JPH0212218A - Manufacture of variable interference filter - Google Patents

Manufacture of variable interference filter

Info

Publication number
JPH0212218A
JPH0212218A JP16448388A JP16448388A JPH0212218A JP H0212218 A JPH0212218 A JP H0212218A JP 16448388 A JP16448388 A JP 16448388A JP 16448388 A JP16448388 A JP 16448388A JP H0212218 A JPH0212218 A JP H0212218A
Authority
JP
Japan
Prior art keywords
electrode
bonding
electrostatic
film
interference filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16448388A
Other languages
Japanese (ja)
Inventor
Masanori Watanabe
昌規 渡辺
Masayuki Katagiri
片桐 真行
Yasuhiko Inami
井波 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16448388A priority Critical patent/JPH0212218A/en
Publication of JPH0212218A publication Critical patent/JPH0212218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To suppress the optical characteristic deterioration of a reflecting film and the electric characteristic deterioration of an electrode which is used for electrostatic capacity detection, electrostatic driving, etc., by applying a spacer film and an electrode for joining electric field control with a voltage higher than the potential of an electrode for electrostatic joining and performing electrostatic joining. CONSTITUTION:An electrode 50 which shields the reverse surface of an upper electrode 20 (the surface where a joining electrode 40 exists) from an electric field from the electrode 40 is formed so as to prevent a joining current from flowing to the reflecting film 21 or electrode formed on the surface of upper glass 20 and while the electrode 50 is applied with the voltage higher than the potential of the joining electrode 40, the joining is performed. Consequently, the joining current which flows through the reflecting film 21 or electrode formed on the surface of the upper electrode 20 is suppressed and the deterioration in the electrostatic joining is reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、各種分光分析器、色識別器、時分割カラーフ
ィルター、カラー表示装置、光通信用可変分波・合波器
等の広範囲に渡って使用することのできるファプリーペ
ロー型可変干渉フィルターに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to a wide range of applications such as various spectroscopic analyzers, color discriminators, time-division color filters, color display devices, variable demultiplexers and multiplexers for optical communications, etc. This invention relates to a Fapley-Perot variable interference filter that can be used across the world.

〈従来の技術〉 光の波長を選択・分離あるいは識別するための分光装置
としては、回折格子、プリズム、可変(チューナプル)
干渉フィルター等がある。この中で可変干渉フィルター
は光路を曲げないという特徴を有するため、システム全
体を小型化するのに適している。
<Prior art> Spectroscopic devices for selecting, separating, or identifying wavelengths of light include diffraction gratings, prisms, and tunables.
There are interference filters, etc. Among these, the variable interference filter has the characteristic of not bending the optical path, and is therefore suitable for downsizing the entire system.

可変干渉フィルターの方式の一つに、ファプリーペロー
干渉の原理を利用したものがある。2枚の半透光性反射
鏡をごく僅かの空隙を隔てて対向させたとき、その空隙
間隔に応じて特定の波長が選択的に透過され、空隙間隔
を変化させることにより、その選択波長を可変とするこ
とができる。
One of the methods of variable interference filters is one that utilizes the principle of Fapley-Perot interference. When two semi-transparent reflecting mirrors are placed facing each other with a very small gap in between, specific wavelengths are selectively transmitted depending on the gap, and by changing the gap, the selected wavelength can be changed. It can be made variable.

従来のファプリーペ・ロー型可変干渉装置は、大きくで
丈夫なホルダーによって2枚の反射鏡を支持し、マイク
ロメーターを周込て反射鏡間の平行度を調整するような
ものが普通であったが、このような構造のものは大型で
重く、また−個づつ作製・調整する必要があシ量産に不
向きである。そこで、反射鏡の表面の一部に薄膜スペー
サを形成し、そのスペーサを介して2枚の反射鏡を接合
したタイプのものが提案されたく特開昭62−1263
03 >。
Conventional Fapuripe-Low type variable interference devices usually support two reflecting mirrors with a large, durable holder, and adjust the parallelism between the reflecting mirrors by inserting a micrometer around them. A device with such a structure is large and heavy, and needs to be manufactured and adjusted one by one, making it unsuitable for mass production. Therefore, a type of mirror was proposed in which a thin film spacer was formed on a part of the surface of the reflecting mirror, and two reflecting mirrors were joined via the spacer.
03>.

このタイプのものは2枚の反射鏡を接合した後、複数の
小型フィルターに分割することができるため量産性に富
み、ま六薄膜スペーサの膜厚精度が良いため平行度の調
整が不要である。
This type is suitable for mass production because it can be divided into multiple small filters after joining two reflecting mirrors, and there is no need to adjust the parallelism because the thickness accuracy of the Maroku thin film spacer is good. .

