結部品(焼結体)の適用
分野の拡大には著しいものがあり、とりわけ液相
を利用した高密度焼結技術の発展により、高強度
部品の分野への進出には目覚ましいものがある。 従来、かかる高強度部品への進出を目指した
Cr系ステンレス鋼粉末を用いる粉末冶金では、
C及びPの同時添加による燐化鉄共晶(Fe−
Fe3C−Fe3P)の液相を利用して焼結密度を向上
させ、加えてその共晶部分が高硬度であるところ
から、その耐摩耗性を著しく向上させている。そ
して、このような手法によつて、工業的には密度
比で約93%程度のものまでの焼結体の製造が可能
となり、比較的高密度な耐摩耗部品、例えば自動
車エンジン回りの摺動部材、食肉機械部品(カツ
ター)等への適用が図られてきている。 しかしながら、粉末冶金手法によつて得られる
焼結部品の適用分野の更なる拡大には、より一層
の性能向上が必要であり、このため高密度、高強
度を具備した焼結部品の開発が望まれているので
ある。ところで、周知のように、焼結部品の強度
は主に(a)基地の強度、(b)密度比の影響を受け、そ
して基地の強度が高いほど、また密度も高いほ
ど、得られる焼結体の強度は向上されるのであ
る。 ここにおいて、本発明は、かかる焼結体の密度
の向上、ひいてはその強度の向上を図ることを目
的とするものであつて、このため従来からのC、
Pの添加に加えて、更にMnをも必須元素として
添加しようとするものであり、これは、本発明者
等が詳細な実験を繰り返した結果、成形圧力や焼
結温度等の製造条件が同じである同一工程で製造
した場合に、Mnの添加によつて得られる焼結体
の密度が明らかに向上される知見を得たことに基
づくものである。 すなわち、本発明は、粉末冶金用合金粉末とし
ては、Cr(クロム)を7.5%を越え、30.0%以下含
むFe−Cr系合金粉末に、更に0.1〜1.5%のMn(マ
ンガン)及び、0.1〜1.0%のP(燐)を合金成分
として含有せしめてなることを特徴とするもので
あり、そしてこのような粉末冶金用合金粉末を用
いて焼結せしめることにより、高密度、高強度の
焼結体が効果的に得られるのである。 ところで、かかる本発明において対象とされる
Fe−Cr系合金粉末は、Crを7.5%を越え、30.0%
以下含み、残部が実質的にFeからなるものであ
る。なお、かかる含有せしめられるCrは、基地
を強化し、炭化物を形成して耐摩耗性を付与し、
更に耐酸化性を向上せしめる等、高密度、高強度
部品には必須の元素であり、その有効な添加効果
を得るには7.5%よりも大なる含有量とする必要
がある。また、Crの含有量が30%を越えるよう
になると粉末冶金操作における成形操作において
圧縮性が著しく低下するようになる。このため、
Crの含有量としては7.5%を越え、30.0%以下の
範囲が採用されることとなるのである。 なお、このようなFe−Cr系合金粉末には、そ
の製造工程中において必然的にCやSiが含有せし
められるようになるのであるが、このCとして
は、その含有量があまりにも多くなり過ぎると基
地が硬化して粉末が硬くなり、の圧縮性を著しく
損ね、以て目的とする成形品を得るのが困難とな
つて粉末冶金用としては適さなくなるため、一般
に0.1%をその上限とすることが望ましい。また、
Siは粉末製造時の粉末表面酸化を抑制するのに有
効であり、このためその含有量が0.1%以上とな
るようにされるが、その過度の含有は、また粉末
の圧縮性を損ねることとなるため、その上限は
4.0%に止められる。 そして、このようなFe−Cr系合金粉末に対し
て、本発明では、更にMn及びPの所定量が合金
成分として含有せしめられることとなるのであ
る。ところで、この含有されるMnは粉末の焼結
密度の向上に顕著な効果を示し、また焼結体の焼
