JPH02129404A - Radial-type gas bearing device - Google Patents

Radial-type gas bearing device

Info

Publication number
JPH02129404A
JPH02129404A JP28244988A JP28244988A JPH02129404A JP H02129404 A JPH02129404 A JP H02129404A JP 28244988 A JP28244988 A JP 28244988A JP 28244988 A JP28244988 A JP 28244988A JP H02129404 A JPH02129404 A JP H02129404A
Authority
JP
Japan
Prior art keywords
rotating shaft
bearing
shaft
axial direction
gas bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28244988A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kanzaki
神嵜 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28244988A priority Critical patent/JPH02129404A/en
Publication of JPH02129404A publication Critical patent/JPH02129404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To eliminate a resonance phenomenon of a rotating shaft system by constituting the system in such a manner that a plurality of shaft bearing parts can be moved in the axial direction of the rotation shaft so as to change the shaft bearing span. CONSTITUTION:A plurality of position-adjusting bolts 17 for extrusion are threadedly engaged with tapped holes 19, each of which is located at an end face in the axial direction of a static frame 12A or 12B. Each of the bolts 17 touches the end face in the axial direction of a cylindrical holder 16A or 16B in order to push or move a bearing housing 14A or 14B toward the main body frame (11) side. A plurality of position-adjusting bolts 18 for retraction penetrate drill-holes 20, which are located on end faces in the axial direction of the static frames 12A and 12B, to be threadedly engaged with tapped holes 21 made in the cylindrical holders 16A and 16B, so that the bearing housing 14A or 14B retreats or goes away from the main body frame 11. Thus, by adjusting the bolt 17 or 18, a bearing span l can be varied. With this constitution, the gas bearing force can be varied and at the same time the whirling speed of the rotating shaft system can widely be changed, thereby eliminating a resonance phenomenon.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、ガスタービン工作機械等のような高速回転
機械に用いるラジアル形気体軸受装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a radial gas bearing device used in a high-speed rotating machine such as a gas turbine machine tool.

(従来の技術) 第5図は、従来のラジアル形気体軸受装置が回転機器に
ユニットどして取り付けられた状態を示す縦断面図であ
る。
(Prior Art) FIG. 5 is a longitudinal cross-sectional view showing a state in which a conventional radial gas bearing device is attached as a unit to a rotating device.

一般に、このラジアル形気体軸受装置は、軸支承部とし
ての軸受ハウジングIA、IBから気体を噴射させ、回
転軸2と軸受ハウジング1A、1Bとの間に気yi:層
を形成し、この気流層の気体支持力によって回転軸2を
浮遊させ、非接触にて回転軸2を支承リ−るものである
。この場合、2組の軸受ハウジングIA、1Bの軸方向
位置はそれぞれ固定されている。したがって、これら軸
受ハウジングIA、IB間距離すなわら軸支承部スパン
Jも一定距離に固定されている。
In general, this radial type gas bearing device injects gas from the bearing housings IA and IB as shaft support parts to form an air layer between the rotating shaft 2 and the bearing housings 1A and 1B, and this air flow layer The rotating shaft 2 is suspended by the gas supporting force, and the rotating shaft 2 is supported and reeled without contact. In this case, the axial positions of the two sets of bearing housings IA and 1B are each fixed. Therefore, the distance between these bearing housings IA and IB, that is, the shaft support span J is also fixed at a constant distance.

なお、図中符号3A、38μラジアル形気体軸受装置の
静止枠を示し、符号4は回転機器の本体枠を示す。
In the figure, reference numeral 3A indicates a stationary frame of a 38μ radial gas bearing device, and reference numeral 4 indicates a main body frame of a rotating device.

(発明が解決しようとする課題) 上記従来のラジアル形気体軸受装置においては、回転軸
2の定格回転速度がその回転軸系の危険速度の近傍に存
在するので、回転軸2に共振現象が表われる場合、軸受
ハウジングIA、1Bからの気体の噴射量を変えて半径
方向の気体支承力を変化させ、これにより軸受ハウジン
グ1A、1Bの剛性を変えて、回転軸系の危険速度を定
格回転速度から離すようにしている。
(Problems to be Solved by the Invention) In the conventional radial type gas bearing device described above, the rated rotational speed of the rotating shaft 2 exists near the critical speed of the rotating shaft system, so a resonance phenomenon appears in the rotating shaft 2. In this case, the amount of gas injected from the bearing housings IA, 1B is changed to change the gas bearing force in the radial direction, and thereby the rigidity of the bearing housings 1A, 1B is changed, and the critical speed of the rotating shaft system is reduced to the rated rotational speed. I try to stay away from it.