〈発明が解決しようとする問題点〉 2枚の反射鏡を精度良く接合する方法として、静電接合
法を用いることが提案されているく特願昭62−755
49>。この方法を用いて作製された可変干渉フィルタ
ーの断面図を第4図に示す。ガラス基板10(これを下
部ガラス基板とする)の表面に金属反射膜11とスペー
サ膜30が形成され、また対向するガラス基板20(上
部ガラス基板)の表面に金属反射膜21、その裏面に静
電接合用電極40が形成されている。静電接合は、高温
下でスペーサ膜30にプラス電圧、接合用電極40にマ
イナス電圧を印加することによって行われる。この接合
法によれば、接着層あるいは融着層を用いないため、初
期空隙間隔及びその平行度が薄膜スペーサの厚さのみに
よって精度よく決められる。こうして静電接合しに後、
上記の可変干渉フィルクーをホルダー90に挿入シ、バ
イモルフ型圧電素子80を取シ付ける。バイモルフ型圧
電素子80は、上部ガラス20に力を加えて僅かに曲げ
る事により、空隙間隔を変化させろく特願昭62−26
0690 >。
<Problems to be solved by the invention> The use of electrostatic bonding is proposed as a method for bonding two reflecting mirrors with high precision.
49>. A cross-sectional view of a variable interference filter manufactured using this method is shown in FIG. A metal reflective film 11 and a spacer film 30 are formed on the surface of the glass substrate 10 (this will be referred to as the lower glass substrate), and a metal reflective film 21 is formed on the surface of the opposing glass substrate 20 (upper glass substrate), and a static film is formed on the back surface thereof. An electrical bonding electrode 40 is formed. Electrostatic bonding is performed by applying a positive voltage to the spacer film 30 and a negative voltage to the bonding electrode 40 at high temperatures. According to this joining method, since an adhesive layer or a fusion layer is not used, the initial gap distance and its parallelism can be determined with high precision only by the thickness of the thin film spacer. After electrostatic bonding in this way,
The above variable interference filter is inserted into the holder 90, and the bimorph type piezoelectric element 80 is attached. The bimorph type piezoelectric element 80 can change the gap distance by applying force to the upper glass 20 and bending it slightly.
0690>.

この静電接合の際、上部ガラスの表面に形成された電極
を兼ねた金属反射膜21の光学特性及び電気特性が劣化
してしまうという問題があった。
During this electrostatic bonding, there was a problem in that the optical properties and electrical properties of the metal reflective film 21, which was formed on the surface of the upper glass and also served as an electrode, deteriorated.

特にスペーサ膜30及び接合電極40に近い部分21b
では劣化がひどく、光学特性としては反射率が落ちて透
明に近くなり、電気特性としては導電性がなくなる。一
方、領域21aでは劣化は比較的小さい。このように、
静電接合時に接合電流の流れる領域の近くが変化してい
ることから、この劣化は接合時に反射膜21を経由して
流れる接合電流の影響によるものと推定される。
Especially the part 21b near the spacer film 30 and the bonding electrode 40
However, the deterioration is severe, and the optical properties are such that the reflectance decreases and it becomes almost transparent, and the electrical properties are no longer conductive. On the other hand, in the region 21a, the deterioration is relatively small. in this way,
Since the vicinity of the region where the junction current flows during electrostatic bonding has changed, it is presumed that this deterioration is due to the influence of the junction current flowing through the reflective film 21 during bonding.

く問題を解決するための手段〉 本発明は、静電接合時に反射膜のダメージが生じるのを
防ぐための可変干渉フィルターの製造方法に関する。上
部ガラスの表面に形成された反射膜あるいは電極に接合
電流が流れるのを防止するために、上部基板の裏面(接
合室Wi40のある面)に電極40からの電界をシール
ドするための電極を形成し、該電極に接合電極40に比
べてプラスの電圧(例えばスペーサ膜30と同電圧)を
かけた状態で接合する。
Means for Solving Problems> The present invention relates to a method for manufacturing a variable interference filter for preventing damage to a reflective film during electrostatic bonding. In order to prevent the bonding current from flowing to the reflective film or electrode formed on the surface of the upper glass, an electrode is formed on the back surface of the upper substrate (the surface where the bonding chamber Wi40 is located) to shield the electric field from the electrode 40. Then, the electrodes are bonded while a positive voltage (for example, the same voltage as the spacer film 30) is applied to the electrodes compared to the bonding electrode 40.

く作用〉 本発明によって新たに設けられた電極に接合電極40に
比べてプラスの電圧を印加し次ときに生じる電界分布は
、上部基板表面に形成された反射膜あるいは電極を経由
する接合電流を抑え、それらの静電接合時の劣化を低減
するものと考えられる。なお、本電極は接合が終わると
不要になるので、素子の完成前に除去してもよい。
Effects> When a positive voltage is applied to the newly provided electrode according to the present invention compared to the bonding electrode 40, the electric field distribution generated causes a bonding current to flow through the reflective film or electrode formed on the surface of the upper substrate. This is thought to reduce deterioration during electrostatic bonding. Note that since this electrode becomes unnecessary after the bonding is completed, it may be removed before the element is completed.