入れ性にも好影響をもたらす元素である。このよ
うな効果、特に有効な密度向上効果を発揮させる
には、少なくとも0.1%以上のMnの添加が必須で
あるが、あまりにもMnを過度に添加すると粉末
の表面酸化を助長し、更に粉末を球状化させる作
用があつて、その成形性を低下せしめることとな
るため、その上限を1.5%とする必要がある。な
お、かかるMnの含有量の好ましい範囲としては
一般に0.2〜0.7%である。また、PはCの共存に
より燐化鉄共晶を生成させるのに必須の成分であ
つて、そのような燐化鉄共晶の液相を利用して焼
結密度を向上させる効果を期待するには、少なく
とも0.1%含有せしめる必要があるのである。一
方、Pの過度の添加は粉末の圧縮性を低下させ、
多量の液相の出現による焼結温度コントロールを
困難にするところから、その上限は1.0%である。
なお、かかるPの好ましい含有量範囲としては
0.2〜0.7%である。 また、かかるFe−Cr系合金粉末には、上記の
如きMn及びPの添加に加えて、更に必要に応じ
て5.0%以下のMo(モリブデン)、5.0%以下のW
(タングステン)、3.0%以下のV(バナジウム)、
及び5.0%以下のNb(ニオブ)のうちの少なくと
も1種が含有せしめられる。これらMo、W、
V、Nbは焼結体中における炭化物の形成に有効
であり、この目的のために添加されるのである
が、その合計の添加総量が10%を越えるようにな
ると、その添加量に見合つた効果が期待され得
ず、むしろコスト高を惹起するのみであるところ
から、その合計量は10%以下とすることが適当で
ある。 そして、このような添加されるべき各成分は、
前記Fe−Cr系合金成分と共に溶融せしめられて、
所定の合金溶湯が調製され、次いでこの合金溶湯
が公知の水噴霧やガス噴霧による噴霧法等の公知
の手法によつて所定の粉末とされるのである。な
お、この公知の粉末化手法にて形成される本発明
に従う粉末冶金用合金粉末は、通常の粉末冶金用
金属粉と同様に適宜の大きさの粒子であり、そし
て適宜の粒度分布を有するものであるが、一般に
500μ(JIS32メツシユ)程度以下、好ましくは
150μ程度以下の粒径の粒子が用いられることと
なる。 また、かくして得られた本発明に従うFe−Cr
系合金粉末を用いて所定の焼結体(焼結部品)を
得るには、従来から知られている各種の粉末冶金
手法が採用されるものであるが、その際かかる合
金粉末には0.5〜5.0%、好ましくは1〜4%の割
合(合金粉末重量に対するもの)の炭素粉末が添
加、配合せしめられる。この添加配合される黒鉛
粉末、カーボンブラツク等の炭素粉末は焼結時に
おいて燐化鉄共晶を生成せしめ、得られる焼結体
の密度を向上させるのに必須の成分であつて、ま
た焼結体中に炭化物を生成せしめることによつて
その耐摩耗性を著しく向上せしめる効果を奏す
る。なお、合金粉末に対する炭素粉末の配合量が
0.5%未満では、目的とする共晶の生成量が少な
く、従つて所望の性能が得られず、また5%を越
える炭素粉末の添加は、共晶の粗大化を招き、こ
のため衝撃値を低下せしめる問題を生じる。それ
故、本発明に従う合金成分に対する炭素粉末の添
加量としては0.5〜5%の範囲の値が採用される
のである。 また、かかる本発明に従う合金粉末と炭素粉末
との混合物は、常法に従つて所望の形状に成形、
特に加圧成形(圧縮成形)せしめられて所望の成
形品(圧粉体)が形成され、次いでこれが高温度
に加熱されることによつて焼結せしめられ、目的
とする高密度、高強度の焼結体(焼結部品)が得
られるのである。 このように、本発明に従えば、Fe−Cr系合金
粉末に更にMn及びPの所定量を含有せしめるこ
とによつて、最終製品たる焼結体の密度並びに強
度を著しく向上せしめ得るのであり、これによつ
