JPH02129001A - Reformer for fuel cell - Google Patents

Reformer for fuel cell

Info

Publication number
JPH02129001A
JPH02129001A JP63280316A JP28031688A JPH02129001A JP H02129001 A JPH02129001 A JP H02129001A JP 63280316 A JP63280316 A JP 63280316A JP 28031688 A JP28031688 A JP 28031688A JP H02129001 A JPH02129001 A JP H02129001A
Authority
JP
Japan
Prior art keywords
gas
reformer
reforming
combustion
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63280316A
Other languages
Japanese (ja)
Inventor
Genichi Ikeda
池田 元一
Makoto Okuda
誠 奥田
Shunichi Koike
俊一 小池
Ichiro Nakamachi
一郎 仲町
Hirokuni Oota
太田 洋州
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP63280316A priority Critical patent/JPH02129001A/en
Publication of JPH02129001A publication Critical patent/JPH02129001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve thermal efficiency and miniaturize a reformer by providing a construction in which a heating burner is arranged in the center and an annular reaction tube and preheating tube for reforming steam and combustion air are concentrically placed and mutually separated successively from the inside so as to surround the heating burner. CONSTITUTION:In a reformer 1 for a fuel cell capable of reforming a feedstock gas using a catalyst and producing a reformed gas, the following construction is adopted. That is a heating burner 2 capable of producing a combustion gas for heating a reforming catalyst with a fuel is provided in the center of the reformer 1. A reaction tube 3 having a return passage for reforming the feedstock gas filled with a reforming catalyst 6 and a least one preheating tube (e.g., reforming steam preheating tube 4 and a combustion air preheating tube 5) for preheating gases required for reforming are concentrically placed successively from the inside to the outside so as to surround the periphery of the burner 2, mutually separated, supported by the upper part [e.g., upper wall (1a) and bottom wall (1b)] at one alternate opposite end and arranged so that the other end having the return part may be a free end.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃料電池用改質器に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a fuel cell reformer.

(従来技術) 燃料電池は、原料ガスの有する化学エネルギーを直接電
気エネルギーに変換する発電効率の高い発電装置として
近年実用化に向けて開発が積極的に進められている。特
に、需要地点近傍に配置し、電気と同時に発生する熱も
利用するコシュネレーションタイプのオンサイト用燃料
電池は、燃料電池の有効な利用法として注目され、開発
か行われている。
(Prior Art) In recent years, fuel cells have been actively developed for practical use as power generation devices with high power generation efficiency that directly convert chemical energy contained in raw material gas into electrical energy. In particular, on-site fuel cells of the coherence type, which are placed near demand points and utilize heat generated at the same time as electricity, are attracting attention as an effective use of fuel cells and are being developed.

オンサイト用燃料電池は小型化および高効率化が要求さ
れ、特に燃料電池の主要コンポーネントの一つである改
質器についてもこれまて小型化のための提案、開発が多
く行われてきている。改質器は、都市ガスなどの原料ガ
スを高温状態で改質反応させることにより電池本体で必
要とする水素リッチな改質ガスを製造するものであり、
この改質反応は吸熱反応であり、いかに効率良く熱を反
応管内部の原料ガスと水蒸気との混合気体か流れる改質
触媒層に伝えるかが、改質器を小型化および高効率化す
る最大のポイントとなる。
On-site fuel cells are required to be smaller and more efficient, and in particular, many proposals and developments have been made to make the reformer, which is one of the main components of the fuel cell, smaller. . The reformer produces the hydrogen-rich reformed gas needed by the battery by subjecting raw material gas such as city gas to a reforming reaction at high temperatures.
This reforming reaction is an endothermic reaction, and the key to making the reformer smaller and more efficient is how efficiently the heat is transferred to the gas mixture of raw material gas and steam inside the reaction tube or to the flowing reforming catalyst layer. This is the main point.

