JPH02124727A - Method and device for molding glass lens - Google Patents

Method and device for molding glass lens

Info

Publication number
JPH02124727A
JPH02124727A JP27510188A JP27510188A JPH02124727A JP H02124727 A JPH02124727 A JP H02124727A JP 27510188 A JP27510188 A JP 27510188A JP 27510188 A JP27510188 A JP 27510188A JP H02124727 A JPH02124727 A JP H02124727A
Authority
JP
Japan
Prior art keywords
glass
pressure
mold
lens
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27510188A
Other languages
Japanese (ja)
Other versions
JPH07106917B2 (en
Inventor
Toshio Kashiwagi
栢木 寿雄
Shinji Namita
伸司 波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP27510188A priority Critical patent/JPH07106917B2/en
Publication of JPH02124727A publication Critical patent/JPH02124727A/en
Publication of JPH07106917B2 publication Critical patent/JPH07106917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/48Convex-concave

Abstract

PURPOSE:To mold a glass lens with improved dimensional precision by heating glass under specified pressure, repressurizing the glass until the remaining pressurizing margin in decreased to zero in the vicinity of the transition temp., and then annealing the glass to the transition temp. under lowered pressure. CONSTITUTION:The glass 14 to be molded is placed on a cavity die 13 set in a lower die 3, the heated molding chamber 1 is filled with an inert gas, and the glass is heated. A set temp., at which the glass can be pressed, is then reached, the glass is soaked, then the lower die 3 is raised by a lower movable shaft 5 connected to a pressure cylinder, and a first pressure molding is carried out between the lower die 3 and the fixed upper die 2. The glass is cooled to a temp. close to the transition temp. after the first pressure molding and soaked, and a second pressure molding the applied. The pressure molding is continued until the remaining pressurizing margin t is decreased to zero, and the glass is completely pressed. The glass is then annealed to the transition temp. and further cooled, and a lens is taken out from the forming die.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、ガラスレンズの成形方法及びその装置に係わ
り、特に直径が大きいガラスレンズ、両凹レンズ、メニ
スカスレンズ等を成形するのに好適な成形方法及びその
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of molding a glass lens and an apparatus therefor, and particularly to a molding method suitable for molding a glass lens with a large diameter, a biconcave lens, a meniscus lens, etc. The present invention relates to a method and an apparatus thereof.

〔従来の技術〕[Conventional technology]

近年、研磨仕上げを必要とするガラスレンズの加工方法
に代わって、予め計量されたガラス素材(ガラスゴブ)
を加熱軟化した後、超精密型を使用して、その面をガラ
ス面に転写させる精密プレス加工方法が注目されている
In recent years, pre-measured glass material (glass gob) has replaced glass lens processing methods that require polishing.
A precision press processing method is attracting attention, in which the surface is softened by heating and then transferred to a glass surface using an ultra-precision mold.

今までにこの種のガラスレンズ成形方法および装置につ
いては数多くの発明提案がなされ、径の小さなレンズ、
両凸レンズ等の製造については既に多くの実績を挙げて
いる。
Until now, many inventions have been proposed for this type of glass lens molding method and device, and
We have already achieved many results in manufacturing biconvex lenses, etc.

その理由は、本発明者によって、次の点にあることが判
った。すなわち、加圧によって超精密型表面をレンズに
転写した後レンズと型の双方を転移温度以下まで降温さ
せる際に、径の小さなレンズの場合には、被成形ガラス
と型の熱膨張係数の違いによる、両者の収縮量の差が小
さいため、従ってガラスと型の接触点のズレが小さいか
らであり、また両凸レンズの場合には、レンズの収縮時
に、型がその収縮を妨げない形状であるからである。
The reason for this has been found by the inventors to be as follows. In other words, when the ultra-precision mold surface is transferred to the lens by pressure and then the temperature of both the lens and mold is lowered to below the transition temperature, in the case of a small diameter lens, the difference in thermal expansion coefficient between the glass to be molded and the mold. This is because the difference in the amount of shrinkage between the two is small, and therefore the misalignment of the contact point between the glass and the mold is small, and in the case of a biconvex lens, the mold does not interfere with the shrinkage of the lens. It is from.

