JPH02119790A - Production of xylobiose - Google Patents

Production of xylobiose

Info

Publication number
JPH02119790A
JPH02119790A JP63274785A JP27478588A JPH02119790A JP H02119790 A JPH02119790 A JP H02119790A JP 63274785 A JP63274785 A JP 63274785A JP 27478588 A JP27478588 A JP 27478588A JP H02119790 A JPH02119790 A JP H02119790A
Authority
JP
Japan
Prior art keywords
xylobiose
xylan
xylanase
enzyme
chaetomium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63274785A
Other languages
Japanese (ja)
Inventor
Toshio Irie
入江 利夫
Noriyoshi Iwasaki
岩崎 紀佳
Toshiaki Kutsuna
沓名 俊章
Tomomi Sato
知巳 佐藤
Toshiyuki Nakada
仲田 俊之
Kunimasa Koga
邦正 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Original Assignee
Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japanese Res & Dev Assoc Bio Reactor Syst Food Ind filed Critical Japanese Res & Dev Assoc Bio Reactor Syst Food Ind
Priority to JP63274785A priority Critical patent/JPH02119790A/en
Publication of JPH02119790A publication Critical patent/JPH02119790A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To efficiently obtain the subject compound, useful as a quality improver, etc., for foods and excellent in suppression of calorie, etc., by culturing a microorganism, belonging to the genus Chaetomium and capable of producing xylanase and reacting the resultant enzymic agent with xylan. CONSTITUTION:A microorganism, belonging to the genus Chaetomium and capable of producing xylanase (preferably Chaetomium.gracile IFO 6568, etc.) is initially cultured to prepare an enzymic agent, which is then reacted with various xylans to produce a xylooligosaccharide consisting essentially of Xylobiose. Thereby, the objective compound is collected from the above- mentioned product. Furthermore, the above-mentioned culture is preferably carried out normally at 20-40 deg.C and pH4-10 for 2-10 days.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酵素分留法1.二よるえシロビオ−人糖衣の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an enzymatic fractionation method 1. Niyorue Silobio - Concerning the manufacturing method of human sugar coating.

(従来の技術) 食品の柔軟性、嗜好性、抗う触性、および感触その池の
、1^質を改良するvA″i!Iとして、可溶性の糖質
で什味か少ないキシロオリゴ糖がフル1オリコ糖と同様
にJυj持されており、特に食品のカロリー抑制、水分
活性調整という点ではキシロビオースかすぐれている。
(Prior art) Xylo-oligosaccharides, which are soluble carbohydrates and have little flavor, are used to improve the softness, palatability, caries resistance, and texture of foods. Like olicosaccharide, it has a high Jυj content, and is superior to xylobiose in terms of reducing calories in foods and regulating water activity.

しかし、キシロビオ−・スについては原料キシランの酸
分解に上る方法は勿論、酵素による分解法であってもこ
れを効率よく工業的に分取することは従米極め′ζ困難
であった。従って原料のキシランが自然界に多量に存在
している、こ拘わらずキシロビオースの製造フス)か著
しく高く、食品素イイとして期待される諸効果を検詞す
るための試験材料さえも充分に使用出来ないのか現状で
ある。
However, it has been extremely difficult to efficiently extract xylobiobioses industrially, not only by methods that involve acid decomposition of raw material xylan, but also by enzymatic decomposition methods. Therefore, although the raw material xylan exists in large quantities in nature, the production rate of xylobiose is extremely high, making it impossible to use enough test materials to determine the various effects expected as a good food ingredient. This is the current situation.

(発明が解決しようとする問題点・本発明の目的)本発
明の特定発明1土ケlミウム属に属し、キシラナーゼ生
産能を有する微生物の酵素を各種のキシランに作用させ
ることにより、キシロビオースな・主体とするキシロオ
リゴ糖を生成させ、その生成物からキシロビオースを採
取することを目的とするキシロビオースの製造法に係る
ものである。
(Problems to be Solved by the Invention/Objects of the Invention) Specific Inventions of the Invention 1. Xylobiose and The present invention relates to a method for producing xylobiose, which aims to produce xylo-oligosaccharide as a main ingredient and collect xylobiose from the product.