て焼結部品の適用分野の更なる拡大が図り得るこ
ととなつたのである。 以下、本発明を更に具体的に明らかにするため
に、本発明に従ういくつかの実施例について説明
するが、本発明がかかる実施例の記載によつて何
等の制約をも受けるものではないことは言うまで
もないところである。なお、先に説明した各合金
成分の百分率並びに以下の実施例における百分率
は、何れも特に断わりのない限り重量基準で示さ
れるものである。 実施例 1 各種の化学組成を有する合金溶湯から、公知の
水噴霧による粉末化手法によつて第1表に示され
る如き種々の合金粉末を製造し、次いでこれを篩
分けして−100メツシユの分級物を取り出した後、
その分級重量に対して3%の割合の黒鉛粉末を添
加せしめ、均一に配合せしめた。次いで、その配
合物を5ton/cm2の圧力で加圧成形せしめ、5mm×
3mm×30mmの寸法の成形品(圧粉体)を得て、こ
れを1130℃×30分の真空焼結を施すことによつ
て、焼結ステンレス鋼の各種の試験片を製造し
た。 かくして得られた試験片について、その焼結密
度を水浸法(JIS−Z−2505)で測定した後、支
点間距離20mmの3点曲げ試験を実施し、それらの
結果をまとめて第1表に示した。 第1表の結果から明らかなように、供試材No.1
のものでは粉末中のMn含有量が少ないために、
得られた焼結体の焼結密度が低く、抗折力が低
い。また、Mnを多量に含有せしめた供試材No.5
のものでは、粉末の成形時にクラツクが発生して
しまつたために、最後まで試験を続けることがで
きなかつた。 更に、供試材No.6のものでは、Pの含有量が少
ないため焼結密度が低く、抗折力も著しく低い値
となつており、一方Pを過剰に添加したNo.9では
共晶組織が粗大化したために、密度が上昇してい
るにもかかわらず、逆に抗折力が低下しているの
が認められた。 これに対して、本発明に従う供試材No.2〜4及
び7、8のものにあつては、焼結密度が高く、ま
た抗折力も著しく優れているのである。 なお、供試材No.7及び9の焼結体のミクロ組織
を明らかにするために、それぞれの著微鏡写真
(400倍)をそれぞれ第1図及び第2図に示すが、
それら写真の比較からも明らかなように、本発明
に従うNo.7の供試材はNo.9のものよりもはるかに
組織が細かく、それ故密度と共に、抗折力も向上
されていることが理解されるのである。
The present invention relates to an alloy powder for powder metallurgy, and particularly to an alloy powder for powder metallurgy that can provide a sintered body with high density and high strength. In recent years, the field of application of sintered parts (sintered bodies) obtained by molding metal powder using powder metallurgy and sintering has expanded significantly, especially high-density sintering using a liquid phase. With the development of technology, there has been a remarkable advance into the field of high-strength parts. Previously, we aimed to expand into such high-strength parts.