〔発明が解決しようとする問題点] しかし、型とレンズの接触点のズレが大きい大径レンズ
や、型によってガラスの収縮が妨げられる両凹レンズ、
メニスカスレンズ等の成形の場合には、得られたレンズ
を干渉計で測定することによって、レンズ中央部に湾曲
した干渉縞が認められ、精度の高いレンズを得ることが
難しいと言った問題があった。
[Problems to be solved by the invention] However, large-diameter lenses with a large misalignment of the contact point between the mold and the lens, biconcave lenses where the mold prevents shrinkage of the glass,
When molding meniscus lenses, etc., there is a problem in that when measuring the obtained lens with an interferometer, curved interference fringes are observed in the center of the lens, making it difficult to obtain lenses with high precision. Ta.

特に、両凹レンズ、メニスカスレンズ等の場合には、徐
冷時に被成形ガラスの中央部と外周部との間で温度差が
生じ、外周部から内部方向へ順に冷却されるため外周部
から先に固化し、ガラス内部の収縮が型により阻害され
るので、転移温度までガラスを加圧し続けるとワレが発
生し、また加圧を弱めてもレンズ全体が成形時の形状を
保って一様に収縮せず、干渉計測定によってレンズの中
央部に干渉縞の湾曲が認められることになる。また、こ
の温度差を無くするように非常にゆっくりした徐冷を行
うと、徐冷に長時間を要し、生産効率を極度に悪化させ
、生産方式として不適である。
In particular, in the case of biconcave lenses, meniscus lenses, etc., a temperature difference occurs between the center and the outer periphery of the glass to be formed during slow cooling, and since the glass is cooled sequentially from the outer periphery toward the inside, the outer periphery is first cooled. When the glass solidifies, the shrinkage inside the glass is inhibited by the mold, so if the glass continues to be pressurized to the transition temperature, cracks will occur, and even if the pressure is weakened, the entire lens will maintain its molded shape and shrink uniformly. Instead, interferometer measurements show that the interference fringes are curved in the center of the lens. Furthermore, if slow cooling is performed very slowly to eliminate this temperature difference, the slow cooling will take a long time, resulting in extremely poor production efficiency, making it unsuitable as a production method.

本発明は、上記問題点乃至欠点を除去するためになされ
たものであり、その目的は大径レンズ、両凹レンズ、メ
ニスカスレンズ等においても形状精度を高めることがで
きるガラスレンズの成形方法と装置を提供することであ
る。
The present invention was made in order to eliminate the above-mentioned problems and drawbacks, and its purpose is to provide a glass lens molding method and apparatus that can improve the shape accuracy even in large-diameter lenses, biconcave lenses, meniscus lenses, etc. It is to provide.

〔問題点を解決するための手段] この目的を達成するために、本発明によるガラスレンズ
の成形方法は、成形型に入れられ所定の温度に加熱され
たガラスの第1の加圧を行い、そのとき、この第1加圧
後の温度から転移温度までの降温の間に発生するガラス
の収縮量以上の加圧代を残し、次に、加圧力を弱めて降
温を行い、ガラスの転移温度近くで、前記加圧残り代が
零になるまで再加圧し、そして加圧力を弱めて転移温度
まで徐冷し、更に冷却することを特徴とする。
[Means for solving the problem] In order to achieve this object, the method for molding a glass lens according to the present invention includes performing a first pressurization of glass placed in a mold and heated to a predetermined temperature; At that time, a pressure margin greater than the amount of shrinkage of the glass that occurs during the temperature reduction from the temperature after this first pressure application to the transition temperature is left, and then the pressure is weakened and the temperature is lowered to reach the transition temperature of the glass. It is characterized in that it is pressurized again until the remaining pressurization amount becomes zero, and then the pressurizing force is weakened to slowly cool it to a transition temperature, and then further cooled.

