JPH0212905B2 - - Google Patents

Info

Publication number
JPH0212905B2
JPH0212905B2 JP5957586A JP5957586A JPH0212905B2 JP H0212905 B2 JPH0212905 B2 JP H0212905B2 JP 5957586 A JP5957586 A JP 5957586A JP 5957586 A JP5957586 A JP 5957586A JP H0212905 B2 JPH0212905 B2 JP H0212905B2
Authority
JP
Japan
Prior art keywords
molten metal
magnesium hydroxide
refractory particles
cake
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5957586A
Other languages
Japanese (ja)
Other versions
JPS62216975A (en
Inventor
Yoichi Takamya
Yukio Kato
Akihiko Kusano
Shinichi Fukunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5957586A priority Critical patent/JPS62216975A/en
Publication of JPS62216975A publication Critical patent/JPS62216975A/en
Publication of JPH0212905B2 publication Critical patent/JPH0212905B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熔融金属を移送、又は精練処理する容
器の内表面に塗布することにより容器への伝熱を
少なくするか、あるいは熔融金属の表面に浮遊さ
せて、熔融金属と外気との接触を少なくし熔融金
属からの熱の損失を防ぎ、さらに外気と熔融金属
との反応を防止するための熔融金属用断熱耐火粒
子の製造法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention reduces heat transfer to the container by coating the inner surface of the container in which molten metal is transferred or smelted, or The present invention relates to a method for producing heat-insulating refractory particles for molten metal, which are suspended in air to reduce contact between the molten metal and the outside air, thereby preventing heat loss from the molten metal, and further preventing reactions between the outside air and the molten metal.

[従来の技術] タンデイツシユや取鍋など熔融金属を移送、又
は精練処理する際に用いる容器内表面に断熱性の
物質を塗布し容器への伝熱を少なくすること及び
熔融金属の表面に耐火性の粒子を散布し、熔融金
属表面から外気への熱の損失ならびに外気と熔融
金属との反応とを防ぐことは公知である。
[Prior art] Applying a heat insulating material to the inner surface of a container used for transporting or scouring molten metal, such as a tundish or ladle, to reduce heat transfer to the container, and applying fire resistance to the surface of the molten metal. It is known to disperse particles of molten metal to prevent heat loss from the molten metal surface to the outside air and reactions between the outside air and the molten metal.

従来断熱材として、籾殻または籾殻を蒸し焼き
にしたものが主に用いられている。しかし、これ
らの断熱材は非常に安価であるという利点を有す
るものの、その主成分がシリカと炭素であるた
め、このシリカがカルシア等と反応し低融点の化
合物をつくること、断熱材の炭素分が成分調製さ
れた熔融金属に取り込まれ製品として得られる金
属の性質を低下させる欠点が知られている。この
ため、わずかな成分の差が問題とされる高級鋼で
は籾殻の使用は大きな問題になりつつあつた。
Traditionally, rice husks or steamed rice husks have been mainly used as insulation materials. However, although these insulation materials have the advantage of being very cheap, their main components are silica and carbon, so the silica reacts with calcia etc. to create a compound with a low melting point, and the carbon content of the insulation materials It is known that the metal is incorporated into the prepared molten metal and deteriorates the properties of the metal obtained as a product. For this reason, the use of rice husks was becoming a big problem in high-grade steel, where slight differences in composition are a problem.