In powder metallurgy using Cr stainless steel powder,
Iron phosphide eutectic (Fe-
The sintered density is improved by utilizing the liquid phase of Fe 3 C−Fe 3 P), and the high hardness of the eutectic portion significantly improves its wear resistance. By using this method, it is possible to manufacture sintered bodies with a density ratio of approximately 93%, making it possible to manufacture sintered bodies with a density ratio of approximately 93%. Efforts are being made to apply it to parts, meat machine parts (cutters), etc. However, in order to further expand the field of application of sintered parts obtained by powder metallurgy, further performance improvements are required, and for this reason, it is desirable to develop sintered parts with high density and high strength. It is because of this. By the way, as is well known, the strength of sintered parts is mainly affected by (a) the strength of the base and (b) the density ratio, and the higher the strength of the base and the higher the density, the higher the sintered parts obtained. The strength of the body is improved. Here, the present invention aims to improve the density of such a sintered body, and further improve its strength, and for this purpose, the conventional C,
In addition to the addition of P, Mn is also added as an essential element, and as a result of repeated detailed experiments by the inventors, this is possible even if the manufacturing conditions such as molding pressure and sintering temperature are the same. This is based on the finding that the density of the sintered body obtained by adding Mn is clearly improved when manufactured in the same process. That is, the present invention provides an alloy powder for powder metallurgy that includes Fe-Cr alloy powder containing more than 7.5% and 30.0% or less of Cr (chromium), and further 0.1 to 1.5% of Mn (manganese) and 0.1 to 1.5% of Mn (manganese). It is characterized by containing 1.0% P (phosphorus) as an alloy component, and by sintering using such an alloy powder for powder metallurgy, it can be sintered with high density and high strength. The body can be effectively obtained. By the way, the subject matter of the present invention is
Fe-Cr alloy powder contains Cr exceeding 7.5% and 30.0%
Including the following, the remainder consists essentially of Fe. In addition, the Cr contained strengthens the matrix, forms carbides, and imparts wear resistance.
Furthermore, it is an essential element for high-density, high-strength parts, such as improving oxidation resistance, and to obtain its effective addition effect, the content must be greater than 7.5%. Furthermore, if the Cr content exceeds 30%, the compressibility in forming operations in powder metallurgy operations will be significantly reduced. For this reason,
The Cr content will be in the range of more than 7.5% and less than 30.0%. In addition, such Fe-Cr alloy powder inevitably contains C and Si during its manufacturing process, but the content of C becomes too large. The base hardens and the powder becomes hard, significantly impairing its compressibility and making it difficult to obtain the desired molded product, making it unsuitable for powder metallurgy, so the upper limit is generally set at 0.1%. This is desirable. Also,
Si is effective in suppressing powder surface oxidation during powder production, and its content is therefore set at 0.1% or more, but excessive content may also impair the compressibility of the powder. Therefore, the upper limit is
It can be stopped at 4.0%. In the present invention, predetermined amounts of Mn and P are further included as alloy components in such Fe-Cr alloy powder. Incidentally, the contained Mn is an element that has a remarkable effect on improving the sintered density of the powder and also has a favorable effect on the hardenability of the sintered body. In order to exhibit such an effect, especially an effective density improvement effect, it is essential to add at least 0.1% of Mn, but adding too much Mn will promote surface oxidation of the powder, further damaging the powder. Since it has the effect of making it spherical and reduces its moldability, its upper limit needs to be 1.5%. The preferred range of the Mn content is generally 0.2 to 0.7%. In addition, P is an essential component to generate iron phosphide eutectic due to the coexistence of C, and it is expected that the liquid phase of such iron phosphide eutectic will be used to improve the sintered density. Therefore, it is necessary to contain at least 0.1%. On the other hand, excessive addition of P reduces the compressibility of the powder,
The upper limit is 1.0% because the appearance of a large amount of liquid phase makes it difficult to control the sintering temperature.
In addition, the preferable content range of P is
It is 0.2-0.7%. In addition to the addition of Mn and P as described above, the Fe-Cr alloy powder may also contain 5.0% or less Mo (molybdenum) and 5.0% or less W.