更に、本発明によるガラスレンズの成形装置は、ガラス
レンズのレンズ面に対応する成形面を有する上型と下型
を備えた成形型と、加圧成形のために、前記上型と下型
の少なくとも一方を加圧するための加圧手段と、第1加
圧後の加圧残り代を設定するための、加圧手段または被
加圧型の変位を検出する位置センサ、およびこの位置セ
ンサからの信号に基づいて加圧手段を制御する制御機構
と、被成形ガラスと成形型の温度調整手段とを具備する
ことを特徴とする。
Further, the glass lens molding apparatus according to the present invention includes a mold including an upper mold and a lower mold having molding surfaces corresponding to the lens surface of the glass lens, and a mold for pressure molding. A pressurizing means for pressurizing at least one side, a position sensor for detecting displacement of the pressurizing means or the pressurized type for setting the remaining pressurization amount after the first pressurization, and a signal from the position sensor. The present invention is characterized by comprising a control mechanism for controlling the pressurizing means based on the above, and a temperature adjusting means for the glass to be formed and the mold.

〔実施例〕〔Example〕

次に、図を参照して本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例によるガラスレンズ成形装置全
体を概略的に示している。函体1aによって密閉された
加熱成形室1内には、上型2と下型3が配置され、この
上型2と下型3はそれぞれ断熱ベース9,10を介して
上部固定軸4と下部可動軸5の先端に固定されている。
FIG. 1 schematically shows an entire glass lens forming apparatus according to an embodiment of the present invention. An upper mold 2 and a lower mold 3 are arranged in a heating molding chamber 1 sealed by a box 1a, and these upper mold 2 and lower mold 3 are connected to an upper fixed shaft 4 and a lower part via heat insulating bases 9 and 10, respectively. It is fixed to the tip of the movable shaft 5.

下部可動軸5は図示していない加圧シリンダに連結され
、加圧時に上昇駆動される。更に、下型3の動作位置を
検出するために、下部可動軸5には検出片7が取付けら
れ、この検出片7に応答する位置センサ8(例えば、微
小位置間隔の検出精度が良い渦流式変位センサ)が図示
していない手段によって函体1aに固定配置されている
。この位置センサ8からの信号は図示していない制御機
構に供給される。
The lower movable shaft 5 is connected to a pressure cylinder (not shown), and is driven upward when pressure is applied. Further, in order to detect the operating position of the lower mold 3, a detection piece 7 is attached to the lower movable shaft 5, and a position sensor 8 (for example, an eddy current type sensor with high accuracy in detecting minute position intervals) is attached to the lower movable shaft 5. A displacement sensor) is fixedly arranged on the case 1a by means not shown. A signal from this position sensor 8 is supplied to a control mechanism (not shown).

制御機構はシーケンサまたはコンピュータを含み、前記
信号に基づいて、下部可動軸5の動作を制御する。
The control mechanism includes a sequencer or a computer, and controls the operation of the lower movable shaft 5 based on the signal.

第2a図は第1回目の加圧後の加圧代(隙間ΔL)を残
した成形型の状態を示し、第2b図は再加圧を行い、完
全に押し切った成形型の状態を示している。
Figure 2a shows the state of the mold with a pressurizing allowance (gap ΔL) remaining after the first pressurization, and Figure 2b shows the state of the mold after re-pressurization and completely pushed out. There is.

成形型は、レンズ面に対応する精密成形面を有する上下
キャビティダイ12.13と、キャビティダイ12,1
3を周囲から保持している胴壁11.15と、ベース1
6.17からなっている。
The mold includes upper and lower cavity dies 12.13 having precision molding surfaces corresponding to the lens surface, and cavity dies 12,1.
The trunk wall 11.15 holding 3 from the periphery and the base 1
It consists of 6.17.

キャビティダイ12と胴壁11が、第1図に示した上型
2を形成し、キャビティダイ13と胴壁15が下型3を
形成している。キャビティダイ12゜13の材質は例え
ば緻密なセラミックス、胴壁11.15とベース16.
17は例えば耐酸化性の良いタングステン合金である。
The cavity die 12 and the body wall 11 form the upper mold 2 shown in FIG. 1, and the cavity die 13 and the body wall 15 form the lower mold 3. The material of the cavity die 12.13 is, for example, dense ceramics, the body wall 11.15 and the base 16.
17 is, for example, a tungsten alloy with good oxidation resistance.

この場合の膨張係数の関係は、セラミックス〈タングス
テン合金(ガラスである。なお、キャビティダイ12.
13によって成形される被成形ガラスは番号14で示し
である。
The relationship between the expansion coefficients in this case is that of ceramics <tungsten alloy (glass).In addition, the cavity die 12.
The glass to be formed by 13 is designated by the number 14.

