JPH02122873A - Applying method for aerosol - Google Patents

Applying method for aerosol

Info

Publication number
JPH02122873A
JPH02122873A JP27776688A JP27776688A JPH02122873A JP H02122873 A JPH02122873 A JP H02122873A JP 27776688 A JP27776688 A JP 27776688A JP 27776688 A JP27776688 A JP 27776688A JP H02122873 A JPH02122873 A JP H02122873A
Authority
JP
Japan
Prior art keywords
aerosol
coated
particles
liquid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27776688A
Other languages
Japanese (ja)
Other versions
JPH0661530B2 (en
Inventor
Masabumi Matsunaga
正文 松永
Takeshi Moriyama
剛 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson KK
Original Assignee
Nordson KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson KK filed Critical Nordson KK
Priority to JP63277766A priority Critical patent/JPH0661530B2/en
Publication of JPH02122873A publication Critical patent/JPH02122873A/en
Publication of JPH0661530B2 publication Critical patent/JPH0661530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To coat a surface to be coated with particles efficiently by cooling a material to be applied down to the saturating point of solvent vapor, condensing the solvent vapor in aerosol on the material surface to be coated and adhere the particles of aerosol. CONSTITUTION:Aerosol As composed of gas and fine particles is formed, and gas G is introduced from below a chamber 2 as carrier gas CG to feed aerosol As into a coating section 22. A cooling board 25 connected with a cooling device 23 is provided below the coating section 22, on which a material Oa to be coated is placed. The material Oa to be coated is cooled down to the temperature lower than that of solvent vapor at the coating section 22 and the solvent vapor is condensed Sc on the material surface to be coated. Particles R carried by carrier gas CG hit condensed dew drops, and kinetic energy of fine particles R is absorbed by the liquid of dew drops to reduce bounding, and the fine particles are adhered on the dew drops.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエアロゾルの塗布方法に係る。[Detailed description of the invention] [Industrial application field] The present invention relates to an aerosol application method.

[従来の技術] 従来のエアロゾル塗布方法の代表的例をあげると、第5
図に見られるように、液体り、などを加圧してスプレィ
ノズル54から噴出し、それを硬板55に衝突させて。
[Prior art] A typical example of a conventional aerosol application method is the fifth method.
As shown in the figure, pressurized liquid is ejected from the spray nozzle 54 and collided with the hard plate 55.

より微細な微粒子となし、それらを導入したキャリアガ
スCG、などの気流に乗せて被塗物Oc而面まで運び、
その速度の下に被塗物00面に打当て、又は静電気など
(静電気印加装置58)の力などにより被塗物Oc而面
に付着即ち塗布していた。
The finer particles are transported to the surface of the object to be coated on the airflow of carrier gas CG, etc., into which they are introduced.
At this speed, it was applied to the surface of the object to be coated 00, or it was attached to the surface of the object to be coated by the force of static electricity (static electricity applying device 58).

[解決しようとする問題点] 上述の如く、エアロゾルの粒子はキャリアガス即ち搬送
気流に乗って被塗物面上に打ち当てられていたが、この
際、これらの粒子の跳返り(バウンド)は避けられなか
った。
[Problem to be solved] As mentioned above, aerosol particles are carried by a carrier gas, that is, a conveying airflow, and hit the surface of the object to be coated, but at this time, the bounce of these particles is It was inevitable.

元来、微粒子(1ミクロン前後)というのは、表面積/
重量が大きく、即ち比較的空気抵抗が大であるのに反し
、慣性の力が小であるため、微粒子の周辺の気体の動き
に左右され易い、換言すれば、気体中の微粒子の運動速
度が終末速度に達するまでの時間は殆どなく、従って。
Originally, fine particles (around 1 micron) have a surface area of
Although their weight is large, which means relatively large air resistance, their inertial force is small, so they are easily affected by the movement of the gas around them.In other words, the speed of movement of particles in the gas is influenced by the movement of the gas around them. There is therefore little time to reach terminal velocity.