また本発明はケ1ミウム・グラシルIF06568又は
ぞの変異菌株の産生するキシラナーゼを採取し、これを
キシラン原IIに作用させることによりキシロースやグ
ルコースなどの単M類の生成を極力抑え、キシロビオー
スを主体とするキシロオリゴ糖を効率よく製造1−るこ
とを目的とするものであって、実質的には前記の特定発
明の実施態様発明を構成するものである。
In addition, the present invention collects the xylanase produced by C. gracil IF06568 or its mutant strain and makes it act on xylan origin II to suppress the production of single M species such as xylose and glucose as much as possible, and to produce mainly xylobiose. The object of the present invention is to efficiently produce xylo-oligosaccharides, and substantially constitutes an embodiment of the above-mentioned specific invention.

(問題点を解決するための手段) 本発明は前記した問題点の解決のl]的にa致するもの
で、ゲトミウム(CI+ a e L o IflLl
 t□)属に属し、キシラナーゼ生産能を有する微生物
を培養して酵素剤を調製し、これを各種のキンランに作
用させることによりキシロビオースを主体とするキシロ
オリゴ糖を生成させ、その生成物からキシロビオースを
採取することを特徴とするキシロビオースの製造(こあ
る。また、ケ)ミ・ンム・グラシル IF06568又
はその変異イネを培養してなる酵素剤を、キシラン含有
植物体より分離抽出したキシランに作用させることによ
り、キシロースの生成を抑えで、高濃度のキシロビオー
スを含有する糖液を製造することにある。
(Means for Solving the Problems) The present invention is intended to solve the above-mentioned problems.
A microorganism that belongs to the genus T□) and has the ability to produce xylanase is cultured to prepare an enzyme preparation, and this is applied to various types of goldenrod to produce xylo-oligosaccharides mainly composed of xylobiose. Production of xylobiose, which is characterized in that it is collected. The objective is to suppress the production of xylose and produce a sugar solution containing a high concentration of xylobiose.

本発明者らは、各種キシランを基質として、キシロオリ
ゴ糖を効率よく生成させる酵素剤の検索を行ってぎたと
ころ、ケトミウム・グラシルIF06568 (本菌株
はデキスlラナーゼ産生菌として工業的に使用されてい
る。又ATCC16153は本菌株と同一菌株である。
The present inventors searched for an enzyme agent that efficiently produces xylo-oligosaccharides using various xylans as substrates, and found that Chaetomium glacil IF06568 (this strain is used industrially as a dexllanase-producing bacterium) Also, ATCC16153 is the same strain as this strain.

)が特異的にキシロビオースを多く生成する一力、A−
シロース、グルコース及びキシロトリオースの生成が僅
がであるキシラナーゼを産生することを見い出した。
) is the one that specifically produces a large amount of xylobiose, A-
It has been found that the production of sylose, glucose and xylotriose produces only a small amount of xylanase.

本発明に用いる菌株ケlミウム・グラシルIFO656
8は例えば財団法人醗酵研究所から制限なく入手するこ
とができる8 本発明はこの菌株のみに限らず変異株も含まれる。即ち
本発明者らは、上記のようにケ)ミウム・グラシルIF
06568が特異なキシラナーゼを産生することを見い
出したので、ケ1−ミウム属に属し、キシラナーゼ生産
能を有する微生物を培養した酵素剤を8種のキシランに
作用させることを特定発明にYると共に、前記の菌株′
fl ミウム・グラシルを原体として変異処Fl!を施
し、より高力価の液化型キシラナーゼを産生する人工変
異株の造成も行い、キシロビオース生成能の者しくすぐ
れた異変株、例えば旧0−162、R15−621、R
15−11,61などを得ることができだ。
Bacterial strain Kelmium gracil IFO656 used in the present invention
8 can be obtained without restriction from the Fermentation Research Institute, for example. The present invention is not limited to this strain, but also includes mutant strains. That is, the present inventors, as described above,
06568 was found to produce a specific xylanase, and therefore, we have determined that it is a specific invention to make an enzyme preparation obtained by culturing a microorganism belonging to the genus Chemium and having the ability to produce xylanase to act on eight types of xylan. Said strain'
fl Mutated using Mium Gracil as the original substance Fl! We also created artificial mutant strains that produce higher titers of liquefied xylanase, and created mutant strains with excellent xylobiose production ability, such as old 0-162, R15-621, and R.
You can get 15-11, 61, etc.