ところが、回転軸2の回転角速度λωがm:回転軸系の
質量 に:回転軸の剛性 なる領域においては、回転軸2に振れまわり速度C77
面の前向き振れまわり自由振動が生ずる。
However, in the region where the rotational angular velocity λω of the rotating shaft 2 is m: the mass of the rotating shaft system: the rigidity of the rotating shaft, the whirling speed of the rotating shaft 2 is C77.
A free vibration occurs in which the surface swings forward.

この自由振動は振幅が時間と共に層数関数的に増大する
不安定振動である。
This free vibration is an unstable vibration whose amplitude increases as a function of the number of layers over time.

また、実際の回転軸系の危険速度ωcrは、2組の軸受
ハウジングIA、1Bの剛性が等しいものkb:軸支承
部(軸受ハウジング)の剛性で示され、回転軸の剛性に
と軸支承部の剛性kbの関数となっている。したがって
、従来の如く、回転軸の剛性kを一定にして、軸支承部
の剛性kbのみを変化させただけでは、第3図に示すよ
うに、軸支承部の剛性kbが2倍(あるいは1/2倍に
)に変化しても、回転軸系の危険速度ω。。
In addition, the actual critical speed ωcr of the rotating shaft system is expressed by the rigidity of the two sets of bearing housings IA and 1B, where kb is the stiffness of the shaft support (bearing housing). It is a function of the stiffness kb. Therefore, as in the past, if the rigidity k of the rotating shaft is kept constant and only the rigidity kb of the shaft support part is changed, the rigidity kb of the shaft support part will double (or /2 times), the critical speed ω of the rotating shaft system. .

は精々10%弱の変化しか得られない。この結果、従来
のラジアル形気体軸受装置では、回転軸系の共振現象を
確実に回避できないおそれがある。
can only obtain a change of less than 10% at most. As a result, the conventional radial type gas bearing device may not be able to reliably avoid the resonance phenomenon of the rotating shaft system.

この発明は、上記事情を考慮してなされたものであり、
回転軸系の危険速度を広範囲に亘って変更し回転軸の共
振現象を確実に回避できるラジアル形気体軸受装置を提
供することを目的とする。
This invention was made in consideration of the above circumstances,
It is an object of the present invention to provide a radial type gas bearing device that can change the critical speed of a rotating shaft system over a wide range and reliably avoid a resonance phenomenon of the rotating shaft.

(発明の構成) (課題を解決するための手段) この発明は、回転軸と複数の軸支承部との間に、この軸
支承部から噴射される気流層が存在し、この気流層の気
体支承力によって上記回転軸が支持されるラジアル形気
体軸受装置において、上記複数の軸支承部が上記回転軸
の軸方向に移動して軸支承部スパンを変更し得るよう構
成されたものである。
(Structure of the Invention) (Means for Solving the Problems) This invention provides an air flow layer between a rotating shaft and a plurality of shaft support parts, which is injected from the shaft support parts, and a gas in the air flow layer. In a radial gas bearing device in which the rotating shaft is supported by a support force, the plurality of shaft supporting parts are configured to be able to move in the axial direction of the rotating shaft to change the shaft supporting part span.

(作用) 回転軸系の危険速度は、回転軸の剛性と軸支承部の剛性
との関数になっているので、気体支承枠を変えて軸支承
部の剛性を変化させるばかりでなく、軸支承部スパンを
変化させて回転軸の剛性を変化させれば、回転軸系の危
険速度を広範囲にHっで変更でき、その結果、回転軸系
の共振現象を確実に回避できる。
(Function) The critical speed of a rotating shaft system is a function of the rigidity of the rotating shaft and the rigidity of the shaft bearing, so in addition to changing the rigidity of the shaft bearing by changing the gas bearing frame, By changing the rigidity of the rotating shaft by changing the partial span, the critical speed of the rotating shaft system can be changed over a wide range, and as a result, resonance phenomena in the rotating shaft system can be reliably avoided.

(実/M例) 以下、この発明の実施例を図面に基づいて説明する。(Real/M example) Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明に係るラジアル形気体軸受装置の一実
施例がユニツ1−として取り付けられた回転機器を示す
縦断面図、第2図は第1図の要部であり一実施例を示す
縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a rotating device in which an embodiment of the radial gas bearing device according to the present invention is attached as unit 1-, and FIG. 2 is a main part of FIG. 1 and shows one embodiment. FIG.