次に上記構造の成形装置によるガラスレンズの成形方法
について説明する。
Next, a method of molding a glass lens using the molding apparatus having the above structure will be explained.

下型3の内部にセットされたキャビティダイ13の上に
被成形ガラス14を載せた後、加熱成形室1内を不活性
ガス(窒素ガス)で充満させ、加熱昇温を行う。そして
プレス可能な設定温度に達し、均熱化を行った後で、図
示していない加圧シリングに連結された下部可動軸5に
よって、下型3を上界させ、そして固定された上型2と
の間で第1回目の加圧成形を行う。この加圧ストローク
は前記の位置センサ8と図示していない制御機構によっ
て加圧シリンダを停止することによって次のように制限
される。すなわち、後述の第2回目の加圧成形のために
所定の加圧代(第2a図のΔを参照)を残すように制限
される。この所定の加圧残り代ΔLは、第1回目の加圧
が終了してからガラスを転移温度に降温させるまでの間
に生ずるガラスの熱収縮量、すなわち第1回目以降のガ
ラスの熱収縮量よりも大きく設定され、例えば10〜1
00μmであり、レンズの形状や大きさによって異なる
。加圧残り代Δむは更に、次の二点■、■を考慮して適
切な値に選定される。
After the glass to be formed 14 is placed on the cavity die 13 set inside the lower mold 3, the inside of the heating forming chamber 1 is filled with inert gas (nitrogen gas) to heat and raise the temperature. After reaching the set temperature for pressing and performing soaking, the lower mold 3 is raised by the lower movable shaft 5 connected to a pressurizing sill (not shown), and the upper mold 2 is fixed. The first pressure molding is performed between the two. This pressurizing stroke is limited as follows by stopping the pressurizing cylinder using the position sensor 8 and a control mechanism (not shown). That is, the pressure is limited so as to leave a predetermined pressure margin (see Δ in FIG. 2a) for the second pressure molding to be described later. This predetermined pressurization residual amount ΔL is the amount of thermal contraction of the glass that occurs from the end of the first pressurization until the temperature of the glass is lowered to the transition temperature, that is, the amount of thermal contraction of the glass after the first pressurization. For example, 10 to 1
00 μm and varies depending on the shape and size of the lens. The pressurization remaining amount Δm is further selected to an appropriate value by considering the following two points (1) and (2).

■ 加圧ストロークは大きい方が、プレス時に小さな力
で良く伸びる。
■ The larger the pressure stroke, the better the product will stretch with less force during pressing.

■ しかし、第2回目の加圧ストロークを大きくすると
、第1回目のプレス時にレンズ周囲部の伸びが甘くなり
すぎて、第2プレスを行っても、完全な形状精度を出せ
ない。
(2) However, if the second pressing stroke is made larger, the peripheral portion of the lens will not stretch too easily during the first pressing, and even if the second pressing is performed, complete shape accuracy cannot be achieved.

第1回目の加圧成形後、転移温度近(までガラスを降温
して均熱化を行い、第2回目の加圧成形を行う。この加
圧成形は前記の加圧残り代Δtが零になるまで行われ、
完全に押し切られる。次に、転移温度まで徐冷され、更
に冷却されて成形型からレンズが取り出される。
After the first pressure forming, the temperature of the glass is lowered to near the transition temperature (soaking), and the second pressure forming is performed. It is carried out until
completely pushed out. Next, the lens is slowly cooled to a transition temperature, further cooled, and then taken out from the mold.

このようにして成形されるガラスレンズは、干渉縞の湾
曲等の乱れを発生しない。従って、径の大きなレンズお
よび両凹、メニスカス形状のレンズにおいても、本発明
の装置と方法を採用することによって、充分に満足する
精度のガラスレンズ成形が可能である。
A glass lens molded in this manner does not produce disturbances such as curvature of interference fringes. Therefore, by employing the apparatus and method of the present invention, even large-diameter lenses, biconcave lenses, and meniscus-shaped lenses can be molded with sufficient accuracy.