ケ)ミ゛ンム・グラシル IFO6568およびその人
工式変株P、15−11.61のキシラナーゼについて
Pl+依存性、温度依存性、pH安定性、耐熱性等の測
定を行い第1〜4図の測定値を得た。第1図は、バ−チ
ウ/ドキシラン(DWX)を基質にして40’C−30
+flinの条件て”酵素反応を行す・、生成した還元
糖をネ/シソン・ソモギ法で測定した門I依存性のグラ
フ。第2図は前記基質液をI’ H5、O及び門15.
5で分解した温度依存性のグラフ。第3図は各Pl+の
緩衝液に酵素を溶解し、30°C201目・処理後、残
存活性を測定したI’11安定性のグラフ。第4図はM
 、’ 20酎酸緩衝液(Pt15.o)tこ前記酵素
を溶解し、30 ’−” 50°C4hrで処理して測
定した耐熱性のグラフである。
iii) Pl+ dependence, temperature dependence, pH stability, heat resistance, etc. of the xylanase of Minimum Glycil IFO6568 and its artificial variant P, 15-11.61 were measured, and the measurements shown in Figures 1 to 4 were carried out. Got the value. Figure 1 shows 40'C-30 using birch/doxylan (DWX) as a substrate.
A graph of the gate I dependence of the produced reducing sugars measured by the Ne/Sison-Somogi method when the enzymatic reaction is carried out under the conditions of +flin.
Graph of temperature dependence decomposed in step 5. FIG. 3 is a graph of I'11 stability obtained by dissolving the enzyme in each Pl+ buffer and measuring the residual activity after treatment at 30°C. Figure 4 is M
, 20 is a graph of heat resistance measured by dissolving the enzyme in oxic acid buffer (Pt15.o) and treating it at 50°C for 4 hours.

なお、本発明による菌株のキシラナーゼについては、さ
らに次のようにして JJ、下(■へ■)の諸特性も明
らかにした。UJlち ■ 分子量  T S K −gel G 3000 
S Wを用いた分子ふるいクロマトグラフィー により約8,600と判定。
In addition, regarding the xylanase of the strain according to the present invention, various characteristics of JJ, below (■ to ■) were further clarified as follows. Molecular weight TSK-gel G 3000
Determined to be approximately 8,600 by molecular sieve chromatography using SW.

・■ 等電点  アガロースIEFデルを用り)た等電
点電気泳動法によQ8.35と判定。
・■ Isoelectric point It was determined to be Q8.35 by isoelectric focusing method (using agarose IEF del).

■ 金属イオ l−182+及びCd’+により1■害
矛れンの影響 る。
■Metal ions l-182+ and Cd'+ cause 1■ harmful effects.

・■ 活性■害 5DS(ドデシル硫酸す1リウム)剤
のitz’J  NBS(N−ブロモこはく酸イミド)
P−(liB(P−クロロマーキュリ−ベンゾイックア
シノド)により活 性が阻害される。
・■Activity■Harm 5DS (sodium dodecyl sulfate) agent itz'J NBS (N-bromosuccinimide)
The activity is inhibited by P-(liB (P-chloromercury-benzoic acid).

E D T A (エチレンノアミン四耐酸)は活性を
阻害しない。
EDT A (ethylenenoaminetetraacid) does not inhibit activity.

本発明は以上に述べた酵素化学的性質のほか、これらの
菌株について、その菌学的諸性質、培養条件、産生する
キシラナーゼの各種キシランに月する効果的な分解反応
条件などを詳細に研究した結果、完成したものである。
In addition to the enzymatic chemical properties described above, the present invention has been carried out by detailed research on the mycological properties, culture conditions, and effective decomposition reaction conditions for the xylanase produced by various types of xylan. As a result, it is completed.