〈実施例〉 (実施例1) 第1図は本発明の第1の実施例に係る可変干渉フィルタ
ーの断面図である。ガラス基板10・20上に電極を兼
ねた反射膜11・21(Agsoo^)をそれぞれ真空
蒸着法によって形成する。上部基板20としては静電接
合に適した材質のもの、すなわち各種ガラス(ホウケイ
酸ガラス、ソーダガラス、クラウンガラス、フリントガ
ラス、石英ガラス、BK7等の光学ガラス類)、石英、
セラミクス(アルミナ、P ZTlPLZT、酸化ビス
マス、酸化テルル等)、有機ポリマー(アクリル等)、
その他を用いることができる。下部基板10は接合に関
する制約はなく、上部基板20に使えるすべての材料の
ほか、S il Ge+ GaASI GaAIASI
 GaAIAsP、 InP等の半導体材料を用いるこ
とができる。念だし両基板のうち少なくとも一方は使用
波長領域において透明である必要がある。反射膜として
は、Au+ AL Cut Rh等の金属薄膜や、これ
らの膜と誘電体膜の多層膜を用いてもよく、作製法とし
てスパッタ法、CVD法等を用いてもよい。
<Example> (Example 1) FIG. 1 is a sectional view of a variable interference filter according to a first example of the present invention. Reflective films 11 and 21 (Agsoo^) which also serve as electrodes are formed on glass substrates 10 and 20, respectively, by vacuum evaporation. The upper substrate 20 may be made of a material suitable for electrostatic bonding, such as various glasses (borosilicate glass, soda glass, crown glass, flint glass, quartz glass, optical glasses such as BK7), quartz,
Ceramics (alumina, PZTlPLZT, bismuth oxide, tellurium oxide, etc.), organic polymers (acrylic, etc.),
Others can be used. The lower substrate 10 has no restrictions regarding bonding, and can be made of all materials that can be used for the upper substrate 20, as well as S il Ge+ GaASI GaAIASI
Semiconductor materials such as GaAIAsP and InP can be used. Please note that at least one of the two substrates must be transparent in the wavelength range used. As the reflective film, a metal thin film such as Au+AL Cut Rh or a multilayer film of these films and a dielectric film may be used, and a sputtering method, a CVD method, etc. may be used as a manufacturing method.

次に反射膜11上にAIスペーサ膜3oを、又ガラス基
板20の裏面にAI接合電極40・接合電界シールド電
極50を真空蒸着法によって形成する。これらのスペー
サおよび電極材料としては、すべての導電性材料、例え
ばTI+ Au+Ag+ Pt+ NL Cr+、W等
の金属材料、ITO,5n02等の透明導電材料その他
を用いる事ができる。
Next, an AI spacer film 3o is formed on the reflective film 11, and an AI bonding electrode 40 and a bonding electric field shield electrode 50 are formed on the back surface of the glass substrate 20 by vacuum evaporation. As these spacer and electrode materials, all conductive materials can be used, such as metal materials such as TI+Au+Ag+Pt+NL Cr+, W, transparent conductive materials such as ITO, 5n02, etc.

電極40・50は、互いに電気的につながっていなめパ
ターンとして同一工程で作製できる。
The electrodes 40 and 50 are electrically connected to each other and can be manufactured in the same process as a diagonal pattern.

画電極は、光透過領域にかからない様なパターンとなっ
ているが、素子の作製後に電極4o・50を除去する場
合には、接合電界シールド電極50は光透過領域上にあ
ってもよい。両基板を反射膜が対向するように重ね合わ
せ、300℃に加熱して、スペーサ膜30及び電極50
に+500V、電極40にovの電圧を1o分間加える
。加熱温度は100℃以上、接合電圧は20V以上であ
ればここに挙げた値と異なっていてもよい。こうして静
電接合した後、ダイシングによってガラス基板を切断し
、切り出した各可変干渉フィルターをホルダー90に挿
入し、波長同調用のバイモルフ8oを取り付ける。ポル
グー90およびバイモルフ80は光の透過領域の部分が
取シ除かれている。本素子はこのままでも用いることが
できるが、全体を封止し、乾燥空気・窒素・その他のガ
スを封入するか、真空にしてもよく、また空隙内部に液
体を入れテモよい。なお比較のため、電極50がない以
外は本実施例と同一構造の素子(比較例1)も作製した
The picture electrode is patterned so as not to cover the light transmitting region, but if the electrodes 4o and 50 are removed after fabrication of the device, the junction electric field shield electrode 50 may be located on the light transmitting region. Both substrates are stacked so that the reflective films face each other, and heated to 300° C. to form a spacer film 30 and an electrode 50.
A voltage of +500 V is applied to the electrode 40 for 10 minutes. The heating temperature may be different from the values listed here as long as it is 100° C. or higher and the junction voltage is 20 V or higher. After electrostatic bonding in this manner, the glass substrate is cut by dicing, each of the cut out variable interference filters is inserted into a holder 90, and a bimorph 8o for wavelength tuning is attached. The light transmitting region of Porgoo 90 and Bimorph 80 has been removed. The device can be used as it is, but it may also be sealed entirely and filled with dry air, nitrogen, or other gas, or it may be evacuated, or it may be possible to fill the void with a liquid. For comparison, an element (Comparative Example 1) having the same structure as this example except that the electrode 50 was not provided was also fabricated.

接合時に電極50に電圧を加えた効果によって、反射膜
の光学特性劣化が抑えられる。比較例1の素子を接合後
分解して反射膜の光透過領域における反射率を測ったと
ころ85%であったのに対し、本実施例について同じ測
定を行ったところ、反射膜作製直後とほぼ同じ反射率9
3%が得られた。
The effect of applying a voltage to the electrode 50 during bonding suppresses deterioration of the optical properties of the reflective film. When the element of Comparative Example 1 was disassembled after bonding and the reflectance in the light transmission area of the reflective film was measured, it was 85%, whereas when the same measurement was performed for this example, it was almost the same as that immediately after the reflective film was fabricated. Same reflectance 9
3% was obtained.