従来提案されている改質器の一例として特公昭57−7
538号公報に記載された改質器は、最外管と中間管と
の間に改質触媒を充填した3重管構造の反応管を有し、
反応管の外側にバーナノズルから燃焼ガスを送って反応
管内の改質触媒を通過する原料ガスを加熱することによ
り改質ガスを得ている。
As an example of a reformer that has been proposed in the past, the
The reformer described in Publication No. 538 has a reaction tube with a triple tube structure filled with a reforming catalyst between an outermost tube and an intermediate tube,
The reformed gas is obtained by sending combustion gas from a burner nozzle to the outside of the reaction tube and heating the raw material gas passing through the reforming catalyst inside the reaction tube.

この改質器におけるガスの流れを示したものが第4図で
あり、燃料ガスAの流れに対して原料ガスBは反応管内
の改質触媒層20中をまず燃焼ガスAとは対向して流れ
、改質触媒層20を出て今度は流れの向きを変えて並行
して流れる。従って原料ガスBは破線丸Pの部分では燃
焼ガスAから吸熱して加熱されるとともに破線Qの部分
ては改質後の改質ガスから吸熱して加熱されるが、図か
られかるように、原料ガスBが改質触媒層20に導入さ
れる入口部分てはガス温度が低いためできるだけ多くの
吸熱をしたいところであるが、燃焼ガスAの出口温度は
すでに低くなっているため燃焼ガスAと原料ガスBとの
温度差は小さくなってしまい充分な熱伝達が行われない
FIG. 4 shows the flow of gas in this reformer. In contrast to the flow of fuel gas A, raw material gas B first passes through the reforming catalyst layer 20 in the reaction tube, facing away from combustion gas A. After exiting the reforming catalyst layer 20, the flow direction is changed and flows in parallel. Therefore, the raw material gas B is heated by absorbing heat from the combustion gas A in the part marked by the broken line circle P, and is heated by absorbing heat from the reformed gas in the part marked by the broken line Q. Since the gas temperature is low at the inlet where raw material gas B is introduced into the reforming catalyst layer 20, it is desired to absorb as much heat as possible, but since the exit temperature of combustion gas A is already low, The temperature difference with raw material gas B becomes small, and sufficient heat transfer is not performed.

そこで化8量を増すためには改質触媒層20の伝熱面積
を大きくする必要かあるが、それては改質器か大型化し
てしまう。
Therefore, in order to increase the amount of chemical compound 8, it is necessary to increase the heat transfer area of the reforming catalyst layer 20, but this would increase the size of the reformer.

一方、特開昭61−222904号には別の改質器か開
示されている。この改質器は中心にバーナを有し、その
周囲に円環状の第1および第2の改質触媒層を同心円状
に配置したものてあり、外側の第2の改質触媒層て原料
ガスを燃焼ガスおよび原料ガス自身により予備改質した
後、内側の第1の改質触媒層で燃焼ガスにより加熱して
改質カスを得ている。第5図はこの改質器におけるガス
の流れを示しており、燃焼ガスAの流れに対して、原料
ガスBは第2の改質触媒層20b中を燃焼ガスAとは対
向して流れるので破線の丸Qの部分では燃焼ガスAから
原料ガスBへの熱伝達か効率よく行われ、第1の改質触
媒層20a中を燃焼ガスAと並行に流れるので破線丸P
の部分ては改質触媒層20aの入口部て高温の燃焼ガス
Aから多量の吸熱が行われ、いずれにしても第4図の場
合に比べて熱伝達効率は高くなる。
On the other hand, another reformer is disclosed in JP-A-61-222904. This reformer has a burner in the center, and annular first and second reforming catalyst layers are arranged concentrically around the burner. is preliminarily reformed using combustion gas and the raw material gas itself, and then heated by the combustion gas in the inner first reforming catalyst layer to obtain reformed scum. FIG. 5 shows the flow of gas in this reformer, and with respect to the flow of combustion gas A, raw material gas B flows in the second reforming catalyst layer 20b opposite to combustion gas A. In the broken line circle Q, heat transfer from the combustion gas A to the raw material gas B is carried out efficiently, and since it flows in parallel with the combustion gas A in the first reforming catalyst layer 20a, the broken line circle P
A large amount of heat is absorbed from the high-temperature combustion gas A at the inlet portion of the reforming catalyst layer 20a, and in any case, the heat transfer efficiency is higher than in the case shown in FIG.