エアロゾル粒子の初速度と気体の流速とは殆ど無関係な
のである9文献、ウィリアム・C・ハインズ著: 「エ
アロゾルテクノロジー」弁上書院(昭60)によると粒
径(μ■)      終末速度に達する時間(■5)
10             0.941     
        0.011上記の如く、殆ど瞬間的に
終末速度に達するのである。
The initial velocity of aerosol particles is almost unrelated to the gas flow velocity. According to 9 documents, William C. Hines, "Aerosol Technology" Benjo Shoin (1980), particle size (μ■) time to reach terminal velocity ( ■5)
10 0.941
0.011 As mentioned above, the terminal velocity is reached almost instantaneously.

即ち、エアロゾル粒子は、殆ど瞬間的に気体の流速と等
しくなるのである。
That is, the aerosol particles almost instantaneously become equal to the gas flow velocity.

従って、静止気体中では、エアロゾル粒子は殆ど動かな
くなり、被塗物までの到着時間が長くなる。一方、キャ
リアガスの流速を上げると、エアロゾル粒子は、それと
殆ど同速となり、被塗物面上に衝突し、跳返り現象が発
生し、付着効率が低下するのである。
Therefore, in a stationary gas, aerosol particles hardly move, and the time it takes for them to reach the object to be coated becomes longer. On the other hand, when the flow velocity of the carrier gas is increased, the aerosol particles have almost the same velocity and collide with the surface of the object to be coated, causing a rebound phenomenon and reducing the adhesion efficiency.

その効率を上げるために、一般に静電気が利用される。To increase its efficiency, static electricity is commonly used.

ただし、静電塗布方法というのは、被塗物が帯電性の高
いもの、例えば電気絶縁フィルム等の場合、過剰帯電に
より火花放電し、被塗物を破壊したり、また液体が可燃
性の溶剤であれば、引火爆発の危険性もあるのである。
However, when using electrostatic coating, if the object to be coated is highly charged, such as an electrically insulating film, an excessive charge may cause spark discharge and destroy the object, or the liquid may be a flammable solvent. If so, there is a risk of ignition and explosion.

本発明の動機は、上述の如く、塗布時におけるエアロゾ
ル粒子のバウンドを少なくして塗着効率を上げ、同時に
放電による被塗物の破壊や危険性などを解消して安全な
塗布方法を実施することであった。
As mentioned above, the motivation of the present invention is to reduce bounce of aerosol particles during coating to increase coating efficiency, and at the same time, to implement a safe coating method by eliminating damage to the coated object or danger caused by electrical discharge. Was that.

[問題点を解決するための手段] 前述したように、非常に微細なエアロゾル粒子(例えば
1ミクロン前後)は、キャリアガスによって移動させら
れ、ある程度の速度を持った運動エネルギをもって、被
塗物面上に衝突する。しかし、それら微粒子の付着する
力はvan der Waals  力もしくは若干の
荷電を持った静電気による引力であって、非常に小さい
エネルギである。他方上記被塗物への衝突により、変換
された跳返りエネルギは、より大きく、上記エアロゾル
粒子は付着し難い0例えば被塗物がプラスチックと、よ
り硬い石英との場合には、それらの付着力が3倍も相異
があると言われている。
[Means for solving the problem] As mentioned above, very fine aerosol particles (for example, around 1 micron) are moved by a carrier gas and are applied to the surface of the object to be coated with kinetic energy at a certain speed. Collision above. However, the force with which these fine particles adhere is a van der Waals force or an attractive force due to slightly charged static electricity, and has very low energy. On the other hand, the rebound energy converted by the collision with the object to be coated is larger, making it difficult for the aerosol particles to adhere. It is said that there is a difference of three times.

本発明の目的は、エアロゾル塗布方法において、エアロ
ゾルの分nlW即ち粒子をバウンドを少なくして効率的
に被塗物面に塗着せしめ、同時に、静電塗布における放
電による被塗物の破壊や作業の危険性を除去することに
ある。
An object of the present invention is to efficiently apply the particles of the aerosol to the surface of the object to be coated by reducing bounce in an aerosol coating method, and at the same time prevent destruction of the object to be coated due to discharge during electrostatic coating. The purpose is to eliminate the danger of