更に顕著な効果が電気的特性について見いだされる。本
素子は、後述する波長安定化のために、対向する導電性
反射膜11と21間の静電容量を検出できるように設計
されている。導電性反射膜21は、その一部がスペーサ
膜30とつながり、スペーサ膜下部の導電膜を介してリ
ード線29につながっている。導電性反射膜11はリー
ド線19につながっている。比較例1では反射膜21が
スペーサ膜の近くで静電接合の影響により導電性を失い
、そのため反射膜11・21間の静電容量を検出するこ
とができない。
A more significant effect is found on the electrical properties. This element is designed to be able to detect the capacitance between the opposing conductive reflective films 11 and 21 for wavelength stabilization, which will be described later. A portion of the conductive reflective film 21 is connected to the spacer film 30 and connected to the lead wire 29 via the conductive film below the spacer film. The conductive reflective film 11 is connected to a lead wire 19. In Comparative Example 1, the reflective film 21 loses its conductivity near the spacer film due to the effect of electrostatic bonding, and therefore the capacitance between the reflective films 11 and 21 cannot be detected.

本実施例では静電接合時の劣化が低減されるため、導電
性反射膜21は十分低い抵抗値を保ち、両反射膜間の静
電容量を検出することができる。
In this embodiment, since deterioration during electrostatic bonding is reduced, the conductive reflective film 21 maintains a sufficiently low resistance value, and the capacitance between both reflective films can be detected.

第5図偽)〜(c)は接合電界シールド電極50の位置
関係を説明するための可変干渉フィルターの上面図であ
る。上方からは接合電界シールド電極50および静電接
合用電極40が直接見えるのでこれを実線で示し、上部
ガラスを通して見えるスペーサ30、反射膜21を破線
で示すっ下部ガラス上の反射膜11は静電接合時の劣化
問題とは直接関係無いので図示を省略する。第5図(a
)は第1図に示した可変干渉フィルターの上面図である
。接合電界シールド電極50は反射膜21を接合電界か
ら保護するためのものなので、スペーサ30と静電接合
用電極4oが対向する領域よりも反射膜寄りに形成する
。第5図(b)は特に導電性を有する反射膜21のスペ
ーサ30との接続部での電気的劣化を防ぐために接合電
界シールド電極50がスペーサ30上方を一部覆うよう
にしたものである。この例では静電接合用電極40と接
合電界シールド電@50との間隔を0.5flに設定し
た。両電極間には強り電圧が印加されるので、この間隔
をあまり小さくすると絶縁破壊の恐れがあるが、Q、 
l m以上であれば特に問題はない。第5図(c)はス
ペーサ30が円周状に配置されている場合の接合電界シ
ールド電極50の配置を示す。スペーサの配置が円周状
、正方形状等であっても、接合電界シールド電極50は
スペーサ上に配置された静電接合用電極40よりも内側
に配置される。
FIGS. 5(b) to 5(c) are top views of the variable interference filter for explaining the positional relationship of the junction electric field shield electrode 50. The bonding electric field shield electrode 50 and the electrostatic bonding electrode 40 are directly visible from above and are shown as solid lines, and the spacer 30 and reflective film 21 visible through the upper glass are shown as broken lines.The reflective film 11 on the lower glass is electrostatic Since this is not directly related to the problem of deterioration during bonding, illustration is omitted. Figure 5 (a
) is a top view of the variable interference filter shown in FIG. 1. Since the junction electric field shield electrode 50 is for protecting the reflective film 21 from the junction electric field, it is formed closer to the reflective film than the region where the spacer 30 and the electrostatic bonding electrode 4o face each other. In FIG. 5(b), a junction electric field shield electrode 50 partially covers the spacer 30 in order to prevent electrical deterioration particularly at the connection portion between the conductive reflective film 21 and the spacer 30. In this example, the interval between the electrostatic bonding electrode 40 and the bonding electric field shield electrode @50 was set to 0.5 fl. Since a strong voltage is applied between the two electrodes, there is a risk of dielectric breakdown if this gap is made too small.
There is no particular problem as long as it is l m or more. FIG. 5(c) shows the arrangement of the junction electric field shield electrode 50 when the spacers 30 are arranged circumferentially. Even if the spacer is arranged in a circumferential shape, a square shape, etc., the junction electric field shield electrode 50 is arranged inside the electrostatic bonding electrode 40 arranged on the spacer.

次に、可変干渉装置の動作原理及び波長安定化の方法に
ついて述べる。
Next, the operating principle of the variable interference device and the method of wavelength stabilization will be described.

対向する反射膜11・21の領域において、反射膜間隔
dに応じてファプリーペロー干渉カ生じ、その結果透過
スペクトル及び反射スペクトルに顕著な波長依存性が生
じる。とぐに反射膜の反射率が高め場合には、分光透過
率が極大となる波長の近傍の波長の光のみを透過し、そ
の他の波長の光をほとんど遮断する。このときの分光透
過率の一例を第2図に示す。この分光透過率の極大波長
(選択波長と呼ぶ)は複数存在し、 として与えられる。ここにmは共鳴次数(m=1・ 2
,3・・・)、nは反射膜間の媒質の屈折率、φは反射
膜での反射の際に生ずる位相シフトでらる0φの波長依
存性を無視すると、λmはdに比例するものとみなせる
In the region of the opposing reflective films 11 and 21, Fabry-Perot interference occurs depending on the reflective film spacing d, resulting in significant wavelength dependence in the transmission spectrum and reflection spectrum. When the reflectance of the reflective film is high, only light of wavelengths near the wavelength at which the spectral transmittance becomes maximum is transmitted, and most of the light of other wavelengths is blocked. An example of the spectral transmittance at this time is shown in FIG. There are multiple maximum wavelengths of this spectral transmittance (referred to as selected wavelengths), which are given as follows. Here, m is the resonance order (m=1・2
, 3...), n is the refractive index of the medium between the reflective films, and φ is the phase shift that occurs during reflection on the reflective film.If we ignore the wavelength dependence of 0φ, λm is proportional to d. It can be considered as

本実施例の可変干渉フィルターは、第2図に示すとおシ
可視領域(400〜75 onm)内に唯一の選択波長
が走査される様になっている。
In the variable interference filter of this embodiment, as shown in FIG. 2, only one selected wavelength is scanned within the visible region (400 to 75 onm).