次に、凹メニスカスレンズの実際の成形例について説明
する。ガラスは転移温度430″Cのホーヤ硝種名FD
5 (重フリント系ガラス)を用い、キャビティダイ1
2.13は膨張係数4 X 10−’mm/ ’Cの炭
化珪素を、胴壁11,15は膨張係数5X 10−’m
m/ ’Cのタングステン合金を用い、外径が20−1
上面と下面の曲率半径Rがそれぞれ20閣と22mm、
最も薄い中心肉厚が1.2画のレンズを成形した。
Next, an example of actual molding of a concave meniscus lens will be described. The glass is Hoya glass type FD with a transition temperature of 430″C.
5 (heavy flint type glass), cavity die 1
2.13 is made of silicon carbide with an expansion coefficient of 4 x 10-'mm/'C, and the shell walls 11 and 15 have an expansion coefficient of 5 x 10-'m.
m/'C tungsten alloy with outer diameter of 20-1
The radius of curvature R of the upper and lower surfaces is 20mm and 22mm, respectively.
A lens with the thinnest center wall thickness of 1.2 strokes was molded.

第1回目のプレスは温度550°Cで荷重160 kg
で行い、加圧代ΔLを30μm残した。次に、加圧荷重
を低圧に切り換え、同時に40“67分で降温を行った
。このときの荷重は、降温に伴う部材(型、断熱材等)
の収縮を補う動作を行なうのに充分な大きさとした。
The first press was carried out at a temperature of 550°C and a load of 160 kg.
was carried out, leaving a pressurizing allowance ΔL of 30 μm. Next, the pressure load was switched to low pressure, and the temperature was lowered at the same time for 40 to 67 minutes.The load at this time was
The size is large enough to compensate for the contraction of the body.

第2回目のプレスは、転移温度に近い480°Cにおい
て、加圧残り代がほぼ零になるまで、プレスを行なった
。このときの圧力は前回に比較して若干低い120 k
g程度であり、加圧後は再度低圧に切り換え、転移温度
まで徐冷を行い、その後急冷を行って成形型からレンズ
を取り出した。
In the second pressing, pressing was carried out at 480° C., which is close to the transition temperature, until the remaining pressurization amount became almost zero. The pressure at this time was 120 k, which is slightly lower than last time.
After pressurizing, the pressure was changed to low again, slow cooling was performed to the transition temperature, and then rapid cooling was performed and the lens was taken out from the mold.

上記の成形方法で得られたレンズを、フィゾー式干渉計
で干渉縞を測定した結果、干渉縞の乱れ、特に湾曲は認
められなかった。
As a result of measuring the interference fringes of the lens obtained by the above molding method using a Fizeau interferometer, no disturbance of the interference fringes, especially no curvature, was observed.

なお、上記成形例のように、温度550°Cでプレスを
行い、ガラスが固化する転移温度(430’C)付近ま
で降温した場合の、膨張係数の差によって発生ずる隙間
は第3図において、Δt:3,4μm、Δt (: 1
.5 p m 、Δtz  :0.1 urn程度生ず
ることになり、算出値で見る限り、ΔL〉Δ1.+ΔL
2となり、ガラスに粘性流動が起こる温度域では加圧し
続けることによって、レンズの中央部に発生する精度不
良(縞の湾曲)は発生しないように思われる。
In addition, as in the above molding example, when pressing is performed at a temperature of 550°C and the temperature is lowered to around the transition temperature (430'C) at which the glass solidifies, the gap generated due to the difference in expansion coefficient is shown in Fig. 3. Δt: 3,4 μm, Δt (: 1
.. 5 pm, Δtz: about 0.1 urn, and as far as the calculated values are concerned, ΔL>Δ1. +ΔL
2, and it seems that by continuing to apply pressure in the temperature range where viscous flow occurs in the glass, the poor accuracy (curved stripes) that occurs in the center of the lens does not occur.

しかし、現実には徐冷工程において、胴壁1115、キ
ャビティダイ12,13およびレンズ14には、中央部
と外周部との間で温度差が生じ、外周部より内部方向へ
順に冷却され、ガラスの径方向の収縮が型により阻害さ
れ、転移温度まで加圧し続けるとワレが発生し、また加
圧を弱めても、干渉縞の湾曲が発生することになる。ま
た、この温度差を無くするような徐冷を行う場合には、
徐冷に長時間を要し、生産効率を極度に悪化させ、生産
方式として採用できない。
However, in reality, in the slow cooling process, a temperature difference occurs between the center and the outer circumference of the body wall 1115, cavity dies 12, 13, and lens 14, and the glass is cooled in order from the outer circumference toward the inside. The radial contraction of the material is inhibited by the mold, and cracking will occur if pressure is continued to reach the transition temperature, and even if the pressure is weakened, the interference fringes will be curved. In addition, when performing slow cooling to eliminate this temperature difference,
It takes a long time to slowly cool down, extremely reduces production efficiency, and cannot be adopted as a production method.