回転I18の本体枠11における軸方向両端には、向応
状態でラジアル形気体軸受装置の静止枠12A、12B
がボルト等にて固定されている。これら本体枠11およ
び静止枠12A、12B内に回転軸13が収容される。
At both axial ends of the main body frame 11 of rotation I18, stationary frames 12A and 12B of a radial type gas bearing device are placed in a responsive state.
is fixed with bolts etc. The rotating shaft 13 is housed within the main body frame 11 and stationary frames 12A and 12B.

静止枠12A、12B内には軸支承部としての軸受ハウ
ジング14A、14Bが、複数例えば2組配設される。
In the stationary frames 12A, 12B, a plurality of bearing housings 14A, 14B, for example, two sets, are arranged as shaft supporting parts.

この軸受ハウジング14A、Bは、静圧供給管15A、
15Bから供給された気体を噴射して軸受ハウジング1
4A、Bと回転軸13との間に気流層を形成し、この気
流層の有する気体支承力によって回転軸13を非接触支
承する。
These bearing housings 14A, B have static pressure supply pipes 15A,
The bearing housing 1 is injected with the gas supplied from 15B.
An air layer is formed between 4A, 4B and the rotating shaft 13, and the rotating shaft 13 is supported in a non-contact manner by the gas supporting force of this air layer.

軸受ハウジング14A、Bは円筒状ホルダ16A、16
Bの内周に嵌合され、またこれら円筒状ホルダ16△、
Bは静止枠12A、Bの内周に軸方向スライド自在に嵌
合される。また、静止枠12A、Bの軸方向端面には、
周方向等配位置に複数個例えば3個の押出し相位!!調
整ボルト17が設けられ、ざらにこれら押出し用位置調
整ボルト17を挟む位置に引戻し用位置調整ボルト18
が複数個(例えば3個)周方向等配位置に配設される。
The bearing housings 14A, B are cylindrical holders 16A, 16
These cylindrical holders 16△,
B is fitted into the inner periphery of the stationary frames 12A and 12B so as to be slidable in the axial direction. Furthermore, on the axial end surfaces of the stationary frames 12A and 12B,
Multiple extrusion phases, for example 3, at equal positions in the circumferential direction! ! Adjustment bolts 17 are provided, and pullback position adjustment bolts 18 are provided at positions that roughly sandwich these extrusion position adjustment bolts 17.
A plurality of (for example, three) are arranged at equal positions in the circumferential direction.

押出()用位置調整ポル1−17は、静止枠12A2B
の軸方向端面に設けられたわし穴19に螺合し、円筒状
ボルダ16A、Bの軸り向端面に接触して、軸受ハウジ
ング14Δ、Bを本体枠11側へ押出し移動さ1!るた
めに用いられる。また、引戻()用位置調整ボルト18
は、静止枠12Δ、Bの軸方向端面に設(すられたぎり
穴20を目通して円筒状ホルダ16A、Bに形成された
ねじ穴21に螺合し、軸受ハウジング14A、Bを本体
枠11から引戻して遠避けるために用いられる。
Position adjustment port 1-17 for extrusion () is stationary frame 12A2B
The bearing housings 14Δ, B are pushed out and moved toward the main body frame 11 by being screwed into the slots 19 provided in the axial end faces of the cylindrical boulders 16A and 16B, and in contact with the axial end faces of the cylindrical boulders 16A and 16B. It is used to In addition, the position adjustment bolt 18 for pulling back ()
The bearing housings 14A, B are screwed into the screw holes 21 formed in the cylindrical holders 16A, B through the slotted holes 20, and the bearing housings 14A, B are removed from the main body frame 11. Used to pull back and avoid distance.

したが−)で、押出し用位置調整ポル1−17および引
戻し用位置調整ボルト18の調整によって軸受ハウジン
グ14A、Bの距離、つまり軸支承部スパンfが可変と
なる。さらに、引戻し用位置調整ボルト18の引張りや
押出し用位置調整ボルト17の押付けによって、軸受ハ
ウジング14A。
However, in (-), the distance between the bearing housings 14A and 14B, that is, the shaft support span f, becomes variable by adjusting the push-out position adjustment pole 1-17 and the pull-back position adjustment bolt 18. Furthermore, the bearing housing 14A is moved by pulling the pull-back position adjustment bolt 18 or pressing the push-out position adjustment bolt 17.

8σ)イ装置を強固に固定できる。8σ) A device can be firmly fixed.