各種微生物が産生するキシラナーゼIこ関して1よ数多
くの報告があり、既に工業生産され実用(こ供されてい
るものがあるが、ケ)ミウム属のキシラナーゼに関して
は報告も極めて少なし・。即ち福井$(木、)ノケトミ
ウム・グロホ゛サム(CI’+ a e t o In
 + u IIlン)lol+osum約)はエヘーソ
7i、+1キシラナーゼを産生してβ−1,3−キシラ
ンを特異的に分解する。又、用南等(*;:)のケトミ
ウム・1リラテラ−レ(CLasしo+aium  L
ri 1aLcralc 5train No、22C
i4)は、キシロースを主たる最終生成物とするエンド
型キシラナーゼ(本体はβ−キシロシダーゼ)であって
、分子−量は240,000又は118,000  等
電点け4.86であり(木、)本発明者らのケ)ミツム
・グラシルによるβ−1,4−キシランを分解してキシ
ロビオースを主たる最終生成物とするエンド型キシラナ
ーゼとは明らかに異なる。
There have been many reports on xylanase I produced by various microorganisms, and some have already been industrially produced and put into practical use, but there are very few reports on xylanase from the genus Chemium. Namely, Fukui $ (Thursday) Nochaetomium glophosum (CI'+a et to In
+uIIln)lol+osum) produces eheso7i, +1 xylanase to specifically degrade β-1,3-xylan. In addition, Chaetomium 1 lilatella (CLas + aium L) by Yonan et al. (*;:)
ri 1aLcralc 5train No.22C
i4) is an endo-type xylanase (the main body is β-xylosidase) whose main end product is xylose, has a molecular weight of 240,000 or 118,000, an isoelectric point of 4.86, and has a molecular weight of 240,000 or 118,000. It is clearly different from the endo-type xylanase, which decomposes β-1,4-xylan and produces xylobiose as the main final product, which was developed by the inventors.

48、163 、1 69 (1,970)*  3 
  N、Uziie、  H,14aLuo、 T、Y
asui  ;八Hric。
48, 163, 1 69 (1,970) * 3
N, Uziie, H, 14aLuo, T, Y
asui; eight Hric.

Diol 1Cl+c+n、  4 9  、 1 1
 5 9  (1985)基質とする原料キシランは可
溶性、不溶性どちらでもよく、例えは綿実殻、1−ウモ
ロコシの穂軸、麦芽粕、ソバ穀、バガス、シラカバ、カ
ラマツ等の各種のキシランを原料とし、好適な温度、p
H域で本酵素剤を作用させることにより、キシロビオス
を特異的に生成することがでとる。
Diol 1Cl+c+n, 4 9, 1 1
5 9 (1985) The raw material xylan used as a substrate may be either soluble or insoluble. For example, various types of xylan such as cottonseed husk, corn cob, malt cake, buckwheat grain, bagasse, birch, and larch can be used as raw materials. , suitable temperature, p
By acting this enzyme agent in the H region, xylobios can be specifically produced.

本発明の菌株の培養は液体培地又は固体培地の何れによ
ってもよい。
The strain of the present invention may be cultured in either a liquid medium or a solid medium.

液体培地の場合には炭素源としてグルコース、7ラタト
ース、キシロース、すグルコース、マルトース、可溶性
デンプン、糖蜜、マンニトール等の・船釣に使用さtし
ているものか使用で゛ぎるか、これに限られるものでは
ない。
In the case of a liquid medium, carbon sources such as glucose, 7-ratatose, xylose, sugar glucose, maltose, soluble starch, molasses, mannitol, etc., are used in boat fishing, are used too much, or are limited to these. It's not something you can do.

窒素源としではベグ1ン、酵母エキス、麦芽エキス、肉
エキス、コーンステイープリカー等の天然窒素源の観:
二尿素等の有(幾窒索;原、ならびに硝酸す1リウム、
硝酸アンモニウム、硫酸アンモニウム等の無代窒素源を
用いることもでざる。
Regarding nitrogen sources, natural nitrogen sources such as veg1, yeast extract, malt extract, meat extract, and corn staple liquor:
Presence of diurea, etc.
It is also not possible to use a free nitrogen source such as ammonium nitrate or ammonium sulfate.

この池必要に応し、リン酸塩、硫酸マグネシウム、硫酸
鉄、硫酸銅等の無磯塩及びビタミン等も微量栄養源とし
て使用できる。これらの培地成分は微生物の生育を害し
ない濃度であれば待に制限はない。
Depending on the needs of the pond, mineral-free salts such as phosphate, magnesium sulfate, iron sulfate, copper sulfate, and vitamins can also be used as trace nutrients. There is no limit to the concentration of these medium components as long as they do not impair the growth of microorganisms.