しかしながら、破線の丸Rの部分ては、第2の改質触媒
層20bを出た原料ガスBと第1の改質触媒層20aで
改質された改質ガスとが並行して流れるため、ここでは
熱交換は行われず、ガスの流れに無駄な部分ができて改
質器の構造を却って複雑にしている。
However, in the broken line circle R, the raw material gas B leaving the second reforming catalyst layer 20b and the reformed gas reformed in the first reforming catalyst layer 20a flow in parallel. No heat exchange takes place here, creating a wasteful portion of the gas flow and complicating the structure of the reformer.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたものて、簡潔な
構造で燃焼ガスから原料ガスへの伝熱を向上させ熱効率
の向上と改質器の小型化を図ることを目的とする。
(Objective and Structure of the Invention) The present invention has been made in view of the above points, and has an object to improve heat transfer from combustion gas to raw material gas with a simple structure, improve thermal efficiency, and downsize a reformer. With the goal.

(実施例) 以下本発明をその好適な実施例について図面を参照して
具体的に説明する。
(Example) The present invention will be specifically described below with reference to the drawings regarding preferred embodiments thereof.

第1図は本発明による改質器の一実施例の構造を示した
ものである。
FIG. 1 shows the structure of an embodiment of a reformer according to the present invention.

改質器lは、中心に加熱用バーナ2が配lされ、これを
取り囲むように同心円状内側から順に円環状の反応管3
と、改質用水蒸気予熱管4と、燃焼用空気予熱管5とが
離間して配置されている。
The reformer 1 includes a heating burner 2 in the center, and surrounding the heating burner 2 are annular reaction tubes 3 arranged concentrically from the inside.
, a reforming steam preheating tube 4, and a combustion air preheating tube 5 are arranged apart from each other.

バーナ2の燃焼室2aはセラミックなどからなる円環状
の壁2bで囲まれており、かつ円環状セラミックの壁2
bは各部分に内外を貫通するガス流出口2cが適切なる
間隔で設けられており、燃焼室2aて生成された燃焼ガ
スはこのガス流出口2cを通過して外側に出ていく。
The combustion chamber 2a of the burner 2 is surrounded by an annular wall 2b made of ceramic or the like.
Gas outlet ports 2c penetrating the inside and outside of the combustion chamber 2b are provided at appropriate intervals in each part, and the combustion gas generated in the combustion chamber 2a passes through the gas outlet ports 2c and exits to the outside.

反応管3は長手方向に隔壁で2分されて内部に折り返し
流路が形成され、その上端が改質器lの上壁1aに支持
されて下向きに伸び、その下端か自由端となっていて折
り返し部を有する。反応管3の内側の通路には改質触媒
層6が充填されている0反応管3の改質触媒層6のある
内側はバーナ2のセラミック壁2bに近接しているので
、改質触媒156はセラミック壁2bからの輻射とガス
流出口2cから流出する燃焼ガスの対流とにより高い伝
熱効率で加熱され、改質反応に必要な熱か得られる。
The reaction tube 3 is divided into two by a partition wall in the longitudinal direction to form a folded passage inside, and its upper end is supported by the upper wall 1a of the reformer l and extends downward, and its lower end or free end is formed. It has a folded part. The inside passage of the reaction tube 3 is filled with a reforming catalyst layer 6. Since the inside of the reaction tube 3 where the reforming catalyst layer 6 is located is close to the ceramic wall 2b of the burner 2, the reforming catalyst 156 is heated with high heat transfer efficiency by radiation from the ceramic wall 2b and convection of the combustion gas flowing out from the gas outlet 2c, and the heat necessary for the reforming reaction is obtained.

改質用水蒸気予熱管4は、反応管3と同様に内部が長手
方向に隔壁で2分され内部に折り返し流路か形成され、
下端か改質器lの底壁tbに支持されて上向きに伸び、
その上端が自由端となっていて折り返し部を有する。
Similar to the reaction tube 3, the reforming steam preheating tube 4 is divided into two by a partition wall in the longitudinal direction, and a folded passage is formed inside.
The lower end is supported by the bottom wall tb of the reformer l and extends upward,
Its upper end is a free end and has a folded portion.