そこで、上記実施例のように第2回目のプレスを行う際
に、Δt〉ΔL1+Δtよとする必要があるのである。
Therefore, when performing the second press as in the above embodiment, it is necessary to set Δt>ΔL1+Δt.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、加圧を2回に分けて行
い、最初の加圧の際、それ以降発生するガラスの収縮量
以上の加圧代を残し、次に減圧した後に降温を行い、転
移温度近くで再度加圧を行うようにしたので、径の大き
いレンズおよびすべての形状のレンズにおいて干渉縞の
乱れが発生せず、形状精度の高いガラスレンズが得られ
るいう優れた効果を奏するものである。
As explained above, in the present invention, pressurization is performed in two steps, and during the first pressurization, a pressurization margin that is greater than the amount of shrinkage of the glass that will occur thereafter is left, and then after the pressure is reduced, the temperature is lowered. By applying pressure again near the transition temperature, interference fringes are not disturbed in large-diameter lenses and lenses of all shapes, and glass lenses with high shape accuracy can be obtained. It is something to play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例によるガラスレンズ成形装置
全体の概略図、第2a図は、最初の加圧後の加圧代を残
した状態を示す型の縦断面図、第2b図は再加圧を行っ
て完全に押し切った状態を示す型の縦断面図、第3図は
第2回目の加圧の前の状態を示す型の縦断面図である。 1・・・加熱成形室、  1a・・・函体、 2・・・
上型、 3・・・下型、 4・・上部固定軸、 5・・
・加圧手段(下部固定軸)、 7・・・検出片、  8
・・・位置センサ、  9,10・・・断熱ベース、 
 11.15・・・胴壁、12.13・・・キャビティ
ダイ、  14・・被成形ガラス、  16.17・・
・ベース、ΔL・・・加圧残り代、 ΔEl、ΔL2 
・・キャビティダイと被成形ガラスの隙間 出願人  ホ − ヤ 株式会社 代理人 弁理士 中 村 静 男 第 図 第 28図 第2b図 第 図
FIG. 1 is a schematic diagram of the entire glass lens molding apparatus according to an embodiment of the present invention, FIG. 2a is a longitudinal cross-sectional view of the mold showing a state in which a pressurizing allowance is left after the first pressurization, and FIG. 2b is a vertical cross-sectional view of the mold. FIG. 3 is a vertical sectional view of the mold showing a state in which the mold is completely pressed out after being pressurized again, and FIG. 3 is a vertical sectional view of the mold in a state before the second pressurization. 1... Heat forming chamber, 1a... Box, 2...
Upper mold, 3... Lower mold, 4... Upper fixed shaft, 5...
- Pressure means (lower fixed shaft), 7... detection piece, 8
...position sensor, 9,10...insulation base,
11.15... Trunk wall, 12.13... Cavity die, 14... Glass to be formed, 16.17...
・Base, ΔL...Remaining pressure, ΔEl, ΔL2
...Gap between cavity die and glass to be formed Applicant: Shizuo Nakamura, agent, patent attorney, Hoya Co., Ltd. Figure 28 Figure 2b Figure

Claims (1)