この選択波長の共鳴次数はm=1であシ、2次より高次
の選択波長は紫外領域にあるので、これらの影響を除く
ためには紫外線カツトフィルタを周込るか、あるいは本
素子をこの領域に感度のない受光素子と組み合わせて用
いる必要がある0 本実施例では、媒質として空気を用いているためn=1
であり、また反射膜として厚さ500λの銀薄膜を用い
ており、その反射率は可視領域全体で90%以上、位相
シフトφは約135°である。この条件下で選択波長λ
1 を400〜750nm の範囲におhて走査するた
めには、計算上dをおよそ150〜281 nmの範囲
で可変とすればよい。
The resonance order of this selected wavelength is m = 1, and the selected wavelengths higher than the 2nd order are in the ultraviolet region, so in order to remove these effects, it is necessary to pass an ultraviolet cut filter or to use this device. It is necessary to use it in combination with a light-receiving element that has no sensitivity in this region. In this example, since air is used as the medium, n=1
A thin silver film with a thickness of 500λ is used as a reflective film, and its reflectance is 90% or more in the entire visible region, and the phase shift φ is about 135°. Under this condition, the selected wavelength λ
In order to scan h in the range of 400 to 750 nm, d may be calculated to be variable in the range of approximately 150 to 281 nm.

反射膜間隔dを変化させるために、本実施例では上部ガ
ラスのスペーサに囲まれた領域に外側から力を加えてい
る。このときdは力にほぼ比例して減少する。力を発生
する手段は何でもよいが、ここではバイモルフを用いた
。バイモルフを上部ガラスに接触させ電圧を印加すると
、変形しようとして力を発生する。
In order to change the reflective film spacing d, in this embodiment a force is applied from the outside to the area surrounded by the spacer of the upper glass. At this time, d decreases approximately in proportion to the force. Any means of generating force may be used, but here we used a bimorph. When the bimorph is brought into contact with the upper glass and a voltage is applied, it tries to deform and generates force.

バイモルフを用いた場合、電圧と発生力の関係にヒステ
リシスや温度依存性が存在する。また、発生力が同じで
も素子によって上部ガラスの変形の度合いが異なる。従
って、電圧を一定にしただけでは選択波長を一定に保つ
ことは難しめ0 本実施例では選択波長を一定に保つために、電極11・
21間の静電容量Cを用いている。
When using a bimorph, there is hysteresis and temperature dependence in the relationship between voltage and generated force. Further, even if the generated force is the same, the degree of deformation of the upper glass differs depending on the element. Therefore, it is difficult to keep the selected wavelength constant just by keeping the voltage constant. In this embodiment, in order to keep the selected wavelength constant, the electrodes 11 and
21 is used.

静電容量Cは、反射膜間隔dに反比例するため、Cとλ
1 とは一対一め関係にある。従って静電容量Cが一定
となるようにバイモルフに加エル電圧を制御することに
より、選択波長を安定化することができる。
Since the capacitance C is inversely proportional to the reflective film spacing d, C and λ
There is a one-to-one relationship with 1. Therefore, by controlling the voltage applied to the bimorph so that the capacitance C remains constant, the selected wavelength can be stabilized.

(実施例2) 第3図(a)は本発明の第2の実施例に係る可変干渉フ
ィルターの断面図、第3図(b)はその下部ガラスの上
面図である。ガラス基板1o・2゜上に電極12as 
tzb−22a−22b(Atsooλ)をそれぞれ形
成し、次に電極t2a*12b上にA1スペーサ膜30
a・30bを、ガラス基板20の裏面に静電接合用A1
電極4o−接合電界シールド用AI電極50を形成する
。電極l2・22についても、実施例1の説明で電極4
Q*sQ用として示したすべての導電性材料を用いるこ
とができる。その後ガラス基板10・20の表面上に反
射膜15・25をそれぞれ形成する。この反射膜15・
25は電極としては用いないので、導電性(金@)膜で
なくてもよい。本実施例ではTiO2膜・5i02膜を
交互に積層した誘電体多層反射膜を用いたが、誘電体材
料としては、ZnS1MgF2.あるいはTiO2とZ
rO2の混合物等を用いることができる。側基板を反射
膜が対向するように重ね合わせ、300℃に加熱して、
スペーサ30及び電極5゜に+5oovを、電極40に
Ovの電圧を10分間加える。こうして静電接合した後
、グイシングによってガラス基板を切断し、複数の可変
干渉フィルターを得る。なお比較のため、接合電界シー
ルド用電極50がな2以外は本実施例と同一構造の素子
(比較例2)も作製した。
(Embodiment 2) FIG. 3(a) is a sectional view of a variable interference filter according to a second embodiment of the present invention, and FIG. 3(b) is a top view of the lower glass thereof. Electrode 12as on glass substrate 1o/2°
tzb-22a-22b (Atsooλ) are respectively formed, and then an A1 spacer film 30 is formed on the electrode t2a*12b.
a and 30b for electrostatic bonding on the back side of the glass substrate 20.
Electrode 4o-junction AI electrode 50 for electric field shielding is formed. Regarding electrodes 12 and 22, in the explanation of Example 1, electrode 4
All conductive materials shown for Q*sQ can be used. Thereafter, reflective films 15 and 25 are formed on the surfaces of the glass substrates 10 and 20, respectively. This reflective film 15.
Since 25 is not used as an electrode, it does not need to be a conductive (gold@) film. In this example, a dielectric multilayer reflective film in which TiO2 films and 5i02 films were alternately laminated was used, but the dielectric material was ZnS1MgF2. Or TiO2 and Z
Mixtures of rO2, etc. can be used. Layer the side substrates so that the reflective films face each other, heat them to 300°C,
A voltage of +5oV is applied to the spacer 30 and the electrode 5°, and a voltage of Ov is applied to the electrode 40 for 10 minutes. After electrostatic bonding in this manner, the glass substrate is cut by guising to obtain a plurality of variable interference filters. For comparison, an element (comparative example 2) having the same structure as this example except for the junction electric field shielding electrode 50 was also fabricated.