一般に、回転@13の剛性には、 「:回転軸材のヤング率 ■=回転軸材の等価断面二次1−メン[・で表わされる
ので、軸支承部スパンpを変えることにより上記式■に
よって回転@13の剛性kを変えることができる。さら
に、前述の式■により、回転軸13のR性kを変動させ
ることによって回転軸系の危険速痘ωcr@変えること
ができる。第4図は、軸支承部スパン!8パラメータと
したときの回転軸系の危険速度ωcrを示す図である8
、これらのことから、回転軸系の危険速度ωcr’^め
たい場合には、軸支承部スパンfを小さくして回転軸1
3のM1竹kを大きくし、かつ気体少承力を大きくして
軸受ハウジング14△、Bの剛性kbを大と]ハに/k
bを小さくするよう調整する。逆に、回転軸系の危険速
位ω。、を低く抑えたい場合には、軸支承部スバンオを
大きくして回転軸13の剛性kを小とし、かつ気体支承
力を小さくして軸受ハウジング14A、Bの剛性kbを
小さくし、k/kbを大きくするよう、J整1“る。
In general, the rigidity of rotation @13 is expressed as: Young's modulus of the rotating shaft member ■=Equivalent cross section of the rotating shaft member quadratic 1-men The rigidity k of the rotating shaft 13 can be changed by .Furthermore, by changing the R property k of the rotating shaft 13, the dangerous speed ωcr@ of the rotating shaft system can be changed according to the above-mentioned formula (2). is a diagram showing the critical speed ωcr of the rotating shaft system when the shaft support span!8 is a parameter.
, From these facts, if you want to reduce the critical speed ωcr'^ of the rotating shaft system, reduce the shaft support span f and reduce the rotational shaft 1.
3, M1 bamboo k is increased, and the gas bearing force is increased to increase the bearing housing 14△, and the rigidity kb of B is increased] to C/k
Adjust to reduce b. Conversely, the critical speed position ω of the rotating shaft system. , if it is desired to keep k/kb low, the shaft bearing part is made large to make the rigidity k of the rotary shaft 13 small, and the gas bearing force is made small to make the stiffness kb of the bearing housings 14A and B small. J adjustment 1" to make it larger.

このように軸受ハウジング14A、Bからの気体噴□□
□吊を変えて気体支承力を変化させ、これに五り軸支承
部(@受ハウジング14A、B)の剛1ik、を変化さ
せるだけでなく、軸支承部スバンノを変化させて回転軸
13の剛性kを変化させるので、回転軸系の危険速邸ω
、rを広範囲に口って変更できる。その結果、回転軸に
の共振現象を確実に回避することができ、任意の回転m
aに適用可能な汎用性の高いラジアル形気体軸受装置を
提供できる。
In this way, gas jets from the bearing housings 14A and 14B
□The suspension is changed to change the gas bearing force, and in addition to this, the stiffness of the five-axis bearing part (@receiving housing 14A, B) is changed, and the shaft bearing part Svanno is changed to increase the rotational shaft 13. Since the stiffness k is changed, the critical speed of the rotating shaft system ω
, r can be changed widely. As a result, it is possible to reliably avoid resonance phenomena on the rotating shaft, and any rotation m
It is possible to provide a highly versatile radial gas bearing device that can be applied to a.

〔発明の効果〕〔Effect of the invention〕

以−Fのように、この発明に二係るラジアル形気体軸受
装置によれば、?!数の軸支承部が回転軸の軸方向に移
動して軸支承部スパンを変更しく9るよう構成されたこ
とから、回転軸の剛性も変更できるので、気体支承力を
変えて軸支承部の剛性を変えるだけの場合に比べ回転軸
系の危険速度を広範囲(百って変更でき、回転軸系の共
振現象を確実に回避できる。
According to the radial type gas bearing device according to the second aspect of the present invention, as shown in FIG. ! Since several shaft bearings are configured to move in the axial direction of the rotating shaft to change the shaft bearing span, the rigidity of the rotating shaft can also be changed, so the gas bearing force can be changed to change the shaft bearing span. Compared to the case where only the rigidity is changed, the critical speed of the rotating shaft system can be changed over a wide range (more than 100 times), and resonance phenomena in the rotating shaft system can be reliably avoided.