【特許請求の範囲】 1、成形型に入れられ所定の温度に加熱されたガラスの
第1の加圧を行い、そのとき、この第1加圧後の温度か
ら転移温度までの降温の間に発生するガラスの収縮量以
上の加圧代を残し、 次に、加圧力を弱めて降温を行い、 ガラスの転移温度近くで、前記加圧残り代が零になるま
で再加圧し、 そして加圧力を弱めて転移温度まで徐冷し、更に冷却す
ることを特徴とするガラスレンズの成形方法。 2、ガラスレンズのレンズ面に対応する成形面を有する
上型と下型を備えた成形型と、 加圧成形のために、前記上型と下型の少なくとも一方を
加圧するための加圧手段と、 第1加圧後の加圧残り代を設定するための、加圧手段ま
たは被加圧型の変位を検出する位置センサ、およびこの
位置センサからの信号に基づいて加圧手段を制御する制
御機構と、 被成形ガラスと成形型の温度調整手段とを具備すること
を特徴とするガラスレンズの成形装置。
[Claims] 1. A first pressurization is applied to the glass that has been placed in a mold and heated to a predetermined temperature, and at that time, during the temperature reduction from the temperature after the first pressurization to the transition temperature. Leaving a pressure margin greater than the amount of shrinkage of the glass that occurs, then reduce the pressure and lower the temperature, repressurize near the transition temperature of the glass until the remaining pressure becomes zero, and then reduce the pressure. A method for forming a glass lens, characterized by weakening the temperature, slowly cooling it to a transition temperature, and further cooling it. 2. A mold comprising an upper mold and a lower mold having a molding surface corresponding to the lens surface of a glass lens, and a pressure means for pressurizing at least one of the upper mold and the lower mold for pressure molding. and a position sensor for detecting displacement of the pressurizing means or pressurized type for setting the pressurization remaining amount after the first pressurization, and a control for controlling the pressurizing means based on a signal from this position sensor. 1. A glass lens molding apparatus, comprising: a mechanism; and a means for adjusting the temperature of glass to be molded and a mold.
JP27510188A 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof Expired - Lifetime JPH07106917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27510188A JPH07106917B2 (en) 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27510188A JPH07106917B2 (en) 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof

Publications (2)

Publication Number Publication Date
JPH02124727A true JPH02124727A (en) 1990-05-14
JPH07106917B2 JPH07106917B2 (en) 1995-11-15

Family

ID=17550778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27510188A Expired - Lifetime JPH07106917B2 (en) 1988-10-31 1988-10-31 Glass lens forming method and apparatus thereof

Country Status (1)

Country Link
JP (1) JPH07106917B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349031C (en) * 2005-03-25 2007-11-14 莱阳市康友玻璃材料有限责任公司 Method for making automobile headlamp aspheric lens
CN113562961A (en) * 2021-07-12 2021-10-29 三瑞科技(江西)有限公司 Low-defective-rate glass insulator compression molding process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349031C (en) * 2005-03-25 2007-11-14 莱阳市康友玻璃材料有限责任公司 Method for making automobile headlamp aspheric lens
CN113562961A (en) * 2021-07-12 2021-10-29 三瑞科技(江西)有限公司 Low-defective-rate glass insulator compression molding process
CN113562961B (en) * 2021-07-12 2022-12-20 三瑞科技(江西)有限公司 Low-defective-rate glass insulator compression molding process

Also Published As

Publication number Publication date
JPH07106917B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPH0531504B2 (en)
JPH01157425A (en) Manufacture device for glass molded article
JP3572618B2 (en) Method and apparatus for correcting tempering of rolling parts
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JPH02124727A (en) Method and device for molding glass lens
JPH0431328A (en) Mold structure for forming optical element and press-molding method
JPH0812355A (en) Apparatus for producing quartz glass article
EP0599037A2 (en) Molding machine for making an optical element and method of making the same
JPH0994653A (en) Low pressure casting apparatus and low pressure casting method
JPH09249424A (en) Molding of optical element
JP2004010384A (en) Press-forming method and press-forming apparatus
JPH0248498B2 (en) KOGAKUBUHINNOSEIKEISOCHI
JP2000247653A (en) Metal mold for forming optical element and optical element
JP4030799B2 (en) Optical element molding method
JPS63170228A (en) Press-molding device for glass lens
JPS6153126A (en) Molding of pressed lenses with high accuracy
JP4436561B2 (en) Optical element manufacturing method
JP3585260B2 (en) Apparatus and method for manufacturing optical element
JPH05221664A (en) Method for forming optical element
JPH09286622A (en) Optical device producing device
JPH01208334A (en) Molding of optical element and mold therefor
JPH05170456A (en) Forming method for glass optical element
JPH05163030A (en) Method for forming optical element
JPH01270529A (en) Forming mold for glass optical element
JPS63182223A (en) Method for molding glass lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 13

EXPY Cancellation because of completion of term