電極22bはスペーサ膜30b1電極12bを介してリ
ード線29につながっている。一方電極12aはリード
線19につながっている。
The electrode 22b is connected to the lead wire 29 via the spacer film 30b1 and the electrode 12b. On the other hand, the electrode 12a is connected to a lead wire 19.

比較例2では電極22bがスペーサ30の近くで静電接
合の影響てより導電性を失込、そのため電極12a・2
2b間の静電容量を検出することができない。本実施例
では静電接合時の劣化が低減されるため、電極22bは
導電性を保ち、静電容量を検出することができる。
In Comparative Example 2, the electrode 22b loses its conductivity near the spacer 30 due to the effect of electrostatic bonding, and therefore the electrodes 12a and 2
2b cannot be detected. In this embodiment, since deterioration during electrostatic bonding is reduced, the electrode 22b maintains conductivity and capacitance can be detected.

本実施例においてTiO2・5i02の多層からなる反
射膜25は光学特性上の劣化を生じていないが、この反
射膜は導電性がな論ため通常の静電接合時にも光学特性
の劣化を生じない。反射膜25として銀膜を用いた場合
には、通常の静電接合時には実施例1の参照例に示した
のと同程度の光学特性の劣化が生じるが、接合電界シー
ルド電極を用いた静電接合では、光学特性の劣化は認め
られなかった。
In this example, the reflective film 25 made of multiple layers of TiO2.5i02 does not cause any deterioration in optical properties, but since this reflective film is not electrically conductive, no deterioration in optical properties occurs even during normal electrostatic bonding. . When a silver film is used as the reflective film 25, deterioration of optical properties to the same degree as that shown in the reference example of Example 1 occurs during normal electrostatic bonding, but when using electrostatic bonding using a bonding electric field shield electrode, No deterioration of optical properties was observed during bonding.

本実施例においては、電W112 a・22bは単に静
電容量をモニタするためだけでなく、空隙間隔dを変化
させるためにも用いられる。すなわち、電gi112a
・22b間に電圧を加えたときに生じる静電引力を用い
て空隙間隔dを可変としている〈特願昭61−1029
89>。この方式は、干渉フィルター外部に圧電素子等
の駆動素子を必要としないため、素子全体の構造を単純
・小型化でき、また素子の耐振動性が向上する。
In this embodiment, the electric currents W112a and 22b are used not only to simply monitor the capacitance, but also to change the gap distance d. That is, electric gi112a
・The gap distance d is made variable using the electrostatic attraction generated when a voltage is applied between 22b.
89>. Since this method does not require a driving element such as a piezoelectric element outside the interference filter, the overall structure of the element can be simplified and miniaturized, and the vibration resistance of the element can be improved.

電極12a・22b間に生じる静電力は次式%式% ここに、■は電極間に印加した電圧、ε0は真空の誘電
率、εrは電極間媒質の比誘電率、Sは画電極の重なり
合う面積である。なお、dはFの増加に伴い減少するた
め、Vとdとの関係は複雑なものとなる。
The electrostatic force generated between the electrodes 12a and 22b is expressed by the following formula (%) where ■ is the voltage applied between the electrodes, ε0 is the permittivity of vacuum, εr is the relative dielectric constant of the interelectrode medium, and S is the overlap of the picture electrodes. It is the area. Note that since d decreases as F increases, the relationship between V and d becomes complicated.

本実施例では、電極12a・22bを静電容量モニタと
静電駆動の両方に用いるために、静電容量検出信号に静
電駆動信号の最高周波数よりも高い周波数の交流を用い
、カップリングコンデンサを用いて2信号を分離してい
る。これらの信号を電極上で混合しなくてもよ論ように
、干渉フィルター内部に静電容量検出専用電極と静電駆
動専用電極の両方を配設してもよい。
In this embodiment, in order to use the electrodes 12a and 22b for both capacitance monitoring and electrostatic drive, an alternating current with a frequency higher than the highest frequency of the electrostatic drive signal is used as the capacitance detection signal, and the coupling capacitor is is used to separate the two signals. Of course, it is also possible to arrange both an electrode dedicated to capacitance detection and an electrode dedicated to electrostatic drive inside the interference filter without mixing these signals on the electrodes.