第1図はぐ二の発明に係るラジアル形気体軸受装置の一
実施例がコーニツi・どし7で取り付けられた回転機器
を示す衛面図、第2図は第1図の要部で6)りこの発明
の一実施例を示す縦断面図、第3図は回転軸系の危険速
度の変化をに、、’kbをパラメータとして表わした図
、第4図は@支承部スパンをパラメータとした回転軸系
の危険速度を表わした図、第5図は従来のラジアル形気
体軸受装置を回転vi器に装着した縦断面図である。
Fig. 1 is a diagram showing a rotating device in which an embodiment of the radial gas bearing device according to Haguji's invention is installed in a Konitz I/Doshi 7; Fig. 2 is the main part of Fig. 1; 6) Figure 3 is a longitudinal cross-sectional view showing an embodiment of this invention. Figure 3 is a diagram showing changes in the critical speed of the rotating shaft system using 'kb as a parameter. Figure 4 is a diagram showing @bearing span as a parameter. FIG. 5, which is a diagram showing the critical speed of a rotating shaft system, is a longitudinal cross-sectional view of a conventional radial type gas bearing device installed in a rotating vi device.

11・・・本体枠、12Δ、12B・・・静止枠、13
・・・回転軸、14A、14B・・・軸受ハウジング、
16A、16B・・・円筒状ホルダ、17・・・押出し
2用位胃A整ボルト、1B・・・引戻し相位置調整ボル
ト1、代理人弁理士  則 近  惠 仏 間         第  了  丸    健
11... Main body frame, 12Δ, 12B... Stationary frame, 13
... Rotating shaft, 14A, 14B... Bearing housing,
16A, 16B...Cylindrical holder, 17...Extrusion 2 position stomach A adjustment bolt, 1B...Retraction phase position adjustment bolt 1, Patent attorney Nori Chika Kei Butsuma Dai Ryo Maru Ken

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 回転軸と複数の軸支承部との間に、この軸支承部から噴
射される気流層が存在し、この気流層の気体支承力によ
つて上記回転軸が支持されるラジアル形気体軸受装置に
おいて、上記複数の軸支承部が上記回転軸の軸方向に移
動して軸支承部スパンを変更し得るよう構成されたこと
を特徴とするラジアル形気体軸受装置。
In a radial type gas bearing device, an air flow layer injected from the shaft support exists between the rotation shaft and the plurality of shaft support parts, and the rotation shaft is supported by the gas bearing force of the air flow layer. A radial type gas bearing device, characterized in that the plurality of shaft support parts are configured to be able to move in the axial direction of the rotating shaft to change the shaft support part span.
JP28244988A 1988-11-10 1988-11-10 Radial-type gas bearing device Pending JPH02129404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28244988A JPH02129404A (en) 1988-11-10 1988-11-10 Radial-type gas bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28244988A JPH02129404A (en) 1988-11-10 1988-11-10 Radial-type gas bearing device

Publications (1)

Publication Number Publication Date
JPH02129404A true JPH02129404A (en) 1990-05-17

Family

ID=17652570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28244988A Pending JPH02129404A (en) 1988-11-10 1988-11-10 Radial-type gas bearing device

Country Status (1)

Country Link
JP (1) JPH02129404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156155A (en) * 2008-12-27 2010-07-15 Aero Facility Kk Heliport and deck material for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156155A (en) * 2008-12-27 2010-07-15 Aero Facility Kk Heliport and deck material for the same

Similar Documents

Publication Publication Date Title
JPH0572177B2 (en)
CN1008549B (en) Sealing device for rotary machine
JPH02129404A (en) Radial-type gas bearing device
EP1781951B1 (en) Four-bearing rotor system
KR100196929B1 (en) Fluid bearing with a clearance error compensation
Qiu et al. Control of self-excited vibration of a rotor system with active gas bearings
Crooijmans et al. Limit cycle predictions of a nonlinear journal-bearing system
Parkinson et al. Balancing flexible rotating shafts with an initial bend
JPS585519A (en) Foil journal bearing
JP2005113941A (en) Foiled fluid bearing
JP2573853B2 (en) 5-axis control type magnetic bearing
JPH0144807Y2 (en)
JP2531837Y2 (en) High-speed hydrostatic gas bearing device
JPS62237111A (en) Journal bearing
Yukio et al. Internal Resonances of a Cracked Rotor: Major Critical Speed and Critical Speeds in Precritical Range
JPH03204411A (en) Dynamic-pressure air bearing with asymmetric groove
JPH0612827U (en) Magnetic bearing device
JPH024249Y2 (en)
Le Rouzic et al. Experimental Analysis of Angled Injection Aerostatic Hybrid Bearings
JP2007523295A (en) Monolithic structure with at least one hinge
JPS60101316A (en) Bearing
JPH0441155Y2 (en)
JPS58207521A (en) Journal bearing
KR20230082673A (en) vertical axis windmill
Rivenbark et al. Proof-of-Concept Experimental Validation of a New Active Hydrodynamic Bearing