本発明の要旨は、エアロゾル生成装置により発生したエ
アロゾルを被塗物面上まで導いて塗布する方法において
、その気体中に溶媒蒸気を存在させ、かつその蒸気の中
に置いた被塗物を、上記溶媒悪気の飽和点以下に冷却し
、それによってエアロゾル中に含まれている溶媒蒸気を
被塗物面上に結露させ、それら霧滴の面上、又はそれら
の集合して形成された同液膜面上に、上記導かれてきた
エアロゾルの分散’if(以下粒子と称す)を付着せし
め、しかる後、上記液膜状の溶媒を蒸発させ、残された
エアロゾルの粒子のみを塗布することを特徴とするエア
ロゾルの塗布方法である。
The gist of the present invention is to provide a method in which an aerosol generated by an aerosol generation device is guided onto the surface of a workpiece, in which solvent vapor is present in the gas, and the workpiece placed in the vapor is The solvent vapor contained in the aerosol is cooled to below the saturation point, thereby causing the solvent vapor contained in the aerosol to condense on the surface of the object to be coated. The above-mentioned aerosol dispersion 'if (hereinafter referred to as particles) that has been led is deposited on the membrane surface, and then the above-mentioned liquid film-like solvent is evaporated, and only the remaining aerosol particles are applied. This is a unique aerosol application method.

次に、本発明の詳細な説明する。エアロゾル生成に当っ
て使用される液体を、溶媒の含まれている溶液と、含ま
れていない溶融体の二つに分けて説明する。
Next, the present invention will be explained in detail. The liquid used for aerosol generation will be divided into two types: a solution containing a solvent, and a melt that does not contain a solvent.

(1)液体の場合 先ず、従来のエアロゾル生成方法を簡単に説明する。(1) In case of liquid First, a conventional aerosol generation method will be briefly explained.

第1図を参照されたい、液体りをポンプアップして、チ
ャンバ2内にてスプレィノズル4より噴出、そのスプレ
ィを硬板5に打ち当て、微細化された微粒子を得る。同
時に上記液体り中の溶媒も気化し、これら気体と微粒子
より成るエアロゾルΔSが生成される。また他方、チャ
ンバ2の下方よりは、必要とするガスGが導入され、こ
れはキャリアガスCGとして上記エアロゾルAsを塗布
部22内に運ぶ。
Refer to FIG. 1, the liquid is pumped up and ejected from the spray nozzle 4 in the chamber 2, and the spray is hit against the hard plate 5 to obtain fine particles. At the same time, the solvent in the liquid is also vaporized, and an aerosol ΔS consisting of these gases and fine particles is generated. On the other hand, a necessary gas G is introduced from below the chamber 2, and this carries the aerosol As into the application section 22 as a carrier gas CG.

上記エアロゾル内の気体には、上述の如く溶媒の気化し
た蒸気が含まれており、これらは飽和状態に近いことが
望ましい。
The gas in the aerosol contains vaporized solvent as described above, and it is desirable that the gas be close to a saturated state.

塗布部の下方には、冷却装置23に接続された冷却盤2
5が設けられており、該盤上に被塗物○aが置かれる。
Below the application section, there is a cooling board 2 connected to a cooling device 23.
5 is provided, and the object to be coated ○a is placed on the board.

、核被塗物Oaは冷却されて、上記塗布部における溶媒
蒸気の温度より低下せしめる。それによってその溶媒蒸
気は被塗物面上に結露Scする(第2図参照)、これら
結露した霧滴の上に、キャリアガスに乗ってきた微粒子
Rは打ち当たる、ただし、これら霧滴の液体により、微
粒子の運動エネルギは吸収され、バウンドが減少し、同
霧滴上に付着する。
, the nuclear coating object Oa is cooled down to a temperature lower than that of the solvent vapor in the coating area. As a result, the solvent vapor condenses on the surface of the object to be coated (see Figure 2).The fine particles R carried by the carrier gas collide with these condensed mist droplets, but the liquid in these mist droplets is As a result, the kinetic energy of the fine particles is absorbed, the bounce is reduced, and the fine particles are deposited on the same droplets.

なお、これら5Is71Iが多数集合すると、第3図に
示すように、液膜状Sfとなって、被塗物面上を一面に
覆い、微粒子のバウンドをより少なくすることができる
のである。
When a large number of these 5Is71I aggregate, as shown in FIG. 3, they form a liquid film Sf that completely covers the surface of the object to be coated, thereby making it possible to further reduce the bounce of the fine particles.