従来、籾殻のこの欠点を解決するため、炭素分
の少ない、低融点の化合物をつくり難い物質を使
用する試みがいくつかおこなわれている。マグネ
シアはこの二つの条件を満たす物質であるがこの
もの自身は熱伝導率が高いため、このものに断熱
性を付与する試みが行なわれている。その一つと
して従来公知の真珠岩やバーミキユライト等の発
泡体にマグネシアの微粉をコーテイングする方法
があり、各種の製品がつくられている。しかしな
がら、これらの製品では製法上マグネシアの含有
率を60%以上とすることがむずかしいため最終的
には低融点の化合物をつくりやすく、また、断熱
層とマグネシア層の部分とが分かれているため断
熱性も十分とは言えなかつた。さらに、これらの
製品では熔融金属の温度付近で大きな収縮と強度
の低下があるため、容器内面に塗布し容器への伝
熱を少なくする用途には使用できないことが知ら
れている。
In order to solve this drawback of rice husks, several attempts have been made to use substances with a low carbon content that make it difficult to form compounds with a low melting point. Magnesia is a substance that satisfies these two conditions, but since it itself has a high thermal conductivity, attempts are being made to give it thermal insulation properties. One of these methods is a conventionally known method of coating a foamed material such as pearlite or vermiculite with fine powder of magnesia, and various products are produced using this method. However, in these products, it is difficult to increase the magnesia content to 60% or more due to the manufacturing method, so in the end it is easy to create a compound with a low melting point, and the insulation layer and magnesia layer are separated, so I couldn't say I had enough sex either. Furthermore, it is known that these products cannot be used to coat the inner surface of a container to reduce heat transfer to the container because they undergo large shrinkage and decrease in strength near the temperature of molten metal.

従来、マグネシア煉瓦の断熱性を改善するため
にその素材となる発泡マグネシアをつくる方法が
検討されており、例えば特公昭47−47565、特公
昭48−7485等に記載されている。しかし、従来の
方法で得られる発泡マグネシアは本発明の用途に
用いるには過剰品質であり、又、製造コストも高
いため、実用化されないと言う問題点があつた。
Hitherto, in order to improve the heat insulation properties of magnesia bricks, methods for producing foamed magnesia as a material have been studied, and are described in, for example, Japanese Patent Publications No. 47-47565 and No. 48-7485. However, the expanded magnesia obtained by the conventional method is of excessive quality for use in the purpose of the present invention, and the production cost is also high, so there are problems in that it cannot be put into practical use.

[発明が解決しようとする問題点] 本発明は、低融点の化合物を生成せず、かつ、
熔融金属の成分に影響を及ぼさず、しかも充分な
耐火性、断熱性を有する比較的安価なマグネシア
質発泡体の製造法を提供しようとするものであ
る。
[Problems to be solved by the invention] The present invention does not produce a compound with a low melting point, and
The object of the present invention is to provide a relatively inexpensive method for producing a magnesia-based foam that does not affect the components of molten metal and has sufficient fire resistance and heat insulation properties.

[問題点を解決するための手段] 本発明は含水率60−20%の水酸化マグネシウム
ケークに発泡剤を添加混練発泡させた後、含水率
5%以下になるように乾燥し、この乾燥物を破砕
し整粒した後1000℃以上の温度で焼成することに
よりマグネシアの純度が60%以上で容積比重が
0.2−1.5である熔融金属用断熱材として用いるの
に有望な耐火粒子を容易に製造できることを見い
だしたものである。
[Means for Solving the Problems] The present invention involves adding a blowing agent to a magnesium hydroxide cake with a water content of 60-20%, kneading and foaming the cake, and then drying the cake to a water content of 5% or less. By crushing and sizing magnesia and firing at a temperature of 1000℃ or higher, the purity of magnesia is 60% or higher and the volume specific gravity is
It has been discovered that it is possible to easily produce refractory particles having a diameter of 0.2-1.5, which are promising for use as heat insulating materials for molten metal.

[作用] 本発明に用いる水酸化マグネシウムは海水マグ
ネシアクリンカーの原料である水酸化マグネシウ
ムは勿論、天然のマグネサイトを焼成した酸化マ
グネシウムを水和して得られる水酸化マグネシウ
ムを用いることが出来る。天然のマグネサイトま
たは天然のマグネサイトを焼成した酸化マグネシ
ウムを微粉砕したものを原料とすることは価格の
面から望ましいが、これらの原料は水酸化マグネ
シウムに比較してその粒度が荒いため水酸化マグ
ネシウム原料に副原料としてある程度の量を配合
して用いることが出来る。その配合量の上限は副
原料の粒度によつて定まり、粒度はこまかいもの
が望ましい。
[Function] As the magnesium hydroxide used in the present invention, not only magnesium hydroxide which is a raw material for seawater magnesia clinker, but also magnesium hydroxide obtained by hydrating magnesium oxide obtained by calcining natural magnesite can be used. From a cost standpoint, it is desirable to use natural magnesite or finely pulverized magnesium oxide obtained by calcining natural magnesite as a raw material, but these raw materials have a rougher particle size than magnesium hydroxide, so they cannot be hydrated. It can be used by blending a certain amount with the magnesium raw material as an auxiliary raw material. The upper limit of its blending amount is determined by the particle size of the auxiliary raw material, and the particle size is preferably fine.

