JPH0212161B2 - - Google Patents

Info

Publication number
JPH0212161B2
JPH0212161B2 JP56191517A JP19151781A JPH0212161B2 JP H0212161 B2 JPH0212161 B2 JP H0212161B2 JP 56191517 A JP56191517 A JP 56191517A JP 19151781 A JP19151781 A JP 19151781A JP H0212161 B2 JPH0212161 B2 JP H0212161B2
Authority
JP
Japan
Prior art keywords
injection
pressure
temperature
ceramic
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56191517A
Other languages
Japanese (ja)
Other versions
JPS5892510A (en
Inventor
Ryuji Shimazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56191517A priority Critical patent/JPS5892510A/en
Publication of JPS5892510A publication Critical patent/JPS5892510A/en
Publication of JPH0212161B2 publication Critical patent/JPH0212161B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 本発明はセラミツク製品の射出成形装置の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in injection molding equipment for ceramic products.

従来、射出成形法を用いたセラミツク製品の製
造工程は以下のとおりである。
Conventionally, the manufacturing process of ceramic products using the injection molding method is as follows.

即ち、先ず、セラミツク粉末と有機バインダー
(ポリプロピレン、ポリスチレン、アタクチツク
ポリプロピレン等の熱可塑性樹脂が主である)を
加熱混練してセラミツク粉末と有機バインダーを
均一化する。次いで、この混練されたセラミツク
成形用樹脂(以後、セラミツク樹脂と呼称する)
を可塑化し、金型内へ射出成形して所望の形状の
成形体を得る。次に、脱脂して成形体中の有機バ
インダーを熱分解飛散させる。さらに、焼成して
セラミツク製品を得る。
That is, first, ceramic powder and an organic binder (mainly thermoplastic resins such as polypropylene, polystyrene, and atactic polypropylene) are heated and kneaded to homogenize the ceramic powder and the organic binder. Next, this kneaded ceramic molding resin (hereinafter referred to as ceramic resin)
is plasticized and injection molded into a mold to obtain a molded product in the desired shape. Next, the molded body is degreased to pyrolyze and scatter the organic binder in the molded body. Further, the ceramic product is obtained by firing.

現状の射出成形によるセラミツク製品は脱脂工
程における製品欠陥(膨れ、亀裂、剥離等)対策
として、セラミツク樹脂組成の種々の検討および
提案が為され、その結果、外観上良好な製品が得
られている。しかし、これらは、良好な成形体を
脱脂以後の工程に供した場合であり、射出成形後
の成形体の欠陥率は相変らずかなりの高率を示し
ている。この射出成形時に生じる欠陥の大半は圧
力分布の不均一に起因している。
To counter product defects (blistering, cracking, peeling, etc.) during the degreasing process for current injection molded ceramic products, various studies and proposals have been made on ceramic resin compositions, and as a result, products with good appearance have been obtained. . However, these are cases where a good molded body is subjected to a process after degreasing, and the defect rate of the molded body after injection molding is still quite high. Most of the defects that occur during injection molding are caused by uneven pressure distribution.

プラスチツクの射出成形技術においては、成形
時の歩留り改良として、既に樹脂温度、樹脂圧力
等を検出して射出圧力、射出時間、射出速度等の
パラメーターを制御可能な射出成形装置が存在し
ている。そして、この装置をセラミツク樹脂に適
用することも可能であるが、プラスチツクの場合
に比べて、良好な結果が得られていない。
In plastic injection molding technology, in order to improve the yield during molding, there are already injection molding machines that can detect resin temperature, resin pressure, etc. and control parameters such as injection pressure, injection time, and injection speed. Although it is possible to apply this device to ceramic resin, better results have not been obtained compared to the case of plastic.

これは、以下の点に起因すると考えられる。 This is considered to be due to the following points.

即ち、プラスチツクに比べ、セラミツク粉末と
熱可塑性樹脂等を混練したセラミツク樹脂は冷却
固化速度が早く、射出過程において設定圧力に対
して金型内のセラミツク樹脂に加えられる圧力は
減少する。これは前述した冷却固化が金型内の通
路、あるいは、製品部の狭小部において進行し、
成形機の圧力を伝播しなくなる為であり、該閉塞
が通路で起こると製品のヒケとして、また製品部
の狭小部において起こると製品の圧力分布不均一
による内部亀裂となる。
That is, compared to plastic, ceramic resin made by kneading ceramic powder and thermoplastic resin has a faster cooling and solidification rate, and the pressure applied to the ceramic resin in the mold during the injection process is reduced relative to the set pressure. This is because the cooling solidification described above progresses in the passage in the mold or in the narrow part of the product part.
This is because the pressure of the molding machine is no longer propagated, and if the blockage occurs in the passage, it will cause a sink mark on the product, and if it occurs in a narrow part of the product section, it will cause internal cracks due to uneven pressure distribution in the product.

このように、セラミツク樹脂を使用する場合
は、樹脂温度あるいは樹脂圧力を検知したクロー
ズドループの射出成形装置を用いても大幅な改善
がみられなかつた。
As described above, when using ceramic resin, no significant improvement was observed even when using a closed-loop injection molding device that detected resin temperature or resin pressure.

本発明は、上記した従来技術に存する不具合を
解消したセラミツク樹脂用のセラミツク製品の射
出成形装置を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide an injection molding apparatus for ceramic products using ceramic resin, which eliminates the problems of the prior art described above.

そして、本発明の構成は、射出過程における金
型内のセラミツク樹脂の温度若しくは圧力を検出
し、該記号を基に、射出圧力、射出速度、射出時
間を制御するセラミツク製品の射出成形装置にお
いて、金型内の狭小部に、セラミツク樹脂の温度
降下の度合を検出する温度センサ若しくは流れ方
向に対して測定部位の前後に配して圧力差を検出
する圧力センサを複数個備えたことを特徴として
いる。
The structure of the present invention is an injection molding apparatus for ceramic products that detects the temperature or pressure of ceramic resin in a mold during the injection process and controls injection pressure, injection speed, and injection time based on the detected symbol. It is characterized by being equipped with a plurality of temperature sensors in the narrow part of the mold to detect the degree of temperature drop in the ceramic resin, or pressure sensors arranged before and after the measurement area in the flow direction to detect the pressure difference. There is.

以下、本発明の一実施例を図に基づいて従来装
置と共に説明する。
An embodiment of the present invention will be described below along with a conventional device based on the drawings.

第1図ないし第4図において、1は射出成形機
(スクリユー方式)、2は加熱筒、3はノズルヘツ
ド、4はスクリユー、5は油圧ピストン、6はセ
ラミツク樹脂供給口、7は金型の固定型、8は可
動型、9はスプルー、10はランナー、11は製
品キヤビテイ部、12はエジエクターパンチ、1
3は中子、14は温度調整機構(本実施例におい
ては温度調整用媒体通路を示しているが、電気式
ヒーターでも構わない)、15は狭小部に複数個
取付けたセラミツク樹脂測定用の温度センサ、1
6は判別回路、17は制御回路、18は駆動回
路、19は型温度調整機制御回路である。
In Figures 1 to 4, 1 is an injection molding machine (screw type), 2 is a heating cylinder, 3 is a nozzle head, 4 is a screw, 5 is a hydraulic piston, 6 is a ceramic resin supply port, and 7 is a mold fixation. Mold, 8 is a movable mold, 9 is a sprue, 10 is a runner, 11 is a product cavity part, 12 is an ejector punch, 1
3 is a core, 14 is a temperature adjustment mechanism (in this example, a medium passage for temperature adjustment is shown, but an electric heater may also be used), and 15 is a temperature control mechanism for measuring the temperature of ceramic resin, which is installed in a plurality of pieces in a narrow part. sensor, 1
6 is a discrimination circuit, 17 is a control circuit, 18 is a drive circuit, and 19 is a mold temperature regulator control circuit.

次に、本発明の基になる、たとえば、射出過程
の樹脂温度を検出して射出条件(圧力、速度等)
を制御する射出成形機の作動を説明する。
Next, the present invention is based on, for example, detecting the resin temperature during the injection process and determining the injection conditions (pressure, speed, etc.).
The operation of the injection molding machine that controls this will be explained.

混練されたセラミツク樹脂はセラミツク樹脂供
給口6に投入され、スクリユー4の回転と加熱筒
2の作用により、可塑化された状態でノズルヘツ
ド3側に充填される。射出時には、油圧ピストン
5が油圧部の力を受け、スクリユー4を左方へ移
動させ、セラミツク樹脂は金型内の通路(スプル
ー9、ランナー10)を介してキヤビテイ部11
へ充填される。その際、セラミツク樹脂の温度を
検出する温度センサ15の出力を基に判別回路1
6、制御回路17等を介して油圧ピストン5に掛
かる圧力を制御し、たとえば、射出圧力の切換
え、射出速度の加減速を行なつている。
The kneaded ceramic resin is put into the ceramic resin supply port 6, and is filled into the nozzle head 3 side in a plasticized state by the rotation of the screw 4 and the action of the heating cylinder 2. During injection, the hydraulic piston 5 receives the force of the hydraulic section, moves the screw 4 to the left, and the ceramic resin passes through the passage (sprue 9, runner 10) in the mold to the cavity section 11.
is filled into. At that time, the discrimination circuit 1
6. The pressure applied to the hydraulic piston 5 is controlled via the control circuit 17 and the like, for example, switching the injection pressure and accelerating/decelerating the injection speed.

ここで、上記検出記号を基に射出条件を制御す
る場合の制御回路の一例を第4図のブロツク図に
示す。図中、20は油圧検出センサの出力、21
は第3図に示すような温度に対する最適射出圧力
を予めプロツトした記憶演算回路、22は比例定
数設定器、23はアツプダウンカウンター、24
は発振回路、25は波形整形回路、26は分周回
路、27は単安定回路、28は積分定数設定器、
29,30は各々積分回路、31は加算回路、3
2は増巾回路である。作動は、セラミツク樹脂温
度と射出条件である油圧を測定し、その記号を
各々15,20で入力する。そして、セラミツク
樹脂温度に対する最適射出圧力が記憶演算回路2
1から出力される。この信号は油圧信号20に対
する基準値としてコンパレータに入力される。コ
ンパレータは基準値と油圧信号20を比較し、
LowあるいはHighレベルの信号を出力する。こ
の信号により積分回路29の増減が決まる。コン
パレータからの出力は比例定数設定器22を介し
てアツプダウンカウンター23に接続される。一
方発振回路24からの出力は波形整形回路25、
分周回路26に接続され、単安定回路27で作動
タイミングが決定される。積分定数設定器28、
積分回路29からの出力は前述のアツプダウンカ
ウンター23に接続され、信号は共に加算回路3
1に入力される。また、積分回路30を介した信
号も加算回路に入力され、たとえば、油圧制御弁
の開閉を作動させる場合を例にとれば、ここで作
動タイミングと開弁時間が決まる。この出力は増
巾回路32、駆動回路18に入力され、油圧制御
弁を開閉し、セラミツク樹脂の温度によつて決ま
る最適射出圧力に近づけるように油圧部を作動す
る。なお、第4図中、一点鎖線で囲つたA部は判
別回路16に相当する。
Here, an example of a control circuit for controlling injection conditions based on the detection symbol is shown in the block diagram of FIG. 4. In the figure, 20 is the output of the oil pressure detection sensor, 21
3 is a memory calculation circuit in which the optimum injection pressure for temperature is plotted in advance, 22 is a proportional constant setter, 23 is an up-down counter, 24
is an oscillation circuit, 25 is a waveform shaping circuit, 26 is a frequency dividing circuit, 27 is a monostable circuit, 28 is an integral constant setter,
29 and 30 are integrating circuits, 31 is an addition circuit, and 3
2 is an amplification circuit. In operation, the temperature of the ceramic resin and the oil pressure, which is the injection condition, are measured, and their symbols are input as 15 and 20, respectively. The optimum injection pressure for the ceramic resin temperature is stored in the calculation circuit 2.
Output from 1. This signal is input to the comparator as a reference value for the oil pressure signal 20. The comparator compares the reference value and the oil pressure signal 20,
Outputs a low or high level signal. This signal determines whether the integration circuit 29 is increased or decreased. The output from the comparator is connected to an up-down counter 23 via a proportional constant setter 22. On the other hand, the output from the oscillation circuit 24 is a waveform shaping circuit 25,
It is connected to a frequency dividing circuit 26, and the operation timing is determined by a monostable circuit 27. Integral constant setter 28,
The output from the integrating circuit 29 is connected to the up-down counter 23 mentioned above, and both signals are sent to the adding circuit 3.
1 is input. Further, a signal via the integration circuit 30 is also input to the addition circuit, and, for example, when opening and closing a hydraulic control valve, the operation timing and valve opening time are determined here. This output is input to the amplifying circuit 32 and the drive circuit 18, which opens and closes the hydraulic control valve to operate the hydraulic section so as to approach the optimum injection pressure determined by the temperature of the ceramic resin. Note that in FIG. 4, a portion A surrounded by a chain line corresponds to the discrimination circuit 16.

以上、樹脂温度を検出して射出条件を制御する
射出成形装置について述べたが、プラスチツクの
場合は比較的良好な結果が得られるが、セラミツ
ク樹脂については期待した結果が得られていな
い。
The injection molding apparatus that controls the injection conditions by detecting the resin temperature has been described above, and although relatively good results can be obtained with plastics, the expected results have not been obtained with ceramic resins.

つまり、セラミツク樹脂はプラスチツクと異な
り、冷却固化の速度がはやく、射出過程において
も、通常は型温度よりセラミツク樹脂温度の方が
高いため冷却が進行する。その結果前述したよう
に狭小部において固化閉塞が発生し、流動性を有
するセラミツク樹脂成形体に均一に圧力を加える
ことが出来ないためである。その測定例を第2図
に示す。縦軸は圧力、横軸に時間を示す。図から
明らかなように、設定圧力(線A)、ノズルヘツ
ド3部の圧力(線B)に対して成形体先端部圧力
(線C)は加圧時間に圧力降下が存在する。
That is, unlike plastic, ceramic resin cools and solidifies quickly, and cooling progresses even during the injection process because the ceramic resin temperature is usually higher than the mold temperature. As a result, as described above, solidification and clogging occur in the narrow portion, making it impossible to apply pressure uniformly to the fluid ceramic resin molded body. An example of the measurement is shown in FIG. The vertical axis shows pressure, and the horizontal axis shows time. As is clear from the figure, there is a pressure drop during the pressurization time in the pressure at the tip of the compact (line C) with respect to the set pressure (line A) and the pressure at the nozzle head 3 (line B).

本発明は、プラスチツクにおいて、効果の大き
い樹脂温度検出型のフイードバツク式射出成形装
置をセラミツク樹脂の射出成形においても適用可
能にし、かつ、その効果を拡大する内容のもので
ある。
The present invention makes it possible to apply a resin temperature detection type feedback type injection molding apparatus, which is highly effective in plastics, to the injection molding of ceramic resins, and to expand its effects.

このため、第1図に示す如く、金型内の狭小部
を重点に複数個の検出センサを取り付け、各々の
信号を判別回路16に入力する構成となつてい
る。判別回路16以後の制御回路の形式は問わな
い。セラミツク樹脂温度を検出する場合について
云えば、複数個の温度センサ15の出力を判別回
路16に入力する。その信号は、そこで各々時間
に対する温度降下率(温度センサ出力の微分値)
として処理し、複数個の信号のうち、たとえば軟
化点以下といつた、ある設定温度以下でかつその
信号の微分値が最も大きい、つまり温度降下の最
も大きい温度センサ15の信号を基準に型温度調
整機制御回路19と、射出条件を制御する制御回
路17を作動させることとなる。
For this reason, as shown in FIG. 1, a plurality of detection sensors are attached with emphasis on narrow parts within the mold, and each signal is input to the discrimination circuit 16. The type of control circuit after the discrimination circuit 16 does not matter. In the case of detecting the ceramic resin temperature, the outputs of the plurality of temperature sensors 15 are input to the discrimination circuit 16. The signal is then the temperature drop rate (differential value of the temperature sensor output) with respect to time, respectively.
Among the plurality of signals, the mold temperature is determined based on the signal from the temperature sensor 15 that is below a certain set temperature, such as below the softening point, and has the largest differential value, that is, the largest temperature drop. The regulator control circuit 19 and the control circuit 17 that controls injection conditions are activated.

また、圧力センサを用いる場合は、狭小部の流
れに対する前部と後部の二箇所に該圧力センサを
取り付け、その圧力差を検出し、前述の温度降下
率同様に判別回路16に入力すればよい。
In addition, when using a pressure sensor, it is sufficient to attach the pressure sensor at two locations, one at the front and one at the rear relative to the flow in the narrow part, detect the pressure difference, and input it to the discrimination circuit 16 in the same manner as the temperature drop rate described above. .

このような射出成形装置により、射出過程にお
けるセラミツク樹脂の冷却固化による狭小部の閉
塞を、その部位の温度降下率あるいは前後の圧力
差を検出し、その部位の冷却固化を抑制するよう
に、温度調整機構を作動させると同時に、律速と
なる部分に合つた射出条件(射出圧力、射出速度
等)の設定が可能になる。
Such an injection molding device detects the blockage of a narrow part due to the cooling and solidification of ceramic resin during the injection process by detecting the rate of temperature drop in that part or the pressure difference before and after, and adjusting the temperature so as to suppress the cooling and solidification of that part. At the same time as operating the adjustment mechanism, it becomes possible to set injection conditions (injection pressure, injection speed, etc.) that suit the rate-limiting part.

以上述べた如き本発明によれば、射出過程にお
ける金型内のセラミツク樹脂の温度若しくは圧力
を検出し、該信号を基に、射出圧力、射出速度、
射出時間を制御するセラミツク製品の射出成形装
置において、金型内の狭小部に、セラミツク樹脂
の温度降下の度合を検出する温度センサ若しくは
流れ方向に対して測定部位の前後に配して圧力差
を検出する圧力センサを複数個備えているので、
冷却固化の進行する部位を検出して固化の進行を
抑制すると同時に、その部位のセラミツク状態に
あわせた射出条件に制御でき、したがつて、セラ
ミツク樹脂の状態は常に流動性を有する状態下に
おいて加圧が行なわれ、冷却固化が進行した度合
によつて適切に減圧されることが可能となり、不
均一な圧力分布がなく、歪みによる内部微亀裂の
発生もないセラミツク樹脂成形体が得られるセラ
ミツク製品の射出成形装置が提供できる。
According to the present invention as described above, the temperature or pressure of the ceramic resin in the mold during the injection process is detected, and based on the signal, the injection pressure, injection speed,
In an injection molding device for ceramic products that controls injection time, a temperature sensor is placed in a narrow part of the mold to detect the degree of temperature drop in the ceramic resin, or is placed before and after the measurement point in the flow direction to create a pressure difference. Equipped with multiple pressure sensors to detect
It is possible to detect areas where cooling solidification is progressing and suppress the progress of solidification, and at the same time control the injection conditions to match the state of the ceramic in that area. Ceramic products that can be appropriately depressurized depending on the degree of cooling and solidification, and that produce ceramic resin molded bodies without uneven pressure distribution and without the occurrence of internal microcracks due to distortion. injection molding equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例の射出成形装置
の構成図、第2図は射出成形機の設定と金型内の
セラミツク樹脂の圧力の時間に対する関係を示す
測定例のグラフ、第3図は実験的に得られたセラ
ミツク樹脂温度に対する最適射出圧力の関係を模
式的に示したグラフ、第4図は本発明に係るフイ
ードバツク制御に供される制御回路のブロツク図
である。 7…固定型、8…可動型、15…温度センサ、
16…判別回路、17…制御回路、19…型温度
調整機制御回路。
Fig. 1 is a block diagram of an injection molding apparatus according to an embodiment of the present invention, Fig. 2 is a graph of a measurement example showing the relationship between the settings of the injection molding machine and the pressure of ceramic resin in the mold over time; The figure is a graph schematically showing the relationship between the optimal injection pressure and the ceramic resin temperature obtained experimentally, and FIG. 4 is a block diagram of a control circuit used for feedback control according to the present invention. 7... Fixed type, 8... Movable type, 15... Temperature sensor,
16...Discrimination circuit, 17...Control circuit, 19...Type temperature regulator control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 射出過程における金型内のセラミツク樹脂の
温度若しくは圧力を検出し、該記号を基に、射出
圧力、射出速度、射出時間を制御するセラミツク
製品の射出成形装置において、金型内の狭小部
に、セラミツク樹脂の温度降下の度合を検出する
温度センサ若しくは流れ方向に対して測定部位の
前後に配して圧力差を検出する圧力センサを複数
個備えたことを特徴とするセラミツク製品の射出
成形装置。
1 In an injection molding device for ceramic products that detects the temperature or pressure of the ceramic resin in the mold during the injection process and controls the injection pressure, injection speed, and injection time based on the symbol, , an injection molding apparatus for ceramic products, characterized in that it is equipped with a plurality of temperature sensors that detect the degree of temperature drop in ceramic resin, or pressure sensors that are arranged before and after the measurement area in the flow direction to detect the pressure difference. .
JP56191517A 1981-11-28 1981-11-28 Injection molding device for ceramic product Granted JPS5892510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191517A JPS5892510A (en) 1981-11-28 1981-11-28 Injection molding device for ceramic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191517A JPS5892510A (en) 1981-11-28 1981-11-28 Injection molding device for ceramic product

Publications (2)

Publication Number Publication Date
JPS5892510A JPS5892510A (en) 1983-06-01
JPH0212161B2 true JPH0212161B2 (en) 1990-03-19

Family

ID=16275966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191517A Granted JPS5892510A (en) 1981-11-28 1981-11-28 Injection molding device for ceramic product

Country Status (1)

Country Link
JP (1) JPS5892510A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030000366A (en) * 2001-06-23 2003-01-06 주상세라스(주) Apparutus for manufacturing ceramic inserts
JP4938345B2 (en) * 2006-04-24 2012-05-23 株式会社パイオラックス Parts mounting structure

Also Published As

Publication number Publication date
JPS5892510A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
US5902525A (en) Method of molding a plastic article including injecting based upon a pressure-dominated control algorithm after detecting an indicia of a decrease in the surface area of the melt front
US6258303B1 (en) Apparatus and method of monitoring injection molding operation wherein sprue gate closing point of time is indicated together with displayed parameter waveforms
JP2003522654A (en) Dynamic feed control system
EP3642001B1 (en) Injection molding of crosslinking polymers using strain data
JPH0212161B2 (en)
JPS63178021A (en) Method and apparatus for controlling injection molder
JP4086171B2 (en) Screw for injection molding machine and positioning method thereof
JP3503257B2 (en) Injection speed control method for die casting
JPS6233050A (en) Method for ejecting injection product at mold opening of injection molding machine
JPH04246523A (en) Injection compression molding method
JP2913248B2 (en) Control method of injection molding machine
JPH07100893A (en) Control method for injection molding machine
JP2789295B2 (en) Injection molding machine
JP2799669B2 (en) Control method of injection molding machine
JPS645823B2 (en)
JPS6139175B2 (en)
JPH05337946A (en) Hot-runner color changing method
JP3858198B2 (en) How to adjust warpage of disk substrate
JP2000117798A (en) Die and method for injection molding
JPH0623781A (en) Injection molding method
JP2920459B2 (en) Control method of injection molding machine
JPS6326686B2 (en)
JPS6260251B2 (en)
JP2724958B2 (en) Control method of injection molding machine
JPH0516197A (en) Method for controlling injection of injection molding machine