また、上記のスプレィする溶液やキャリアガス、または
移動行程において、エアロゾルを適切な温度に加熱し、
蒸気量を増やしてやることは、冷却による液膜形成の速
度及び面積をより大とすることになる。
In addition, the aerosol is heated to an appropriate temperature during the spraying solution, carrier gas, or moving process, and
Increasing the amount of steam increases the speed and area of liquid film formation due to cooling.

上述のエアロゾルの生成材料を液体としたが、それは溶
液及び懸濁液、乳濁液等も含まれることは公知の通りで
ある0次に懸濁液を使用した場合の実験例について述べ
ろ。
Although the aerosol generating material mentioned above is a liquid, it is well known that it includes solutions, suspensions, emulsions, etc. Let us now discuss an experimental example in which a zero-order suspension is used.

実験例1゜ 1WIfIs液   水(純水)        92
重量部ジルコニア粉(粒径5μm)  7重景部ロジン
系水溶性樹脂     1重量部室温    25℃ 液圧    40kg/aJ(プランジャポンプにて)
液温    60℃ エアロゾル   分散質 ジルコニア粉及びロジン系水
溶性樹脂 分散媒 水 キャリアガス  乾燥空気 流速(エアロゾル移送管19中にて) 8 m/win エアロゾル移送管上の加熱温度   80℃被塗物  
 石英ガラス    10>X10cn冷却された被塗
物温度       20℃所要時間(上記被塗物1枚
に対し)  5分結果   5分後にガラス面1−当り
約2千個のジルコニア粉が均一に分布付着する塗布面を
得ることができた。
Experimental example 1゜1 WIfIs liquid water (pure water) 92
Part by weight Zirconia powder (particle size 5 μm) 7 Parts by weight Rosin water-soluble resin 1 part by weight Room temperature 25℃ Liquid pressure 40kg/aJ (with plunger pump)
Liquid temperature 60°C Aerosol Dispersoid Zirconia powder and rosin-based water-soluble resin dispersion medium Water carrier gas Dry air flow rate (in the aerosol transfer pipe 19) 8 m/win Heating temperature on the aerosol transfer pipe 80°C Object to be coated
Quartz glass 10>X10cn Cooled object to be coated Temperature: 20℃ Required time (for one object to be coated): 5 minutes Result After 5 minutes, about 2,000 zirconia powders are uniformly distributed and adhered to each glass surface. A coated surface was obtained.

実験例2゜ l!ll!濁液  トリクロロトリフルオロエタン 9
7重量部ビニル系樹脂         1.5重量部
シアニン系顔料(粒径0.5μm)1.5重量部室温 
  25℃ 液圧   40kg/cd 液1lII25℃ エアロゾル  分散質 ビニル系樹脂及びシアニン系顔
料 分散媒 トリクロロトリフルオロエタンキャリアガス 
 窒素ガス 流速(エアロゾル移送管39中にて) 5/腸in エアロゾル移送管上の加熱温度   40℃被塗物  
  鏡面アルミ板   10>X10cn冷却された被
塗物温度   15℃ 所要時間(上記被塗物1枚に対し)  3分結果   
 3分後、0.7ミクロンの均一な青色塗膜を得た。
Experimental example 2゜l! ll! Turbid liquid trichlorotrifluoroethane 9
7 parts by weight Vinyl resin 1.5 parts by weight Cyanine pigment (particle size 0.5 μm) 1.5 parts by weight Room temperature
25℃ Liquid pressure 40kg/cd Liquid 1lII 25℃ Aerosol Dispersoid Vinyl resin and cyanine pigment dispersion medium Trichlorotrifluoroethane carrier gas
Nitrogen gas flow rate (in the aerosol transfer pipe 39) 5/intestine Heating temperature on the aerosol transfer pipe 40°C Object to be coated
Mirror-finished aluminum plate 10>X10cn Cooled object temperature 15℃ Required time (for one object to be coated above) 3 minutesResult
After 3 minutes, a uniform blue coating of 0.7 microns was obtained.

溶液及び乳濁液については、未実験につきデータなし。There is no data regarding solutions and emulsions as they have not been tested.