燃焼用空気予熱管5も内部が長手方向に隔壁で2分され
内部に折り返し流路か形成され、上端が改質器lのE壁
1aに支持されて下向きに伸び、下端か自由端となって
いて折り返し部を有する。
The inside of the combustion air preheating tube 5 is also divided into two in the longitudinal direction by a partition wall, and a folded passage is formed inside.The upper end is supported by the E wall 1a of the reformer 1 and extends downward, and becomes a lower end or a free end. It has a folded part.

反応管3、改質用水蒸気予熱管4.燃焼用空気予熱管5
は、このようにようにそれぞれ下向き、上向き、下向き
と交互に反対方向に伸びるように一端が改質器の上また
は下の壁に支持されており、従ってそれぞれの間に形成
される燃焼ガスの流路13は、流れ方向か順に上下入れ
かわるようになっている。
Reaction tube 3, reforming steam preheating tube 4. Combustion air preheating pipe 5
are supported at one end on the upper or lower wall of the reformer so that they thus extend in opposite directions alternately downward, upward, and downward, respectively, and thus the combustion gases formed between each The flow path 13 is arranged so that the upper and lower sides are alternated in the flow direction.

さて、天然ガスのような原料ガスと改質用水蒸気との混
合気(以下、原料ガスという)は、反応管入口3aから
送り込まれ反応管3の内側の流路に充填された改質触媒
層6を通過しながら加熱されて改質反応が行われ、水素
リッチな改質ガスとなって反応管3の先端で折り返され
、今度は外側の折り返し流路を通って反応管出口3bか
ら出ていく。
Now, a mixture of raw material gas such as natural gas and reforming steam (hereinafter referred to as raw material gas) is fed from the reaction tube inlet 3a and is fed into the reforming catalyst layer filled in the flow path inside the reaction tube 3. 6, the gas is heated and a reforming reaction takes place, becoming hydrogen-rich reformed gas, which is folded back at the tip of the reaction tube 3, and then exits from the reaction tube outlet 3b through the outer folded channel. go.

改質用水蒸気は水蒸気予熱管4の水蒸気人口4aから入
ってまず外側の流路を通り、燃焼ガスにより予熱されて
上端折り返し部で折り返して今度は内側流路を通ってこ
こでも燃焼ガスにより予熱されて水蒸気出口4bから出
ていく、燃焼用空気は空気予熱管5の燃焼用空気入′口
5aから送り込まれ予熱管5の外側流路を通り、燃焼ガ
スにより予熱されながら先端の折り返し部で折り返して
今度は内側流路を通ってここても燃焼ガスと対向しなか
ら予熱されて燃焼用空気出口5bから出ていく。
The reforming steam enters from the steam port 4a of the steam preheating pipe 4, first passes through the outer flow path, is preheated by combustion gas, turns back at the upper end folding part, and then passes through the inner flow path, where it is also preheated by the combustion gas. The combustion air is sent from the combustion air inlet 5a of the air preheating tube 5, passes through the outer flow path of the preheating tube 5, and is preheated by the combustion gas at the folded part at the tip. Turning around, the air passes through the inner flow path, faces the combustion gas, is preheated, and exits from the combustion air outlet 5b.

一方、燃焼ガスおよび燃焼用空気は、燃焼ガス人口14
および燃焼用空気バーナ入口15から加熱用バーナ2に
入る。この加熱用バーナ2で燃焼により生ずる燃焼ガス
は壁2bに設けられたガス流出口2Cから外へ流出し、
燃焼ガス流路13を流れ、反応管3と予熱管4.5との
間隙を上下に流れていき燃焼ガス出口16から出ていく
On the other hand, combustion gas and combustion air have a combustion gas population of 14
The combustion air enters the heating burner 2 from the burner inlet 15. Combustion gas generated by combustion in this heating burner 2 flows out from a gas outlet 2C provided in the wall 2b,
The combustion gas flows through the combustion gas passage 13, flows vertically through the gap between the reaction tube 3 and the preheating tube 4.5, and exits from the combustion gas outlet 16.