〈発明の効果〉 以上詳説した如く、本発明に係る可変干渉フィルターの
製造方法によれば、静電接合時における反射膜の光学特
性劣化、卦よび静電容量検出・静電駆動等に使用される
電極の電気的特性劣化を抑えることができる。しかも、
本発明に用いる接合電界シールド用電極は静電接合電極
と同時に作ることが可能なため、製造工程は全く増やす
必要がない。従って、本発明は今後、各種分光分析器、
色識別器、時分割カラーフィルター、カラー表示装置、
光通信用可変分波・合波器等の広範囲に渡って使用する
ことのできるファプリーペローm可変干渉フィルターの
製造方法として広く用いられることが期待される。
<Effects of the Invention> As explained in detail above, the method for manufacturing a variable interference filter according to the present invention prevents deterioration of the optical properties of the reflective film during electrostatic bonding, and prevents it from being used for capacitance detection, electrostatic drive, etc. Deterioration of the electrical characteristics of the electrode can be suppressed. Moreover,
Since the bonding electric field shielding electrode used in the present invention can be made at the same time as the electrostatic bonding electrode, there is no need to increase the number of manufacturing steps. Therefore, the present invention will be applied to various spectroscopic analyzers,
color discriminator, time-division color filter, color display device,
It is expected that this method will be widely used as a method for manufacturing Fapley-Perot m variable interference filters that can be used in a wide range of applications such as variable demultiplexers and multiplexers for optical communications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る可変干渉フィルタ
ーの断面図、第2図は本発明の第1の実3図(a)、(
b)はそれぞれ本発明の第2の実施例に係る可変干渉フ
ィルターの断面図および同フィルタ・らる。 10・・・下部基板 20・・・上部基板 11・21
・・・反射膜兼を極 30・・・スペーサ 40・・・
静電接合用基W  50・・・接合電界シールド用電極
 80・・・バイモルフ 代理人 弁理士 杉 山 毅 至(他1名)113鳴 第11 ニ友 !L (nm) 12g1 第り図
FIG. 1 is a sectional view of a variable interference filter according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a variable interference filter according to a first embodiment of the present invention.
b) is a cross-sectional view of a variable interference filter according to a second embodiment of the present invention, and a diagram of the filter. 10... Lower board 20... Upper board 11/21
...Reflection film and pole 30...Spacer 40...
Electrostatic bonding base W 50... Electrode for bonding electric field shield 80... Bimorph agent Patent attorney Takeshi Sugiyama (and 1 other person) 113 Ning No. 11 Ni-tomo! L (nm) 12g1 Fig.

Claims (1)

【特許請求の範囲】 1、反射膜及び導電性スペーサ膜を表面に形成した第1
の基板と、反射膜を表面に、静電接合用電極及び接合電
界制御用電極を裏面に形成した第2の基板を、それぞれ
の反射膜が対向し、また前記スペーサ膜と前記静電接合
用電極が第2の基板を挾んで重なり合う領域を有するよ
うに重ね合わせ、加熱条件下で、前記スペーサ膜及び前
記接合電界制御用電極に、前記静電接合用電極の電位に
対してそれぞれプラスの電圧を印加し、静電接合を行う
ことを特徴とする可変干渉フィルターの製造方法。 2、反射膜、電極及び導電性スペーサ膜を表面に形成し
た第1の基板と、反射膜、電極を表面に、静電接合用電
極及び接合電界制御用電極を裏面に形成した第2の基板
を、それぞれの反射膜が対向し、また前記スペーサ膜と
前記静電接合用電極が第2の基板を挾んで重なり合う領
域を有するように重ね合わせ、加熱条件下で、前記スペ
ーサ膜及び前記接合電界制御用電極に、前記第1の静電
接合用電極の電位に対してそれぞれプラスの電圧を印加
し、静電接合を行うことを特徴とする可変干渉フィルタ
ーの製造方法。 3、前記反射膜は電極を兼ねていることを特徴とする請
求項1または請求項2記載の可 変干渉フィルターの製造方法。 4、前記第2の基板はガラスであることを特徴とする請
求項1または請求項2記載の可 変干渉フィルターの製造方法。
[Claims] 1. A first device having a reflective film and a conductive spacer film formed on its surface.
and a second substrate having a reflective film on the front surface and an electrode for electrostatic bonding and an electrode for controlling the bonding electric field on the back surface, the respective reflective films face each other, and the spacer film and the electrostatic bonding electrode are arranged on the second substrate. The electrodes are stacked so that they sandwich the second substrate and have an overlapping area, and under heating conditions, a positive voltage is applied to the spacer film and the bonding electric field control electrode, respectively, with respect to the potential of the electrostatic bonding electrode. A method for manufacturing a variable interference filter, characterized by applying electrostatic bonding to the tunable interference filter. 2. A first substrate with a reflective film, an electrode, and a conductive spacer film formed on its surface, and a second substrate with a reflective film, an electrode formed on its surface, and an electrostatic bonding electrode and a bonding electric field control electrode formed on its back surface. are stacked so that the respective reflective films face each other, and the spacer film and the electrostatic bonding electrode sandwich the second substrate and have an overlapping region, and under heating conditions, the spacer film and the bonding electric field are A method for manufacturing a variable interference filter, characterized in that electrostatic bonding is performed by applying a positive voltage to each of the control electrodes relative to the potential of the first electrostatic bonding electrode. 3. The method for manufacturing a variable interference filter according to claim 1 or 2, wherein the reflective film also serves as an electrode. 4. The method for manufacturing a variable interference filter according to claim 1 or 2, wherein the second substrate is glass.
JP16448388A 1988-06-30 1988-06-30 Manufacture of variable interference filter Pending JPH0212218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16448388A JPH0212218A (en) 1988-06-30 1988-06-30 Manufacture of variable interference filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16448388A JPH0212218A (en) 1988-06-30 1988-06-30 Manufacture of variable interference filter