実用上一般に炭素源は1へ20重量%、窒素源はo4へ
z重量%)濃度とする。培養温度は20〜40°Cとし
、培地のPl+は4〜10として、通気攪拌、振盪又は
静置培養を行う。培養は通常2〜10口問行う。
In practice, the concentration of the carbon source is generally 1 to 20% by weight, and the nitrogen source is 0 to z% by weight. The culture temperature is 20 to 40°C, the Pl+ of the medium is 4 to 10, and aeration stirring, shaking, or static culture is performed. Culture is usually carried out for 2 to 10 times.

固体培地で培養する場合には60−90重量%の水を加
えたふすま、もみがら、本ぬが、麦芽粕等を用し・加熱
滅菌後25〜40°Cの温度において3−80間培養を
行う。
When culturing on a solid medium, use bran, rice husks, nuts, malt lees, etc. with 60-90% water added. After heat sterilization, culture at a temperature of 25-40°C for 3-80 days. I do.

このように培養1れば培地中にキシラナーゼが蓄積され
る。〕す後は培地り弓、酵素を抽出し、エタノール成る
いはアセ)ンなどによる溶媒沈澱法、硫安塩析法又は肝
膜処理法及びカラムクロマトグラフィーなどの常法に従
い、より精製された酵素剤を調製することができる。
In this manner, xylanase is accumulated in the medium during culture 1. After that, the enzyme is extracted from the culture medium, and the enzyme is purified using conventional methods such as solvent precipitation with ethanol or acetone, ammonium sulfate salting out, liver membrane treatment, and column chromatography. An agent can be prepared.

犬に実施例によりこの発明をさらに具体的に説明するか
、これらに限定されるものではなす)。
The present invention will be further illustrated by, but not limited to, examples for dogs.

なお、キシラナーゼ活性の測定法は、O,[325%の
ラーチウンドキシラン懸濁液2【C1gに酵素液0.5
+iRを加え、IOoC−30+ninで反応後、生成
した還元糖をネルソン・ソモキ法で測定し、キシロース
として1分間に1μ+11Ol eの還元糖を生成する
場合を1単位とした。
The method for measuring xylanase activity is as follows: O, [325% Larchound xylan suspension 2
After adding +iR and reacting with IOoC-30+nin, the produced reducing sugar was measured by the Nelson-Somoki method, and one unit was defined as the production of 1 μ+11 Ole of reducing sugar as xylose per minute.

本発明の好適な実施例を次項に説明する。A preferred embodiment of the invention is described in the following section.

(実施例1) 酵素剤の調製は以rのように行った。即ちケトミウム・
グラシル r Fo 6568又はその変異株の胞子−
をボテ1デキストロース寒天斜面よりふすま+3地()
−F 主10 B/ 500mR’Jl角7う入s、1
20°C30+nin加熱滅菌)に接種し、30’C、
トロ日間静置培養し、;)5°C温水で酵素を抽出して
常法の通りに工タノールによる分画沈澱法を以て酵素剤
を調製した。得られた酵素標品はそれぞれ(第1表)l
こ示゛1通りであった。
(Example 1) An enzyme agent was prepared as follows. That is, ketomium
Spores of Gracil r Fo 6568 or its mutant strain
Combine 1 dextrose agar slope with bran + 3 soil ()
-F Main 10 B/ 500mR'Jl angle 7 increments, 1
Inoculated at 20°C (heat sterilized for 30+min), 30'C,
After statically culturing for several days, the enzyme was extracted with 5°C warm water, and an enzyme preparation was prepared by fractional precipitation using ethanol in a conventional manner. Each of the enzyme preparations obtained (Table 1)
This was exactly the case.

(第1表) (注)変異株は原体の人工変異株(既述)である。(Table 1) (Note) The mutant strain is an artificial mutant strain of the original product (as described above).

(実施例2) 各種植物体の脱リグニン後、アルカリ抽出によって得ら
れた不溶性キシランを原料(第2表)として分解した場
合について実施しrこ。
(Example 2) This experiment was carried out in the case where insoluble xylan obtained by alkaline extraction after delignification of various plants was decomposed as a raw material (Table 2).