ここで改質器l内におけるガスの流れを考えると、第2
図に示すように、反応管3にあっては燃焼ガスの流れが
内部を流れる原料ガス(または改質ガス)と並行流に、
また改質用水蒸気予熱管4にあつては、燃焼ガスが内部
を流れる水蒸気と対向流に、また燃焼用空気予熱管5に
あっては燃焼ガスが内部を流れる空気と対向流になって
おりそれデれのガスに熱を与えていく。
Considering the gas flow inside the reformer l, the second
As shown in the figure, in the reaction tube 3, the flow of combustion gas is parallel to the raw material gas (or reformed gas) flowing inside.
In addition, in the reforming steam preheating pipe 4, the combustion gas flows in a counterflow to the steam flowing inside, and in the combustion air preheating pipe 5, the combustion gas flows in a counterflow to the air flowing inside. It gives heat to the gas.

第3図は改質器l内における各気体の温度状態を示して
おり、破線が燃焼ガス、実線が原料ガス、−点鎖線が改
質用水蒸気、二点鎖線が燃焼用空気を表わしてSす、各
線に付した矢印が気体の流れ方向を示している。第3図
かられかるように、原料ガス導入部では原料ガスと燃焼
ガスとの温度差が最も大きいので多量の吸熱が行われて
原料ガスが加熱され、燃焼ガスの下流では燃焼ガスの温
度が低下するにつれて改質用水蒸気および燃焼用空気が
次第に加熱されていき常に燃焼ガスの保有する熱の回収
が行われる。
Figure 3 shows the temperature state of each gas in the reformer l, where the dashed line represents combustion gas, the solid line represents raw material gas, the dashed line represents reforming steam, and the two-dot chain line represents combustion air. The arrows attached to each line indicate the direction of gas flow. As can be seen from Figure 3, the temperature difference between the raw material gas and the combustion gas is the largest at the raw material gas introduction section, so a large amount of heat is absorbed and the raw material gas is heated, and downstream of the combustion gas, the temperature of the combustion gas increases. As the temperature decreases, the reforming steam and combustion air are gradually heated, and the heat held by the combustion gas is constantly recovered.

(発明の効果) 以上説明したように、本発明においては、改質器の中心
に加熱用バーナを配置し、その周囲に、内部に折り返し
流路を形成し改質触媒を充填した反応管と、内部に折り
返し流路を形成した少なくとも1つの予熱管とを同心円
状に離間し且つ一端が自由端となるように他端を改質器
の対向する壁に交互に固定し、反応管には原料ガスか燃
焼ガスと並行して流れ、予熱管には予熱ガスか対向して
流れるように構成したので、原料ガスの導入部では原料
ガスと燃焼ガスとの間に大きな温度差かてきて燃焼ガス
から原料ガスへの有効な伝熱が行われ、予熱管内部では
予熱ガスと燃焼ガスとの間にほぼ一定の温度差ができる
ため燃焼ガスからの効率のよい熱回収が行われる。実施
例のように予熱管を2本設けて、その1本は改質用水蒸
気の予熱に用い、他の1本は燃焼用空気の予熱に用いた
とすると1両予熱管内部を流れる水蒸気および空気が燃
焼ガスと対向流をなすので管の長手方向に沿って熱回収
が確実に行われ改質器の熱効率か向上する。
(Effects of the Invention) As explained above, in the present invention, a heating burner is arranged at the center of the reformer, and around it, a reaction tube is formed with a folded back passage and filled with a reforming catalyst. , at least one preheating tube having a folded flow path formed therein, are concentrically spaced apart, and the other ends are alternately fixed to the opposite wall of the reformer so that one end becomes a free end, and the reaction tube has Because the structure is configured so that the raw material gas flows in parallel with the combustion gas, and the preheated gas flows in the preheating tube in opposition, there is a large temperature difference between the raw material gas and the combustion gas at the raw material gas introduction part, which prevents combustion. Effective heat transfer from the gas to the raw material gas takes place, and a substantially constant temperature difference is created between the preheated gas and the combustion gas inside the preheating tube, so that efficient heat recovery from the combustion gas is performed. If two preheating tubes are provided as in the example, one of which is used to preheat reforming steam and the other one is used to preheat combustion air, the steam and air flowing inside one preheating tube will be Since the flow is opposed to the combustion gas, heat recovery is ensured along the length of the tube, improving the thermal efficiency of the reformer.