水酸化マグネシウムケークの含水率は60−20%
であることが発泡操作を十分に行なう上から必要
であり、含水率は55−45%であることがとくに望
ましい。
The moisture content of magnesium hydroxide cake is 60-20%
It is necessary for the foaming operation to be carried out satisfactorily, and it is particularly desirable that the water content be 55-45%.

発泡操作は水酸化マグネシウムケークに発泡剤
を添加混練することによつて行なう。また、本発
明は水酸化マグネシウムケークの発泡後の隔壁保
持力を利用することを基礎にして完成されたもの
であり、この隔壁保持力を利用するので、発泡剤
は発泡機能を主体とするいわゆる発泡剤が用いら
れる。発泡剤としては細かい気泡を生成するもの
例えば有機系の界面活性剤等を用いることが出来
る。しかし、これらの発泡剤は発泡させた後に水
酸化マグネシウムケークに配合するので気泡を消
滅させず、さらに一定の品質のものをつくるのに
かなりの配慮が必要になる。これに対して、発泡
剤に金属アルミニウムの微粉のような化学反応を
利用するものを用いる方法は、金属アルミニウム
を配合した水酸化マグネシウムケークを加熱乾燥
する過程で発泡操作を行なうことができるので、
配合量と加熱操作を一定にすれば、一定の品質の
ものが得られる。そして、本発明では水酸化マグ
ネシウムケークの発泡後の隔壁保持力を利用する
発泡であるため、発泡剤の量は少なく、製造コス
トを大幅に引下げることができる。
The foaming operation is carried out by adding and kneading a foaming agent to the magnesium hydroxide cake. Furthermore, the present invention was completed based on the use of the barrier wall retention force after foaming of the magnesium hydroxide cake, and since this barrier wall retention strength is utilized, the foaming agent is a so-called foaming agent mainly having a foaming function. A blowing agent is used. As the foaming agent, one that generates fine bubbles, such as an organic surfactant, can be used. However, since these foaming agents are added to the magnesium hydroxide cake after foaming, the air bubbles do not disappear, and furthermore, considerable care is required to produce a product of a certain quality. On the other hand, in the method of using a chemical reaction-based foaming agent such as fine powder of metallic aluminum, the foaming operation can be carried out during the process of heating and drying the magnesium hydroxide cake containing metallic aluminum.
By keeping the blending amount and heating operation constant, products of constant quality can be obtained. Further, in the present invention, since the foaming is performed using the partition wall retention force after foaming of the magnesium hydroxide cake, the amount of foaming agent is small, and the manufacturing cost can be significantly reduced.

発泡操作の終了した水酸化マグネシウムケーク
は含水率5%以下になるように乾燥される。含水
率が5%より高い場合には乾燥ケークを必要な大
きさに破砕する際、泡が押し潰される弊害が認め
られた。また、ケークの含水率が1%以下の場合
には、原料である水酸化マグネシウムの種類によ
つては乾燥ケークの強度が著しく低下し、ケーク
の破砕に際して殆どのケークが粉化する現象が見
られた。以上のことから破砕に供するケークの含
水率は4−2%であることがとくに望ましい。
The magnesium hydroxide cake after the foaming operation is dried to a moisture content of 5% or less. When the water content was higher than 5%, there was a problem that bubbles were crushed when the dry cake was crushed into a required size. In addition, when the moisture content of the cake is 1% or less, the strength of the dried cake decreases significantly depending on the type of magnesium hydroxide used as the raw material, and it is observed that most of the cake becomes powder when the cake is crushed. It was done. From the above, it is particularly desirable that the moisture content of the cake to be crushed is 4-2%.