(2)溶融体の場合 溶媒を含まない溶融体のエアロゾルを生成した場合であ
る。第4図を参照されたい、加熱溶融された液状の溶融
体HMは、スプレィノズル34から噴出し、硬板35に
打ち当てられて微粒子化する。ただし前述の液体の場合
のように溶媒は含まれていないので、溶融体の11体の
固体の微粒子より成るエアロゾルが生成される。それが
、キャリアガスに乗せられ、塗布室42内に至る。同室
の下方部には、冷却盤42の設けられていることは+’
+jt述と同様であるが、同室内のエアロゾルの中には
、溶媒が含まれていないので、冷却による結露現象は起
こらない。
(2) In the case of a molten body This is a case where an aerosol of a molten body containing no solvent is generated. Referring to FIG. 4, the heated liquid melt HM is ejected from the spray nozzle 34, hits the hard plate 35, and becomes fine particles. However, since no solvent is included as in the case of the liquid described above, an aerosol consisting of 11 solid particles of the melt is produced. It is carried by the carrier gas and reaches the coating chamber 42 . A cooling plate 42 is provided in the lower part of the same room.
+jt As mentioned above, since the aerosol in the same room does not contain a solvent, no dew condensation phenomenon occurs due to cooling.

よって、溶媒蒸気発生装置47により、適当する溶媒蒸
気を同室内に導入してやる。それによって、同室内には
Therefore, a suitable solvent vapor is introduced into the same chamber by the solvent vapor generator 47. As a result, in the same room.

結露が行なわれて、被塗物ob部面上は、それら溶媒の
霧滴や液膜が形成されるのである。これらに、エアロゾ
ル中の微粒子が、バウンドすることが少なく、効率的に
塗着することは、1項と同様である。
As dew condenses, mist droplets or a liquid film of the solvent are formed on the surface of the object to be coated. As in item 1, the fine particles in the aerosol are less likely to bounce and are efficiently coated on these surfaces.

上述のように、エアロゾルの分散質としての固体微粒子
には、単一成分の場合と複数成分との場合がある。液体
の場合も同様に単一成分の場合と複数成分との場合があ
る。また、これらが、液体の微粒子と固体の微粒子との
混合体の場合もある。
As mentioned above, the solid fine particles used as the dispersoid of the aerosol may have a single component or multiple components. Similarly, in the case of a liquid, there are cases in which it has a single component and cases in which it has multiple components. Further, these may be a mixture of liquid fine particles and solid fine particles.

[発明の効果コ 本発明の方法によれば、生成されたエアロゾルの粒子を
、バウンドすることなく効果的に被塗物面上に塗布する
ことができるのである。
[Effects of the Invention] According to the method of the present invention, the generated aerosol particles can be effectively applied onto the surface of the object to be coated without bouncing.

4、図面のfllf ltLな説明 第1図は本発明のエアロゾル塗布方法の説明図第2図は
回り図L”Δ”部における結露状態図第3図は同じく”
A”部における結露の集合して形成された液+1’:I
 nに微粒子の付着する状態説明図  第4図はエアロ
ゾルの分11が溶融体である場合のエアロゾル塗布方法
  第5図は従来のエアロゾル塗布方法
4. Full explanation of the drawings Figure 1 is an explanatory diagram of the aerosol application method of the present invention. Figure 2 is a diagram showing the state of dew condensation in the rotary diagram L"Δ". Figure 3 is the same diagram.
Liquid formed by condensation gathering in part A''+1': I
Figure 4 shows the aerosol application method when part 11 of the aerosol is a melt. Figure 5 shows the conventional aerosol application method.

【図面の簡単な説明】[Brief explanation of the drawing]

1.31・・・・・・エアロゾル生成装置i   4,
34・・・・・・スプレィノズル  5,35・・・・
・・硬板  21,41・・・・・・塗布部  23.
43・・・・・・冷却装置i+?  25,45・・・
・・・冷却盤  47・・・・・・溶媒黒発装置  A
s・・・・・・エアロゾル  CG・・・・・キャリア
ガス  HM・・・・・・溶融体○a、Ob、Oc・・
・・・・被塗物  Sc・−・・・結露Sf・・・・・
液膜
1.31...Aerosol generator i 4,
34...Spray nozzle 5,35...
...Hard board 21,41... Application part 23.
43...Cooling device i+? 25, 45...
...Cooling plate 47...Solvent black generator A
s... Aerosol CG... Carrier gas HM... Melt ○a, Ob, Oc...
...Object to be coated Sc --- Condensation Sf ...
liquid film