本発明において、加熱用バーナの燃焼室の壁をセラミッ
ク製とすれば、改質触媒層のある反応管内側への伝熱は
、セラミック壁からの輻射と燃焼ガスの対流とが加わり
非常に大きい、また、セラミック壁に燃焼ガス貫通用の
ガス流出口を設け、そのガス流出口の大きさや数を部分
的に変えて壁を貫通する燃焼ガスの流量を変化させるこ
とにより、改質触媒層への輻射および対流による加熱量
を変えられるので、理想的な改質触媒層の温度分布が得
られる。
In the present invention, if the wall of the combustion chamber of the heating burner is made of ceramic, the heat transfer to the inside of the reaction tube where the reforming catalyst layer is located is extremely large due to the radiation from the ceramic wall and the convection of the combustion gas. In addition, by providing a gas outlet for the combustion gas to pass through the ceramic wall and partially changing the size and number of the gas outlet to change the flow rate of the combustion gas penetrating the wall, the flow rate of the combustion gas passing through the wall can be changed. Since the amount of heating by radiation and convection can be changed, an ideal temperature distribution of the reforming catalyst layer can be obtained.

さらに、本発明によれば、改質器の最外側を流れる燃焼
ガス温度が十分に低くなるので改質器外側面の断熱材は
薄くてすむ、また改質用水蒸気予熱管のマニホールドを
改質器底面に配置することにより、改質用水蒸気の予熱
をさらに増加させると同時に底面の断熱材の厚みを減ら
すことができる。
Furthermore, according to the present invention, the temperature of the combustion gas flowing on the outermost side of the reformer is sufficiently low, so the insulation material on the outer surface of the reformer can be made thin, and the manifold of the steam preheating tube for reforming can be reformed. By placing it on the bottom of the vessel, it is possible to further increase the preheating of the reforming steam and at the same time reduce the thickness of the heat insulating material on the bottom.

・また、改質用水蒸気予熱管および燃焼用空気予熱管を
改質器内部に組み込むことにより、これらを外部の熱交
換器として設置する必要がなくなるので、燃料電池装置
全体を小型化する上て効果かある。
・In addition, by incorporating the reforming steam preheating tube and the combustion air preheating tube inside the reformer, there is no need to install them as an external heat exchanger, which helps in downsizing the entire fuel cell device. It's effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による燃料電池用改質器の一実施例の断
面図、第2図は第1図に示した改質器内部におけるガス
流の向きを説明する図、第3図は第1図に示した改質器
内部におけるガスの温度分布と流れの向きを示す図、第
4図および第5図は従来の改質器内部におけるガス流の
向きを説明する図である。 l・・・改質器、1a・・・上壁、ib・・・下壁、2
・・・加熱用バーナ、3・・・反応管、4・・・改質用
水蒸気予熱管、5・・・燃焼用空気予熱管 特許出願人  東京瓦斯株式会社 代理人  弁理士  鈴 木 弘 男
FIG. 1 is a sectional view of an embodiment of a fuel cell reformer according to the present invention, FIG. 2 is a diagram illustrating the direction of gas flow inside the reformer shown in FIG. 1, and FIG. FIG. 1 is a diagram showing the temperature distribution and flow direction of gas inside the reformer, and FIGS. 4 and 5 are diagrams explaining the direction of gas flow inside the conventional reformer. l...Reformer, 1a...Upper wall, ib...Lower wall, 2
... Heating burner, 3. Reaction tube, 4. Steam preheating tube for reforming, 5. Air preheating tube for combustion.Patent applicant: Tokyo Gas Co., Ltd. Agent, Patent attorney, Hiroshi Suzuki

Claims (8)