乾燥ケークの破砕はジヨークラツシヤー等の破
砕機を用いて容易に行なうことができる。破砕さ
れた水酸化マグネシウムケークはふるい等を用い
て通常1−10mmの大きさに整流される。この大き
さは使用目的によつて任意に選択することができ
る。しかし粒子径が10mmをこえると本発明の用途
としては大き過ぎて熔融金属表面に散布した場合
均一な分散状態が得られなくなる現象が認められ
た。また、粒子径が1mm以下の場合には熔融金属
表面への投入時に発じん等の弊害が認められた。
細かい粒子は水を加えて原料の水酸化マグネシウ
ムケークに還元し無駄無く利用することが出来
る。
The dry cake can be easily crushed using a crusher such as a Jio crusher. The crushed magnesium hydroxide cake is usually rectified into a size of 1 to 10 mm using a sieve or the like. This size can be arbitrarily selected depending on the purpose of use. However, if the particle size exceeds 10 mm, it is too large for the purpose of the present invention, and a phenomenon was observed in which a uniform dispersion state could not be obtained when sprayed on the surface of molten metal. In addition, when the particle size was 1 mm or less, problems such as dust generation were observed when the particles were poured onto the surface of the molten metal.
Fine particles can be used without waste by adding water and reducing them to the raw material magnesium hydroxide cake.

整粒した乾燥水酸化マグネシウムケークは1000
℃以上の温度で焼成される。焼成温度が高くなる
と粒子の強度が上り使用時の収縮も小さくなる好
ましい現象が認められるが、反面粒子の密度が上
がり断熱性が低下し、かつ、焼成費用が増大する
等の好ましくない傾向も認められる。焼成温度は
通常1300−1600℃が適当である。焼成装置として
はバツチ式の焼成炉も用いられるが大量生産には
ロータリーキルンが適している。
Size-sized dry magnesium hydroxide cake is 1000
Fired at temperatures above ℃. As the firing temperature increases, the strength of the particles increases and shrinkage during use is reduced, which is a favorable phenomenon.However, on the other hand, unfavorable trends such as the density of the particles increases, the heat insulation properties decrease, and the firing cost increases, are also observed. It will be done. The appropriate firing temperature is usually 1300-1600°C. A batch type kiln is also used as the kiln, but a rotary kiln is suitable for mass production.

本発明の方法によれば、発泡耐火粒子のマグネ
シア含有量を容易に高める事が出来る。耐火粒子
のマグネシア含有量が高まるに従い耐火粒子自身
の融点が高まり、マグネシア含有量が75%以上に
なると熔融金属程度の温度では耐火粒子自身の熔
融は極めて少なくなる。マグネシアの含有量がさ
らに高くなると、熔融金属に付随するスラグ成分
との反応軟化も一層少なくなりマグネシア成分が
90%を越えるとスラグ成分との反応は極端に少な
くなる現象が認められた。
According to the method of the present invention, the magnesia content of expanded refractory particles can be easily increased. As the magnesia content of the refractory particles increases, the melting point of the refractory particles themselves increases, and when the magnesia content exceeds 75%, the melting of the refractory particles themselves becomes extremely low at temperatures comparable to molten metal. As the magnesia content increases, the softening of the molten metal due to its reaction with the slag component also decreases, and the magnesia component increases.
It was observed that when it exceeds 90%, the reaction with slag components becomes extremely small.

耐火粒子の容積比重はメスシリンダーで測定さ
れた一定容積の粒子の重量から計算される。容積
比重が小さい程、耐火粒子の断熱性は向上するが
スラグ等と反応して粒子としての形状を保つてい
る時間は短くなり、又、粒子の強度も弱くなる。
容積比重が大きくなると本発明の目的である断熱
性が低下する。以上のことを考慮すると、耐火粒
子の容積比重としては0.2−1.5が望ましく、0.35
−0.60がとくに望ましい。
The volume specific gravity of refractory particles is calculated from the weight of a certain volume of particles measured in a graduated cylinder. As the volume specific gravity decreases, the heat insulation properties of the refractory particles improve, but the time for reacting with slag and the like to maintain the shape of the particles becomes shorter, and the strength of the particles also becomes weaker.
When the volumetric specific gravity increases, the heat insulation property, which is the object of the present invention, decreases. Considering the above, it is desirable that the volume specific gravity of the refractory particles is 0.2-1.5, and 0.35
−0.60 is particularly desirable.