Publications (1)

Publication Number Publication Date
JPH0212218A true JPH0212218A (en) 1990-01-17

Family

ID=15794029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16448388A Pending JPH0212218A (en) 1988-06-30 1988-06-30 Manufacture of variable interference filter

Country Status (1)

Country Link
JP (1) JPH0212218A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0580283A3 (en) * 1992-06-05 1995-08-23 Seiko Epson Corp Ink jet head and method of manufacturing thereof
US5912684A (en) * 1990-09-21 1999-06-15 Seiko Epson Corporation Inkjet recording apparatus
US6113218A (en) * 1990-09-21 2000-09-05 Seiko Epson Corporation Ink-jet recording apparatus and method for producing the head thereof
US6164759A (en) * 1990-09-21 2000-12-26 Seiko Epson Corporation Method for producing an electrostatic actuator and an inkjet head using it
US6168263B1 (en) 1990-09-21 2001-01-02 Seiko Epson Corporation Ink jet recording apparatus
JP2006099103A (en) * 2004-09-27 2006-04-13 Idc Llc System and method for multi-level brightness in interferometric modulation
WO2008059892A1 (en) * 2006-11-17 2008-05-22 Olympus Corporation Variable spectral element
JP2009282540A (en) * 2006-01-19 2009-12-03 Seiko Epson Corp Optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
US9322966B2 (en) 2012-01-18 2016-04-26 Seiko Epson Corporation Interference filter having Ag—Bi—Nd alloy film
US9347887B2 (en) 2011-09-29 2016-05-24 Seiko Epson Corporation Wavelength variable interference filter, optical filter device, optical module, and electronic apparatus
US9534954B2 (en) 2011-09-27 2017-01-03 Seiko Epson Corporation Optical filter device, optical module, and electronic apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912684A (en) * 1990-09-21 1999-06-15 Seiko Epson Corporation Inkjet recording apparatus
US6113218A (en) * 1990-09-21 2000-09-05 Seiko Epson Corporation Ink-jet recording apparatus and method for producing the head thereof
US6117698A (en) * 1990-09-21 2000-09-12 Seiko Epson Corporation Method for producing the head of an ink-jet recording apparatus
US6164759A (en) * 1990-09-21 2000-12-26 Seiko Epson Corporation Method for producing an electrostatic actuator and an inkjet head using it
US6168263B1 (en) 1990-09-21 2001-01-02 Seiko Epson Corporation Ink jet recording apparatus
EP0580283A3 (en) * 1992-06-05 1995-08-23 Seiko Epson Corp Ink jet head and method of manufacturing thereof
JP2006099103A (en) * 2004-09-27 2006-04-13 Idc Llc System and method for multi-level brightness in interferometric modulation
JP4594200B2 (en) * 2004-09-27 2010-12-08 クゥアルコム・メムス・テクノロジーズ・インコーポレイテッド System and method for multi-level luminance in interferometric modulation
JP2009282540A (en) * 2006-01-19 2009-12-03 Seiko Epson Corp Optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
WO2008059892A1 (en) * 2006-11-17 2008-05-22 Olympus Corporation Variable spectral element
US7961335B2 (en) 2006-11-17 2011-06-14 Olympus Corporation Variable spectroscopy device
US9534954B2 (en) 2011-09-27 2017-01-03 Seiko Epson Corporation Optical filter device, optical module, and electronic apparatus
US9347887B2 (en) 2011-09-29 2016-05-24 Seiko Epson Corporation Wavelength variable interference filter, optical filter device, optical module, and electronic apparatus
US9322966B2 (en) 2012-01-18 2016-04-26 Seiko Epson Corporation Interference filter having Ag—Bi—Nd alloy film

Similar Documents

Publication Publication Date Title
EP0668490B1 (en) Electrically tunable fabry-perot interferometer produced by surface micromechanical techniques for use in optical material analysis
US10756131B2 (en) Variable optical filter and a wavelength-selective sensor based thereon
US8913322B2 (en) Micromechanical tunable Fabry-Perot interferometer and a method for producing the same
CN101900877B (en) Optical filter, optical filter device, analyzer, and method for manufacturing optical filter
US20010015810A1 (en) Fabry-perot filter, wavelength-selective infrared detector and infrared gas analyzer using the filter and detector
WO1998014804A1 (en) Electrically adjustable optical filter
JP2013257561A (en) Micromechanical tunable fabry-perot interferometer arrangement and method for producing the same
JPH0212218A (en) Manufacture of variable interference filter
US20150085367A1 (en) Tunable Optical Filter and Method of Manufacture Thereof
JPH02257676A (en) Wavelength selective photodetector
US11442328B2 (en) Optical device and electronic apparatus
US20140198388A1 (en) Fabry-perot device with a movable mirror
JPH0446369B2 (en)
JP2023543737A (en) Capacitance-controlled Fabry-Perot interferometer
WO2018061679A1 (en) Light modulation element and light detection element
CN113795779B (en) Adjustable infrared optical filter device
KR0150547B1 (en) Optical path control apparatus and fabricating method thereof
US20030137020A1 (en) Basic common optical cell configuration of dual cavities for optical tunable devices
JPH01101421A (en) Variable interference device
CN114902092A (en) Adjustable optical filter device
JP2023011401A (en) Interference filter, and method for manufacturing interference filter