Claims (1)

【特許請求の範囲】 1、エアロゾル生成装置より発生したエアロゾルを被塗
物面上まで導いて塗布する方法において、その気体中に
溶媒を存在させ、かつその蒸気中に置いた被塗物を冷却
し、それによってエアロゾル中に含まれている溶媒蒸気
を該被塗物面上に結露させ、その霧滴(Sc)の面上に
、又はそれらの集合して形成された同液膜(Sf)面上
に、上記導かれてきたエアロゾルの粒子(R)を付着せ
しめ、しかる後上記液膜状の溶媒を蒸発させ、残された
エアロゾルの粒子(R)のみを塗布することを特徴とす
るエアロゾルの塗布方法。 2、被塗物に対する冷却温度が、溶媒蒸気が飽和の状態
になる温度以下である特許請求の範囲第1項記載のエア
ロゾルの塗布方法。 3、エアロゾルの分散質が、単一成分若しくは複数成分
の固体粒子から成る特許請求の範囲第1項記載のエアロ
ゾルの塗布方法。 4、エアロゾルの分散質が、単一成分若しくは複数成分
の液体粒子から成る特許請求の範囲第1項記載のエアロ
ゾルの塗布方法。 5、エアロゾルの分散質が、単一成分若しくは複数成分
より成る固体粒子と単一成分若しくは複数成分より成る
液体粒子とから成る固体と液体との混合粒子であること
を特徴とする特許請求の範囲第1項記載のエアロゾルの
塗布方法。
[Claims] 1. A method of guiding and coating an aerosol generated by an aerosol generation device onto the surface of the object to be coated, in which a solvent is present in the gas and the object to be coated placed in the vapor is cooled. As a result, the solvent vapor contained in the aerosol is condensed on the surface of the object to be coated, and a film (Sf) of the same liquid is formed on the surface of the mist droplets (Sc) or a collection of them. An aerosol characterized by depositing the guided aerosol particles (R) on a surface, then evaporating the liquid film-like solvent, and applying only the remaining aerosol particles (R). How to apply. 2. The aerosol coating method according to claim 1, wherein the cooling temperature of the object to be coated is below the temperature at which the solvent vapor becomes saturated. 3. The method for applying an aerosol according to claim 1, wherein the dispersoid of the aerosol consists of solid particles of a single component or multiple components. 4. The method for applying an aerosol according to claim 1, wherein the dispersoid of the aerosol consists of liquid particles of a single component or a plurality of components. 5. Claims characterized in that the dispersoid of the aerosol is a mixed particle of solid and liquid consisting of solid particles consisting of a single component or multiple components and liquid particles consisting of a single component or multiple components. The method for applying an aerosol according to item 1.
JP63277766A 1988-11-02 1988-11-02 Aerosol application method Expired - Fee Related JPH0661530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277766A JPH0661530B2 (en) 1988-11-02 1988-11-02 Aerosol application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277766A JPH0661530B2 (en) 1988-11-02 1988-11-02 Aerosol application method

Publications (2)

Publication Number Publication Date
JPH02122873A true JPH02122873A (en) 1990-05-10
JPH0661530B2 JPH0661530B2 (en) 1994-08-17

Family

ID=17588034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277766A Expired - Fee Related JPH0661530B2 (en) 1988-11-02 1988-11-02 Aerosol application method

Country Status (1)