(tungsten), 3.0% or less V (vanadium),
and 5.0% or less of Nb (niobium). These Mo, W,
V and Nb are effective in forming carbides in the sintered body, and are added for this purpose, but when the total amount added exceeds 10%, the effect is commensurate with the amount added. Since this cannot be expected and will only lead to higher costs, it is appropriate that the total amount be 10% or less. And each of these ingredients to be added is
being melted together with the Fe-Cr alloy component,
A predetermined molten alloy is prepared, and then this molten alloy is made into a predetermined powder by a known method such as a known atomization method using water spray or gas atomization. In addition, the alloy powder for powder metallurgy according to the present invention formed by this known powdering method has particles of an appropriate size and an appropriate particle size distribution like ordinary metal powder for powder metallurgy. However, in general
500μ (JIS32 mesh) or less, preferably
Particles with a particle size of about 150μ or less will be used. Moreover, the thus obtained Fe-Cr according to the present invention
In order to obtain a predetermined sintered body (sintered part) using alloy powder, various conventionally known powder metallurgy methods are employed. Carbon powder is added in a proportion of 5.0%, preferably 1 to 4% (based on the weight of the alloy powder). This added carbon powder such as graphite powder and carbon black is an essential component for generating iron phosphide eutectic during sintering and improving the density of the obtained sintered body. By producing carbide in the body, it has the effect of significantly improving its wear resistance. Note that the amount of carbon powder added to the alloy powder is
If it is less than 0.5%, the amount of the desired eutectic produced is small and the desired performance cannot be obtained, and if it exceeds 5%, the eutectic becomes coarser and the impact value is reduced. This can cause problems that cause deterioration. Therefore, the amount of carbon powder added to the alloy components according to the present invention is in the range of 0.5 to 5%. Further, the mixture of alloy powder and carbon powder according to the present invention can be molded into a desired shape according to a conventional method.
In particular, pressure molding (compression molding) is performed to form a desired molded product (green compact), which is then heated to a high temperature and sintered to achieve the desired high density and high strength. A sintered body (sintered part) is obtained. As described above, according to the present invention, by further containing predetermined amounts of Mn and P in the Fe-Cr alloy powder, the density and strength of the final product, sintered body, can be significantly improved. This made it possible to further expand the fields of application of sintered parts. Hereinafter, some embodiments according to the present invention will be described in order to clarify the present invention more specifically, but it should be understood that the present invention is not limited in any way by the description of such embodiments. It goes without saying. Note that the percentages of each alloy component described above and the percentages in the following examples are all expressed on a weight basis unless otherwise specified. Example 1 Various alloy powders as shown in Table 1 were produced from molten alloys having various chemical compositions by a known powdering method using water spray, and then sieved to obtain -100 mesh. After taking out the classified material,
Graphite powder was added in an amount of 3% based on the classified weight and mixed uniformly. Next, the mixture was pressure-molded at a pressure of 5 tons/cm 2 to form a 5 mm×
A molded product (green compact) with dimensions of 3 mm x 30 mm was obtained and vacuum sintered at 1130° C. for 30 minutes to produce various test pieces of sintered stainless steel. After measuring the sintered density of the thus obtained test piece by the water immersion method (JIS-Z-2505), a three-point bending test was conducted with a distance between supports of 20 mm, and the results are summarized in Table 1. It was shown to. As is clear from the results in Table 1, sample material No. 1
Because of the low Mn content in the powder,
The obtained sintered body has a low sintered density and a low transverse rupture strength. In addition, sample material No. 5 containing a large amount of Mn
However, the test could not be continued to the end because cracks occurred during powder compaction. Furthermore, sample material No. 6 has a low sintered density and a significantly low transverse rupture strength due to the low P content, while sample material No. 9, in which P was added in excess, had a eutectic structure. It was observed that the transverse rupture strength decreased despite the increase in density due to coarsening of the material. On the other hand, sample materials Nos. 2 to 4, 7, and 8 according to the present invention have high sintered densities and extremely excellent transverse rupture strengths. In order to clarify the microstructures of the sintered bodies of test materials No. 7 and 9, microscopic photographs (400x) of each are shown in Figs. 1 and 2, respectively.
As is clear from the comparison of these photographs, it can be seen that the structure of sample No. 7 according to the present invention is much finer than that of No. 9, and therefore the transverse rupture strength as well as the density are improved. It will be done.

【表】 実施例 2 下記第2表に示される化学組成を有する合金溶
湯を用いて公知の水噴霧による粉末化手法によつ
て、種々なる合金粉末を製造した後、実施例1と
同様にして分級し、更にその分級物に対して炭素
粉末を2%添加して均一にブレンドせしめ、更に
その後実施例1と同様にして試験片を製造し、特
性を調査した。 その結果を第3表に示すが、かかる第3表から
明らかなように、本発明に従う合金粉末から得ら
れた焼結体No.16〜21は、その焼結密度が著しく向
上せしめられており、またその抗折力も著しく向
上されている。一方、Mo、W、V、Nbを過剰に
添加したNo.22、23のものでは成形が不可能であつ
た。 なお、かかる効果は、水噴霧による粉末化手法
に代えて、他の手法であるガス噴霧による粉末化
手法によつて得られた合金粉末であつても同様に
達成されることが確認された。
[Table] Example 2 Various alloy powders were produced using a molten alloy having the chemical composition shown in Table 2 below by a known powdering method using water spray, and then processed in the same manner as in Example 1. After classifying, 2% of carbon powder was added to the classified product and blended uniformly. Thereafter, test pieces were manufactured in the same manner as in Example 1, and their properties were investigated. The results are shown in Table 3, and as is clear from Table 3, the sintered bodies No. 16 to 21 obtained from the alloy powder according to the present invention have significantly improved sintered densities. , and its transverse rupture strength has also been significantly improved. On the other hand, molding was impossible with Nos. 22 and 23 in which Mo, W, V, and Nb were added excessively. It has been confirmed that this effect can be similarly achieved even when the alloy powder is obtained by another method, that is, a powdering method using gas spraying, instead of the powdering method using water spraying.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ実施例1におい
て得られた本発明に従う粉末を用いた焼結体と比
較例の焼結体の金属組織を示す顕微鏡写真であ
る。
FIGS. 1 and 2 are micrographs showing the metal structures of a sintered body using the powder according to the present invention obtained in Example 1 and a sintered body of a comparative example, respectively.

Claims (1)

【特許請求の範囲】 1 Cr:7.5%を越え、30.0%以下、Mn:0.1〜
1.5%、P:0.1〜1.0%、残部:Fe及び不可避的不
純物からなることを特徴とする粉末冶金用合金粉
末。 2 Cr:7.5%を越え、30.0%以下、Mn:0.1〜
1.5%、P:0.1〜1.0%、C:0.1%以下、Si:0.1
〜4.0%、残部:Fe及び不可避的不純物からなる
ことを特徴とする粉末冶金用合金粉末。 3 Cr:7.5%を越え、30.0%以下と、Mn:0.1〜
1.5%と、P:0.1〜1.0%と、5.0%以下のMo、5.0
%以下のW、3.0%以下のV及び5.0%以下のNbの
うちから選ばれた1種若しくは2種以上の元素の
合計の含有量で10%以下と、残部:Fe及び不可
避的不純物とからなることを特徴とする粉末冶金
用合金粉末。 4 Cr:7.5%を越え、30.0%以下と、Mn:0.1〜
1.5%と、P:0.1〜1.0%と、C:0.1%以下と、
Si:0.1〜4.0%と、5.0%以下のMo、5.0%以下の
W、3.0%以下のV及び5.0%以下のNbのうちから
選ばれた1種若しくは2種以上の元素の合計の含
有量で10%以下と、残部:Fe及び不可避的不純
物とからなることを特徴とする粉末冶金用合金粉
末。
[Claims] 1 Cr: more than 7.5% and 30.0% or less, Mn: 0.1~
1.5%, P: 0.1-1.0%, balance: Fe and inevitable impurities. 2 Cr: over 7.5%, 30.0% or less, Mn: 0.1~
1.5%, P: 0.1-1.0%, C: 0.1% or less, Si: 0.1
An alloy powder for powder metallurgy characterized by consisting of ~4.0%, the balance: Fe and inevitable impurities. 3 Cr: over 7.5% and 30.0% or less, Mn: 0.1~
1.5%, P: 0.1~1.0%, Mo less than 5.0%, 5.0
% or less W, 3.0% or less V, and 5.0% or less Nb, with a total content of 10% or less of one or more elements selected from 10% or less, and the balance: Fe and unavoidable impurities. An alloy powder for powder metallurgy characterized by: 4 Cr: more than 7.5% and less than 30.0%, Mn: 0.1~
1.5%, P: 0.1-1.0%, C: 0.1% or less,
Total content of Si: 0.1 to 4.0% and one or more elements selected from 5.0% or less Mo, 5.0% or less W, 3.0% or less V, and 5.0% or less Nb. An alloy powder for powder metallurgy, characterized in that the alloy powder comprises 10% or less of Fe and the balance of Fe and unavoidable impurities.