【特許請求の範囲】[Claims] (1)原料ガスを触媒により改質して改質ガスを生成す
る燃料電池用改質器において、改質器の中心に燃焼によ
り改質触媒加熱用の燃焼ガスを生成する加熱用バーナを
設け、該バーナの周囲を取り巻くように内側から外側に
向って同心円状に改質触媒を充填した原料ガス改質用の
折り返し流路を有する反応管と、改質に必要な気体を予
熱するための折り返し流路を有する少なくとも1つの予
熱管とを相互に離間し且つ交互に対向する一端で改質器
の一部に支持し、折り返し部を有する他端が自由端とな
るように配置したことを特徴とする燃料電池用改質器。
(1) In a fuel cell reformer that generates reformed gas by reforming raw material gas with a catalyst, a heating burner is installed in the center of the reformer to generate combustion gas for heating the reforming catalyst through combustion. , a reaction tube having a folded passage for reforming the raw material gas filled with a reforming catalyst concentrically from the inside to the outside so as to surround the burner, and a reaction tube for preheating the gas necessary for reforming. At least one preheating tube having a folded passage is spaced apart from each other and supported by a part of the reformer at alternately opposing ends, and arranged such that the other end having the folded part is a free end. Characteristic reformer for fuel cells.
(2)前記予熱管で予熱される気体が、原料ガスと混合
して改質される水蒸気である請求項1に記載の燃料電池
用改質器。
(2) The fuel cell reformer according to claim 1, wherein the gas preheated by the preheating tube is water vapor that is mixed with the raw material gas and reformed.
(3)前記予熱管で予熱される気体が、前記バーナでの
燃焼に用いられる空気である請求項1に記載の燃料電池
用改質器。
(3) The fuel cell reformer according to claim 1, wherein the gas preheated by the preheating tube is air used for combustion in the burner.
(4)原料ガスを触媒により改質して改質ガスを生成す
る燃料電池用改質器において、改質器の中心に燃焼によ
り改質触媒加熱用の燃焼ガスを生成する加熱用バーナを
設け、該バーナの周囲を取り巻くように内側から外側に
向って同心円状に改質触媒を充填した原料ガス改質用の
折り返し流路を有する反応管と、原料ガスと混合して改
質される水蒸気を予熱する折り返し流路を有する第1の
予熱管と、前記バーナでの燃焼に必要な空気を予熱する
折り返し流路を有する第2の予熱管とを、相互に離間し
且つ交互に対向する一端で改質器の一部に支持し、折り
返し部を有する他端が自由端となるように配置し、前記
バーナから流出する燃焼ガスの流れが、前記反応管の内
部を流れる原料ガスおよび改質用水蒸気とは並行流に、
前記第1の予熱管内部を流れる水蒸気とは対向流となり
、前記第2の予熱管内部を流れる空気とは対向流となる
ように構成したことを特徴とする燃料電池用改質器。
(4) In a fuel cell reformer that generates reformed gas by reforming raw material gas with a catalyst, a heating burner is installed in the center of the reformer to generate combustion gas for heating the reforming catalyst through combustion. , a reaction tube having a folded passage for reforming the raw material gas filled with a reforming catalyst concentrically from the inside to the outside so as to surround the burner, and steam to be reformed by mixing with the raw material gas. A first preheating tube having a folded passage for preheating the air and a second preheating tube having a folded passage for preheating the air necessary for combustion in the burner are separated from each other and alternately facing each other at one end. is supported on a part of the reformer, and arranged so that the other end having a folded part becomes a free end, so that the flow of combustion gas flowing out from the burner is connected to the raw material gas and reforming gas flowing inside the reaction tube. In parallel flow with the water vapor,
A reformer for a fuel cell, characterized in that the water vapor flowing inside the first preheating tube is in a counter flow and the air flowing inside the second preheating tube is in a counter flow.
(5)前記加熱用バーナの燃焼室が円環状の壁で囲まれ
、且つ前記壁に燃焼ガスを流出するためのガス流出口を
有する請求項1または4に記載の燃料電池用改質器。
(5) The fuel cell reformer according to claim 1 or 4, wherein the combustion chamber of the heating burner is surrounded by an annular wall, and the wall has a gas outlet through which combustion gas flows out.
(6)前記反応管に対する加熱は、燃焼ガスにより加熱
されたセラミック壁からの輻射と、該セラミック壁のガ
ス流出口から流出する燃焼ガスの対流とによりなされる
請求項4に記載の燃料電池用改質器。
(6) The fuel cell according to claim 4, wherein the reaction tube is heated by radiation from a ceramic wall heated by combustion gas and convection of combustion gas flowing out from a gas outlet of the ceramic wall. reformer.
(7)前記ガス流出口の大きさまたは数を部分的に異な
らしめた請求項5に記載の燃料電池用改質器。
(7) The fuel cell reformer according to claim 5, wherein the size or number of the gas outlet ports are partially different.
(8)前記第1の予熱管のマニホールドが前記加熱用バ
ーナの下部の改質器底部に設けられた請求項4に記載の
燃料電池用改質器。
(8) The fuel cell reformer according to claim 4, wherein the manifold of the first preheating tube is provided at the bottom of the reformer below the heating burner.
JP63280316A 1988-11-08 1988-11-08 Reformer for fuel cell Pending JPH02129001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280316A JPH02129001A (en) 1988-11-08 1988-11-08 Reformer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280316A JPH02129001A (en) 1988-11-08 1988-11-08 Reformer for fuel cell

Publications (1)

Publication Number Publication Date
JPH02129001A true JPH02129001A (en) 1990-05-17

Family

ID=17623296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280316A Pending JPH02129001A (en) 1988-11-08 1988-11-08 Reformer for fuel cell

Country Status (1)

Country Link
JP (1) JPH02129001A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397602A (en) * 1989-06-16 1991-04-23 Fuji Electric Co Ltd Endothermic reactor
WO1996032753A1 (en) * 1995-04-12 1996-10-17 International Fuel Cells Corporation Fuel processing apparatus having a furnace for fuel cell power plant
JP2006151735A (en) * 2004-11-29 2006-06-15 Mitsubishi Kakoki Kaisha Ltd Steam reforming apparatus and method
JP2008030997A (en) * 2006-07-28 2008-02-14 Osaka Gas Co Ltd Reformer
JP2009013022A (en) * 2007-07-06 2009-01-22 Iwatani Internatl Corp Hydrogen separation membrane type lp gas reforming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397602A (en) * 1989-06-16 1991-04-23 Fuji Electric Co Ltd Endothermic reactor
WO1996032753A1 (en) * 1995-04-12 1996-10-17 International Fuel Cells Corporation Fuel processing apparatus having a furnace for fuel cell power plant
US5931658A (en) * 1995-04-12 1999-08-03 International Fuel Cells Fuel cell power plant furnace
JP2006151735A (en) * 2004-11-29 2006-06-15 Mitsubishi Kakoki Kaisha Ltd Steam reforming apparatus and method
JP4702771B2 (en) * 2004-11-29 2011-06-15 三菱化工機株式会社 Steam reformer and steam reforming method
JP2008030997A (en) * 2006-07-28 2008-02-14 Osaka Gas Co Ltd Reformer
JP2009013022A (en) * 2007-07-06 2009-01-22 Iwatani Internatl Corp Hydrogen separation membrane type lp gas reforming apparatus

Similar Documents

Publication Publication Date Title
US5763114A (en) Integrated reformer/CPN SOFC stack module design
US5366819A (en) Thermally integrated reformer for solid oxide fuel cells
US7037472B2 (en) Single-pipe cylinder-type reformer
JPH0422827Y2 (en)
US6773684B2 (en) Compact fuel gas reformer assemblage
US20080244973A1 (en) Reformer
US6998096B2 (en) Fuel reformer for use in fuel cell
EP0584107A1 (en) Modular isothermal reactor.
JP2003530664A (en) Integrated reactor
US20040163800A1 (en) Heat exchanger for heating of fuel cell combustion air
EP0724780A1 (en) Integrated reformer/cpn sofc stack module design
JPH0326326A (en) Modifying equipment for fuel cell
JP3861077B2 (en) Fuel reformer
JP3939347B2 (en) Furnace for fuel cell power plant
JPH0692242B2 (en) Fuel reformer
JPH02129001A (en) Reformer for fuel cell
JP3550436B2 (en) Fuel reformer
JP2733846B2 (en) Reformer for fuel cell
JPH04206362A (en) High-temperature type fuel cell system power generating device
JP2646101B2 (en) Fuel reformer
JP2004123464A (en) Steam reformer
JP2001263968A (en) Plate fin type heat exchanger
JP2000159501A (en) Hydrogen-containing gas-producing apparatus
JPH0369503A (en) Fuel reformer
JP2004175580A (en) Steam reformer