[実施例] 以下、実施例により本発明を具体的に説明す
る。
[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 1 含水率49.5%の海水水酸化マグネシウムケーク
にアルミニウム微粉0.5%を添加混練し、60℃に
加熱し、発泡操作を行なつたのち、電気乾燥機で
120℃で3時間の乾燥を行なつた。乾燥物の含水
率は3.5%であつた。この乾燥物をジヨークラツ
シヤーで破砕し10−1mmの粒をし分し、1400℃の
小型ロータリーキルンで焼成した。焼成物の容積
比重は0.59であつた。この断熱耐火粒子の分析値
は次の通りであつた。
Example 1 0.5% aluminum fine powder was added and kneaded to a seawater magnesium hydroxide cake with a water content of 49.5%, heated to 60°C, foamed, and dried in an electric dryer.
Drying was performed at 120°C for 3 hours. The moisture content of the dry product was 3.5%. This dried product was crushed using a geocrusher to separate particles of 10-1 mm in size, and fired in a small rotary kiln at 1400°C. The volume specific gravity of the fired product was 0.59. The analytical values of the heat-insulating refractory particles were as follows.

MgO 94.0% CaO 2.3% Al2O3 1.2% Fe2O3 0.1% SiO2 0.5% このものと特性を比較するため発泡したバーミ
ユキユライトに天然のマグネシア粉をコーテイン
グしたものを用いた。このものの化学組成ならび
に物性は次の通りであつた。
MgO 94.0% CaO 2.3% Al 2 O 3 1.2% Fe 2 O 3 0.1% SiO 2 0.5% In order to compare the properties with this one, foamed vermiyukilite coated with natural magnesia powder was used. The chemical composition and physical properties of this product were as follows.

比較試料 MgO 50.7 CaO 0.6 Al2O3 9.7 Fe2O3 1.8 SiO2 20.5 Na2O 2.5 Ig・loss 10.4 容積比重 0.50 保温性試験 直径15cmφのルツボに熔鉄を入れ、1550℃に保
つたのち、断熱耐火粒子を6cmの厚さになるよう
に投入し、投入後の温度降下速度を測定した。そ
の結果は次の通りであつた。
Comparison sample MgO 50.7 CaO 0.6 Al 2 O 3 9.7 Fe 2 O 3 1.8 SiO 2 20.5 Na 2 O 2.5 Ig・loss 10.4 Volume specific gravity 0.50 Heat retention test After placing molten iron in a crucible with a diameter of 15 cmφ and keeping it at 1550℃, Heat-insulating refractory particles were added to a thickness of 6 cm, and the rate of temperature drop after injection was measured. The results were as follows.

温度降下速度 本発明品 10.6℃/分 比較品 11.8℃/分 耐スラグ性 連続鋳造現場のタンデイシユに断熱耐火粒子を
一定量投入して粒子の消滅する時間を測定し比較
した。その結果、本発明品はいずれの場合におい
ても比較品に対して2〜4倍の耐スラグ性を示し
た。
Temperature drop rate: Inventive product: 10.6°C/min Comparative product: 11.8°C/min Slag resistance A certain amount of heat-insulating refractory particles was put into a tundish at a continuous casting site, and the time taken for the particles to disappear was measured and compared. As a result, the products of the present invention exhibited 2 to 4 times higher slag resistance than the comparative products in all cases.

[発明の効果] 本発明は実施例に認められる通り、高温で秀れ
た特性を発揮する耐火粒子を製造する方法であ
り、本発明の方法で得られる耐熱耐火粒子は広い
用途に使用することが期待される。
[Effects of the Invention] As recognized in the Examples, the present invention is a method for producing refractory particles that exhibit excellent properties at high temperatures, and the heat-resistant refractory particles obtained by the method of the present invention can be used in a wide range of applications. There is expected.

Claims (1)

【特許請求の範囲】 1 含水率60−20%の水酸化マグネシユウムケー
クに発泡剤を添加混練発泡させた後、含水率5%
以下になるように乾燥し、この乾燥物を破砕し整
粒した後1000℃以上の温度で焼成することを特徴
とする熔融金属用断熱材耐火粒子の製造法。 2 発泡材としてアルミニウムの微粉を用いる特
許請求の範囲1に記載の熔融金属用断熱耐火粒子
の製造法。 3 乾燥物を10−1mmに整粒する特許請求の範囲
1に記載の熔融金属用断熱耐火粒子の製造法。
[Claims] 1. A blowing agent is added to a magnesium hydroxide cake with a water content of 60-20%, kneaded and foamed, and then the water content is 5%.
1. A method for producing heat insulating refractory particles for molten metal, which comprises drying to obtain the following properties, crushing and sizing the dried material, and then firing at a temperature of 1000°C or higher. 2. The method for producing heat insulating and refractory particles for molten metal according to claim 1, wherein fine aluminum powder is used as the foaming material. 3. The method for producing heat-insulating refractory particles for molten metal according to claim 1, wherein the dried material is sized to 10-1 mm.
JP5957586A 1986-03-19 1986-03-19 Manufacture of heat insulative refractory particle for molten metal Granted JPS62216975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5957586A JPS62216975A (en) 1986-03-19 1986-03-19 Manufacture of heat insulative refractory particle for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5957586A JPS62216975A (en) 1986-03-19 1986-03-19 Manufacture of heat insulative refractory particle for molten metal

Publications (2)

Publication Number Publication Date
JPS62216975A JPS62216975A (en) 1987-09-24
JPH0212905B2 true JPH0212905B2 (en) 1990-03-29

Family

ID=13117166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5957586A Granted JPS62216975A (en) 1986-03-19 1986-03-19 Manufacture of heat insulative refractory particle for molten metal

Country Status (1)

Country Link
JP (1) JPS62216975A (en)

Also Published As

Publication number Publication date
JPS62216975A (en) 1987-09-24

Similar Documents

Publication Publication Date Title
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
CN112592156B (en) Foamed ceramic and preparation method and application thereof
CN113443898A (en) Low-thermal-conductivity spinel refractory homogeneous brick and preparation method and application thereof
US4622070A (en) Fibrous composite material for fused aluminum
CN113716940A (en) Novel heat storage brick and preparation method thereof
US3008842A (en) Basic refractory insulating shapes
US4528244A (en) Fused silica shapes
US3990901A (en) Method for the production of foam ceramics and shaped articles thereof
CN102020474A (en) High-temperature low-heat-conductivity refractory material and production method thereof
US3974315A (en) Closed cellular fused silica bodies
JPH0212905B2 (en)
CN100429177C (en) Mg-Al light thermal-insulated fireproof materials and method for preparing same
JP5501629B2 (en) Magnesia clinker
CN112209739A (en) Lightweight high-strength magnesium aluminate spinel hollow sphere porous ceramic and preparation method thereof
JPH01237049A (en) Heat insulating refractory grain for molten metal
CN101768004B (en) Low-pore in situ oriental topaz brick and preparation method thereof
JPH0348152B2 (en)
JP3024723B2 (en) Insulated castable
JPS6059189B2 (en) Sintered refractory brick for ultra-dense glass furnace and its manufacturing method
JPH0794343B2 (en) Magnesia clinker and method for producing the same
US1373854A (en) Refractory brick
CN104591746A (en) Novel A-C refractory material for cement kilns, and preparation method thereof
JPS5920630B2 (en) Manufacturing method of magnesia chromium fired firebrick
JPH09301766A (en) Porous spinel clinker and its production
JP4126339B2 (en) Ceramic hollow ball and method for producing the same