Country Link
JP (1) JPH0661530B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794017A2 (en) * 1996-03-07 1997-09-10 Sharp Kabushiki Kaisha Apparatus and method of improving particle surface
EP0922487A2 (en) * 1997-12-12 1999-06-16 Sharp Kabushiki Kaisha Method and apparatus for modifying particles
EP1090690A1 (en) * 1998-05-25 2001-04-11 Fuji Koeki Co., Ltd Liquid spray device and cutting method
EP0941769A4 (en) * 1996-11-29 2001-11-07 Fuji Koeki Co Ltd Liquid coater
US6773212B2 (en) 2000-10-26 2004-08-10 Fuji Koeki Co., Ltd. Cutting-oil coater and cutting device
JP2009291696A (en) * 2008-06-04 2009-12-17 Tomokazu Kanda Aqueous liquid electrostatic coating method using silicon oxide aqueous solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827665A (en) * 1981-08-10 1983-02-18 Tokyo Copal Kagaku Kk Surface-treatment by aerosol and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827665A (en) * 1981-08-10 1983-02-18 Tokyo Copal Kagaku Kk Surface-treatment by aerosol and apparatus therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794017A3 (en) * 1996-03-07 1998-03-04 Sharp Kabushiki Kaisha Apparatus and method of improving particle surface
EP0794017A2 (en) * 1996-03-07 1997-09-10 Sharp Kabushiki Kaisha Apparatus and method of improving particle surface
US6194028B1 (en) 1996-03-07 2001-02-27 Sharp Kabushiki Kaisha Apparatus and method of improving particle surface
EP0941769A4 (en) * 1996-11-29 2001-11-07 Fuji Koeki Co Ltd Liquid coater
US6679484B2 (en) 1996-11-29 2004-01-20 Fuji Bc Engineering Co., Ltd. Cutting liquid coater
US6460831B2 (en) 1996-11-29 2002-10-08 Fuji Bc Engineering Co., Ltd. Cutting liquid coater
EP0922487A3 (en) * 1997-12-12 2000-07-26 Sharp Kabushiki Kaisha Method and apparatus for modifying particles
US6468352B2 (en) 1997-12-12 2002-10-22 Sharp Kabushiki Kaisha Method and apparatus for modifying particles
EP0922487A2 (en) * 1997-12-12 1999-06-16 Sharp Kabushiki Kaisha Method and apparatus for modifying particles
EP1090690A4 (en) * 1998-05-25 2001-11-07 Fuji Koeki Co Ltd Liquid spray device and cutting method
EP1090690A1 (en) * 1998-05-25 2001-04-11 Fuji Koeki Co., Ltd Liquid spray device and cutting method
EP1457264A3 (en) * 1998-05-25 2004-11-24 Fuji BC Engineering Co., Ltd. Liquid spray device and cutting method
US6773212B2 (en) 2000-10-26 2004-08-10 Fuji Koeki Co., Ltd. Cutting-oil coater and cutting device
JP2009291696A (en) * 2008-06-04 2009-12-17 Tomokazu Kanda Aqueous liquid electrostatic coating method using silicon oxide aqueous solution

Also Published As

Publication number Publication date
JPH0661530B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US6139913A (en) Kinetic spray coating method and apparatus
Jaworek et al. Classification of the modes of EHD spraying
CA2226496C (en) Vacuum flash evaporated polymer composites
JP3560914B2 (en) Plasma accelerated chemical vapor deposition using low vapor pressure compounds.
JPS63503552A (en) Flash evaporation of monomer fluids
JPS6369555A (en) Electrostatic spray coating head and coating method using said head
CA2047853A1 (en) Electrostatic spraying device and method
US3521815A (en) Guns for the electrostatic spray coating of objects with a powder
TW200308187A (en) An atmospheric pressure plasma assembly
US5156880A (en) Space charge electrostatic coating method and apparatus
JPH02122873A (en) Applying method for aerosol
US3208951A (en) Electrostatic encapsulation
JP2934268B2 (en) Powder surface coating method and apparatus
Wilhelm Electrohydrodynamic spraying-Transport, mass and heat transfer of charged droplets and their application to the deposition of thin functional films
US4718920A (en) Method and apparatus for smoke suppression
JPH0463169A (en) Coating method with aerosol
JPH04228501A (en) Hot sprayed powder
JPH02189159A (en) Coating method for aerosol
Castle et al. Space charge effects in orchard spraying
US2078790A (en) Offset process
KR950704056A (en) Manufacturing method of powder coating, apparatus and powder preparation for performing this (POWDER-COATING PROCESS, A DEVICE FOR CARRYING OUT THE PROCESS AND A COATING POWDER FOR USE IN THE PROCESS)
RU94018548A (en) Method of coatings production
RU1773072C (en) Method for deposition of powder metal coatings
Im* et al. Spray characteristics on the electrostatic rotating bell applicator
SU1005948A1 (en) Coating producing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees