JPH02121374A - Zero resistance current measuring circuit - Google Patents

Zero resistance current measuring circuit

Info

Publication number
JPH02121374A
JPH02121374A JP63272971A JP27297188A JPH02121374A JP H02121374 A JPH02121374 A JP H02121374A JP 63272971 A JP63272971 A JP 63272971A JP 27297188 A JP27297188 A JP 27297188A JP H02121374 A JPH02121374 A JP H02121374A
Authority
JP
Japan
Prior art keywords
gate
source
current
drain
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63272971A
Other languages
Japanese (ja)
Inventor
Ee Guratsusaa Ransu
ランス・エー・グラッサー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63272971A priority Critical patent/JPH02121374A/en
Publication of JPH02121374A publication Critical patent/JPH02121374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To constitute a low power solid-state zero resistance ammeter taking advantage of a flow rate control voltage characteristic of an SFET by a method wherein all the connections to a gate terminal are made through a high resistance connection, a power meter is provided so as to measure a voltage between a gate and a source, and a gate voltage is made to be a function of a current between a drain and the source. CONSTITUTION:In a practical example of an SFET current measuring circuit, the SFET 1 is provided with terminals such as a drain 2, a gate 3, and a source 4. A current to be measured or detected is made to flow between the drain 2 and the source 4. When the measured current flows through a path between the drain 2 and the source of the SFET 1, the gate voltage of a MOSFET 6 is made to vary. The MOSFET 6 and a current source 7 are connected so as to constitute an amplifier, where a voltage output is taken out from a node 8. And thus, a voltage at the node 8 is a function of a voltage of the gate 3 of the SFET 1, and a voltage of the gate 3 depends on a current inputted into the drain 2 of the SFET 1. All the SFET 1, a switch 9, and the sensing MOSFET 6 can be integrated on the same chip to realize an integrated circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導電界効果トランジスタ(以下5FETと
称する)を使用した電流計および電流検知器の構成に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the construction of an ammeter and a current detector using a superconducting field effect transistor (hereinafter referred to as 5FET).

〔従来の技術〕[Conventional technology]

5FETの最初の着想は、クラークによる電荷制御臨界
ジョセフソン電流に関するものである。
The original idea for the 5FET was based on Clark's charge-controlled critical Josephson current.

この着想ではゲート端子がドレイン−ソース特性を制御
する入力としての役割を果す。このクラーク[clar
k ]によってジャーナル・オフ・アプライド・フィジ
ックス、51巻、1980年。
In this idea, the gate terminal serves as an input to control the drain-source characteristics. This clark
Journal of Applied Physics, Volume 51, 1980.

2736頁(Journal of Applied 
Physics。
2736 pages (Journal of Applied
Physics.

Vol、51.pp、2736.1980)Ic発表さ
れた論文は、入力としてよりもむしろ出力とじて5FE
Tのゲート端子の使用を要請した第1番目のものである
Vol, 51. pp, 2736.1980) Ic published paper uses 5FE as output rather than as input.
This is the first request for the use of T's gate terminal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

回路設計における基本的変数は電流と電圧である。電流
を電圧に変換する変換器はそれ故非常に重要なものであ
る。
The fundamental variables in circuit design are current and voltage. Converters that convert current to voltage are therefore of great importance.

本発明の目的は5FETの流量制御電圧特性を利用して
低電力固体化零抵抗電流計を構成することである。
An object of the present invention is to construct a low-power solid-state zero-resistance ammeter by utilizing the flow control voltage characteristics of the 5FET.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は5FETの特異な性質を用いて電流を含む非
常に広い周波数応答性を有する方法でこの変換を行い、
また5FETが集積化固体デバイスを形成することが可
能なので非常にコンパクト化できる方法について述べる
This invention uses the unique properties of the 5FET to perform this conversion in a manner that has a very wide frequency response including current.
We will also discuss a method that allows 5FETs to form an integrated solid-state device, which can be made very compact.

電流計回路は2つの部分からなる。第1の部分は5FE
Tのドレイン端子に接続された回路構成に関するもの、
そして第2の部分は5FETのゲート端子に接続された
回路構成に関するものである。ドレイン端子側の回路構
成は5FETのドレイン端子に計測又は検知される電流
を流すように設計されている。電流はドレイン−ソース
臨界電流工。より小さく保たれる。ゲートに接続される
回路構成はゲート端子に現れるドレイン電流の効果を計
測または検知しうる回路網である。この回路構成は1n
Vより1μVの電圧を検出できねばならない。5FET
のゲート端子へのすべての接続は極度に低漏洩でなけれ
ばならない。
The ammeter circuit consists of two parts. The first part is 5FE
Regarding the circuit configuration connected to the drain terminal of T,
The second part relates to the circuit configuration connected to the gate terminal of the 5FET. The circuit configuration on the drain terminal side is designed to allow the current to be measured or detected to flow through the drain terminal of the 5FET. The current is the drain-source critical current. kept smaller. The circuitry connected to the gate is a network that can measure or sense the effect of the drain current appearing at the gate terminal. This circuit configuration is 1n
It must be possible to detect a voltage of 1 μV below V. 5FET
All connections to the gate terminals must be extremely low leakage.

〔作用〕[Effect]

ゲート電圧はドレイン電流エロの非直線関数であるので
、これらの電流に対する電圧は電流の値によりその感度
が変化する。最低感度電流領域はIo=OとIo=I。
Since the gate voltage is a non-linear function of the drain current, the sensitivity of the voltage to these currents changes depending on the current value. The lowest sensitivity current regions are Io=O and Io=I.

の近傍であり、最高感度領域はI b= IO/V’ 
2の近傍である。最大感度点は5FETのチャネル領域
に外部直流磁界を印加することにより変化させることが
できる。この磁界は5FETのソースとドレイン間を流
れる電流に垂直な成分を持つ必要がある。
, and the highest sensitivity region is I b = IO/V'
It is close to 2. The maximum sensitivity point can be changed by applying an external DC magnetic field to the channel region of the 5FET. This magnetic field must have a component perpendicular to the current flowing between the source and drain of the 5FET.

観測されるゲート電圧効果の大きさは5FET゛のゲー
ト端子に接続された寄生容量により劣化される。これら
の容量を小さく保つことが重要である。5FETのゲー
トに接続された電圧検知回路の入力容量も同様に小さく
保たねばならない。寄生または浮遊容量や電圧感応入力
容量、これら2つの容量の合計を5FETゲートの容量
の20倍より小さくすべきである。これはもし5FET
のゲートに接続されるすべての回路構成が同一チップ上
に集積されるならば効果的に達成されうる。
The magnitude of the observed gate voltage effect is degraded by the parasitic capacitance connected to the gate terminal of the 5FET. It is important to keep these volumes small. The input capacitance of the voltage sensing circuit connected to the gate of the 5FET must be kept small as well. The sum of these two capacitances, parasitic or stray capacitance and voltage sensitive input capacitance, should be less than 20 times the capacitance of the 5FET gate. This is 5FET
This can be effectively achieved if all the circuitry connected to the gate of is integrated on the same chip.

5FETの臨界電流はゲート電荷の関数である。The critical current of a 5FET is a function of gate charge.

例えばnチャネル5FETの場合には、ゲートの正電荷
の増大がチャネルの貞電荷の増大をもたらす。チャネル
の自由電子の数は正のゲート電圧電荷の増大により増加
されるのでチャネルの臨界電流が増大する。ゲート電荷
が連続して増加するとき、ゲートとチャネル間の#4A
M体内の電界もまた増大し、結局この電界が充分大きく
なると破壊的降伏を引き起すに至る。勿論、これは回避
されねばならぬそして最適のゲート電荷値は一般に非信
頼性現象の発生する値の1/4付近に存在する。
For example, in the case of an n-channel 5FET, an increase in positive charge on the gate results in an increase in positive charge on the channel. Since the number of free electrons in the channel is increased by increasing the positive gate voltage charge, the critical current in the channel increases. #4A between gate and channel when gate charge increases continuously
The electric field within the M body also increases, and eventually, if this electric field becomes large enough, it will cause destructive breakdown. Of course, this must be avoided and the optimum gate charge value generally lies around 1/4 of the value at which unreliability phenomena occur.

臨界電流がゲート電荷の非直線関数であるので、ゲート
電荷に対する臨界電流の感度は一定ではない。この発明
の最適ゲートバイアスはこの感度が最大の点の近傍にあ
る。この点は一般にゲートとチャネル間のv!Am体内
の電界の最大値の近傍である。
Since the critical current is a non-linear function of the gate charge, the sensitivity of the critical current to the gate charge is not constant. The optimum gate bias for this invention lies near this point of maximum sensitivity. This point generally refers to the v! between the gate and the channel! This is near the maximum value of the electric field within the Am body.

〔実施例〕〔Example〕

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の5FET電流計測回路の実施例を示す
回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a 5FET current measuring circuit of the present invention.

5FETIはドレイン2.ゲート3およびソース4の各
端子を有する。計測または検知される電流はドレイン2
とソース4との間に流される。
5FETI is drain 2. It has gate 3 and source 4 terminals. The current to be measured or sensed is drain 2
and source 4.

5FETがこの電流に感応するために、ゲートは適当な
電圧に蓄電されねばならない。シリコン技術で形成され
たnチャネル・エンハンスメントモート5FETでは適
当なゲート−ソース間電圧は約1vである。電圧源5は
スイッチ9を通して5FETのゲートを蓄電するのに用
いられる。スイッチは、そのドレインが上記5FETI
のゲート3に、ソースが上記電圧源5に接続きれたMO
SFETまたは上記5FETIとは異なる他の5FET
によって実現することができる。ゲートはスイッチ9の
短絡により蓄電される。スイッチは計測される電流が印
加される前に開放される。
In order for the 5FET to be sensitive to this current, the gate must be charged to the appropriate voltage. For an n-channel enhancement moat 5FET made in silicon technology, a suitable gate-to-source voltage is about 1 volt. Voltage source 5 is used to charge the gate of 5FET through switch 9. The switch has its drain connected to the above 5FETI
A MO whose source is connected to the voltage source 5 is connected to the gate 3 of
SFET or other 5FET different from the above 5FETI
This can be achieved by The gate is charged by shorting the switch 9. The switch is opened before the current to be measured is applied.

この点で5FETIのゲートの電荷と前置増幅用MO8
FET6が分離される。
At this point, the charge on the gate of 5FETI and the preamplification MO8
FET6 is isolated.

計測される電流が5FETIのドレイン−ソース間流路
を流れるとき、MOSFET6のゲート電圧に変化が起
る。MOSFET6および電流源7はノード8における
電圧出力をとり出すような増幅器構成で共に接続されて
いる。かくしてノード8における電圧は5FETIのゲ
ート3の電圧の関数であり、ゲート3の電圧は5FET
Iのドレイン2に入る電流に依存している。これは望ま
しい結果である。ゲート3の漏洩はMOSFET6のゲ
ートへの接続により最小化されている点に注目する。典
型的な実際応用において我々は10μm幅で0.1μm
の長さの5FETを設計することができ、一方スイッチ
9と増幅器に用いたMOSFET6は幅が2μmで長さ
0.2μmを有するものであった。集積回路実現にあた
っては、5FETI、スイッチ9および感応MO8FE
T6のすべてを同一チップ上に集積化することが可能で
ある。
When the measured current flows through the drain-source flow path of 5FETI, a change occurs in the gate voltage of MOSFET 6. MOSFET 6 and current source 7 are connected together in an amplifier configuration to derive a voltage output at node 8. The voltage at node 8 is thus a function of the voltage at gate 3 of 5FETI, and the voltage at gate 3 is a function of the voltage at gate 3 of 5FETI.
It depends on the current entering the drain 2 of I. This is the desired result. Note that gate 3 leakage is minimized by connecting MOSFET 6 to the gate. In typical practical applications we use 10μm wide and 0.1μm
It was possible to design a 5FET with a length of , while the MOSFET 6 used for the switch 9 and the amplifier had a width of 2 μm and a length of 0.2 μm. In realizing the integrated circuit, 5FETI, switch 9 and sensitive MO8FE are used.
It is possible to integrate all of T6 on the same chip.

〔発明の効果〕〔Effect of the invention〕

電流−電圧変換器の設計への5FETの使用はこの型式
のデバイスのコンパクトな集積化形成を可能にする。得
られた回路は直流でも動作し、かつ5FETが極端に高
速なので非常に広い帯域幅を有する。電流計の入力抵抗
はデバイスが超伝導性であるので零である。これは理想
的なものである。
The use of 5FETs in the current-to-voltage converter design allows compact integrated formation of this type of device. The resulting circuit can also operate with direct current and has a very wide bandwidth due to the extremely high speed of the 5FET. The input resistance of the ammeter is zero since the device is superconducting. This is ideal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の電流計測回路を示す回路図
である。 符号の説明 1・・・5FET、2・・・5FETのドレイン、3・
・・5FETのゲート、4・・・5FETのソース、5
・・・直流電圧源、6・・・MOSFET、7・・・電
流源、8・・・出力ノード、9・・・スイッチ。 第j 図 1 ΣFET 2 トレイン j ケ二ト 4 ソース !、、直大電洟源 6  r’1OsFET 7 電圧源 !? モ′t1ノート q、スA・竹
FIG. 1 is a circuit diagram showing a current measuring circuit according to an embodiment of the present invention. Explanation of symbols 1...5FET, 2...5FET drain, 3...
...5FET gate, 4...5FET source, 5
...DC voltage source, 6...MOSFET, 7...current source, 8...output node, 9...switch. Figure 1 ΣFET 2 Train j Kenito 4 Source! ,, direct voltage source 6 r'1OsFET 7 voltage source! ? Mo't1 Note q, Su A Bamboo

Claims (1)

【特許請求の範囲】 1、超電導電界効果トランジスタと電圧計より構成され
る回路であって、上記トランジスタはドレインとソース
の電極間を流れる電流を計測または検知するように配備
され、上記トランジスタのゲートは、上記トランジスタ
のゲートとソース間の電圧がしきい値以上でかつドレイ
ンとソース間臨界ジョセフソン電流がゲート電荷の鋭敏
な関係であるように充分に蓄積され、 動作ゲート電荷部において、計測または検知される電流
はドレインとソース間臨界ジョセフソン電流より小さく
保たれ、 ゲート端子へのすべての接続は高抵抗接続であり、電圧
計はゲートとソース間電圧を測るように配備され、ゲー
ト電圧はドレイン−ソース間電流の関数であることを特
徴とするゼロ抵抗電流計測回路。 2、上記トランジスタのチャネル領域に外部磁界が印加
され、その結果ドレイン−ソース間臨界ジョセフソン電
流よりずっと小さい電流に対してもその感度を増大せし
めることを特徴とする請求項1記載のゼロ抵抗電流計。 3、電圧が上記トランジスタと同一のチップ上に集積さ
れた他のトランジスタにより検知されることを特徴とす
る請求項1または2記載のゼロ抵抗電流計測回路。 4、超電導電界効果トランジスタと電荷ガルバノメータ
とから構成される回路であって、 上記トランジスタはドレインとソース端子間を流れる電
流を測れるように配備され、 上記トランジスタのゲートはトランジスタのゲートとソ
ース間電圧がしきい値以上でかつドレインとソース間臨
界ジョセフソン電流がゲート電荷の鋭敏な関係であるよ
うに充分に蓄電され、 動作ゲート電荷部において、計測される電流はドレイン
とソース間臨界ジョセフソン電流より小さく保たれ、 ゲート端子へのすべての接続はゲートとソース間電荷の
変化を測定するために配備された電荷ガルバノメータへ
の接続を除き高抵抗接続であることを特徴とするゼロ抵
抗電流計測回路。
[Claims] 1. A circuit consisting of a superconducting field effect transistor and a voltmeter, wherein the transistor is arranged to measure or detect the current flowing between the drain and source electrodes, and the gate of the transistor is arranged to measure or detect the current flowing between the drain and source electrodes. is sufficiently accumulated such that the voltage between the gate and source of the transistor is above the threshold value and the critical Josephson current between the drain and source is a sensitive relation of the gate charge, and in the operating gate charge section, the measurement or The sensed current is kept below the critical drain-to-source Josephson current, all connections to the gate terminal are high resistance connections, and a voltmeter is deployed to measure the gate-to-source voltage, with the gate voltage being A zero-resistance current measurement circuit characterized in that it is a function of drain-source current. 2. Zero-resistance current according to claim 1, characterized in that an external magnetic field is applied to the channel region of the transistor, thereby increasing its sensitivity even to currents much smaller than the critical drain-source Josephson current. Total. 3. The zero-resistance current measuring circuit according to claim 1 or 2, wherein the voltage is detected by another transistor integrated on the same chip as the transistor. 4. A circuit consisting of a superconducting field effect transistor and a charge galvanometer, in which the transistor is arranged so that the current flowing between the drain and source terminals can be measured, and the gate of the transistor has a voltage between the gate and the source of the transistor. Sufficient charge is stored above the threshold and the critical Josephson current between the drain and source is a sensitive relation to the gate charge, and in the operating gate charge section, the measured current is less than the critical Josephson current between the drain and source. A zero-resistance current measurement circuit that is kept small and characterized in that all connections to the gate terminal are high resistance connections except for the connection to the charge galvanometer, which is deployed to measure the change in charge between the gate and the source.
JP63272971A 1988-10-31 1988-10-31 Zero resistance current measuring circuit Pending JPH02121374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272971A JPH02121374A (en) 1988-10-31 1988-10-31 Zero resistance current measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272971A JPH02121374A (en) 1988-10-31 1988-10-31 Zero resistance current measuring circuit

Publications (1)

Publication Number Publication Date
JPH02121374A true JPH02121374A (en) 1990-05-09

Family

ID=17521345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272971A Pending JPH02121374A (en) 1988-10-31 1988-10-31 Zero resistance current measuring circuit

Country Status (1)

Country Link
JP (1) JPH02121374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011385A (en) * 1997-01-17 2000-01-04 Telefonaktiebolaget Lm Ericsson Method and apparatus for measuring and regulating current to a load

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011385A (en) * 1997-01-17 2000-01-04 Telefonaktiebolaget Lm Ericsson Method and apparatus for measuring and regulating current to a load

Similar Documents

Publication Publication Date Title
Ferrari et al. Transimpedance amplifier for high sensitivity current measurements on nanodevices
KR970002339A (en) Load current detection circuit of a power semiconductor device having a load on the source side
KR0128731B1 (en) Differential amplififr and current sensing circuit and
CN109470904A (en) Method and apparatus for reducing the method and apparatus and the system including this equipment of influence of the common-mode signal to differential signal
JPS63167277A (en) Linear type measuring circuit
ITMI981217A1 (en) STRUCTURE IMPROVED FOR A CURRENT MEASUREMENT CIRCUIT
CN108885474A (en) Adjuster circuit
CN105051555B (en) Virtual resistance circuit and charge detection circuit
EP0621638B1 (en) Integrated high voltage differential sensor using the inverse gain of high voltage transistors
JPS61232708A (en) Balance type differential amplifier
US5017804A (en) Hall sensing of bond wire current
JPH02233007A (en) Apparatus and method for detecting current of mos transistor
JPS603249B2 (en) Complementary comparator/inverter circuit with low power consumption
Poujois et al. Low-level MOS transistor amplifier using storage techniques
CN102156211A (en) Full-CMOS (complementary metal-oxide-semiconductor transistor) accurate current sampling circuit
CN108845175A (en) It is a kind of to work in the high precision electro current detection circuit of subthreshold region
JPS62228172A (en) Voltage comparing circuit
US5489846A (en) Magnetic-field sensor with split-drain MOSFETS
US6181171B1 (en) Circuit configuration for pulsed current regulation of inductive loads
Das et al. Sub-nanoampere one-shot single electron transistor readout electrometry below 10 Kelvin
CA2194956C (en) Capacitive measuring device with mosfet
JPH02121374A (en) Zero resistance current measuring circuit
US20020024357A1 (en) Power detector using FET transistor
Inokawa et al. A merged single-electron transistor and metal-oxide-semiconductor transistor logic for interface and multiple-valued functions
CN104677967A (en) Ion sensitive field effect transistor sensor and voltage-mode reading circuit thereof