JP12735182A 1982-07-21 1982-07-21 Alloy powder for powder metallurgy and its sintered body Granted JPS5920401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12735182A JPS5920401A (en) 1982-07-21 1982-07-21 Alloy powder for powder metallurgy and its sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12735182A JPS5920401A (en) 1982-07-21 1982-07-21 Alloy powder for powder metallurgy and its sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7229189A Division JPH01283340A (en) 1989-03-25 1989-03-25 Manufacture of high density and high strength sintered body

Publications (2)

Publication Number Publication Date
JPS5920401A JPS5920401A (en) 1984-02-02
JPH0213001B2 true JPH0213001B2 (en) 1990-04-03

Family

ID=14957776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12735182A Granted JPS5920401A (en) 1982-07-21 1982-07-21 Alloy powder for powder metallurgy and its sintered body

Country Status (1)

Country Link
JP (1) JPS5920401A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950154A (en) * 1982-09-13 1984-03-23 Hitachi Powdered Metals Co Ltd Manufacture of high-density iron-base sintered member
JPS61249615A (en) * 1985-04-26 1986-11-06 Mitsubishi Electric Corp Plate width control device
JPH0726122B2 (en) * 1986-12-12 1995-03-22 大同特殊鋼株式会社 Stainless steel powder for powder metallurgy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123353A (en) * 1980-03-04 1981-09-28 Toyota Motor Corp Wear resistant sintered alloy and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123353A (en) * 1980-03-04 1981-09-28 Toyota Motor Corp Wear resistant sintered alloy and its manufacture

Also Published As

Publication number Publication date
JPS5920401A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
JP3856294B2 (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JPH11501700A (en) Stainless steel powder and products manufactured by powder metallurgy from the powder
JP2008524447A (en) Diffusion bonded nickel-copper powder metallurgy powder
US5217683A (en) Steel powder composition
JPH10102105A (en) Manufacture of fine metallic powder
US4561893A (en) Alloy steel powder for high strength sintered parts
US4702772A (en) Sintered alloy
JPH06306403A (en) High-strength and high-toughness cr alloy steel powder sintered compact and its production
JPH0213001B2 (en)
JPH0375621B2 (en)
JP3517505B2 (en) Raw material powder for sintered wear resistant material
KR100189234B1 (en) Iron-based powder, component produced therefrom, and method of producing the component
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPH0751721B2 (en) Low alloy iron powder for sintering
JPH04173901A (en) Iron powder for powder metallurgy
JP3347773B2 (en) Pure iron powder mixture for powder metallurgy
JPH0459362B2 (en)
JPH01290703A (en) Kneaded matter of low-alloy steel powder for sintering
JP2021001381A (en) Alloy steel powder for sintered member, iron based mixed powder for sintered member, and sintered member
JPS591761B2 (en) stainless steel powder for powder metallurgy
JPH07118775A (en) Production of tough cermet with low coefficient of thermal expansion
JPH01290704A (en) Kneaded matter of magnetic powder for sintering
JPS60208454A (en) Steel powder for wear resistant sintered alloy
JP2020132902A (en) Pre-alloyed steel powder for sintered member, powder for sintered member, and sintered member
JPS6136041B2 (en)