即ち5重量%のキシラン1刈濁液(r’l14.5) 
4 +neを基質とし、これに比較のために起源を異に
した市販のキシラナーゼ剤(第3表)をそれぞれ10単
位ず一〕添加してL字型試験管でS5°C14時間の振
盪反応を行い、高速液体クロマトグラフィーで生成糖を
測定した。
i.e. 5% by weight xylan 1 suspension (r'l14.5)
4 +ne as a substrate, 10 units each of commercially available xylanase agents (Table 3) of different origins were added for comparison, and a shaking reaction was carried out at S5°C for 14 hours in an L-shaped test tube. The sugar produced was measured using high-performance liquid chromatography.

(第2表) 基質とした各種原料ヘシランの糖組成(%)(第3表) 供試酵素剤 ]5 結果は第5図のように本発明の酵素剤CGは他のキシラ
ナーゼ剤 TX、ACI−1と比へて明らかにキシロビ
オースを多く生成した。
(Table 2) Sugar composition (%) of various raw material hesylan used as a substrate (Table 3) Test enzyme agent] 5 The results are shown in Figure 5. The enzyme agent CG of the present invention was different from other xylanase agents TX, ACI. -1 clearly produced more xylobiose.

(実施例3) 本発明1こよる酵素剤は麦芽粕キシランの場合、1与1
こ効率よくキシロビオースを生成する1S徴を有してい
るか、この点をキシロビオース生成能かすぐれているこ
とがすでに報告されているバチルス6プミルス(]T3
acillus pumilus)由来お上び7ミコー
ラ・ラヌギノサ(IIu+flicすla 1anBi
nosa)由来の酵素剤(第を表)とも比較してみた。
(Example 3) In the case of malt cake xylan, the enzyme preparation according to the present invention 1 is 1 to 1
Bacillus 6 pumilus (]T3, which has been reported to have a 1S characteristic that efficiently produces xylobiose, or has an excellent ability to produce xylobiose in this respect.
acillus pumilus) origin 7 Mycola lanuginosa (IIu+flicsla 1anBi
A comparison was also made with enzyme preparations (see Table 1) derived from Nosa.

即ち本実施例はアルカリ抽出法によって調製した不溶性
の麦芽粕キシラン(tifJ2表)を基質とし、実施例
2と同様にして4時間の酵素反応を行った。
That is, in this example, an enzyme reaction was carried out for 4 hours in the same manner as in Example 2 using insoluble malt meal xylan (Table tifJ2) prepared by the alkaline extraction method as a substrate.

(第4表) 皆集P、713  (特開昭61−242592号公報
)木、  \’、KITPIIEECHAVAt41C
H,M、トIAYΔSH1,S 、NΔGAI  ; 
J 、Fer+nenL、Tec −1+no1.+6
2.63.415(1,984)その結果は第6図に示
すように、本発明の酵素剤は彰貨および旧し由来の酵素
剤(こ比べても、不溶性麦芽粕キシランから若しく効率
よでキシロビオースを生成するキシラナーゼであること
が確認された。
(Table 4) Collection P, 713 (Unexamined Japanese Patent Publication No. 61-242592) Tree, \', KITPIIEECHAVAt41C
H, M, IAYΔSH1,S, NΔGAI;
J, Fer+nenL, Tec-1+no1. +6
2.63.415 (1,984) As shown in FIG. 6, the results show that the enzyme preparation of the present invention is made from insoluble malt cake xylan and is less efficient than the enzyme preparations derived from Shoko and old ones. It was confirmed that this is a xylanase that produces xylobiose.

(実施例4) 本実施例tは、麦芽粕の高圧蒸煮(101、g 、’ 
c +++ :′0−10+oin保↑″t)熱水(1
84℃)抽出法によって調製した可溶性キシラン(糖組
成、キシロース3.1%、アラビノース1.1%、グル
コース1.2%)を分解する場合の酵素濃度の影響1こ
ついて調べたもので′ある。
(Example 4) In this example t, high-pressure steaming of malt lees (101, g,'
c +++ :'0-10+oin ↑''t) Hot water (1
The effect of enzyme concentration on the decomposition of soluble xylan (sugar composition: 3.1% xylose, 1.1% arabinose, 1.2% glucose) prepared by the extraction method (84℃) was investigated. .

即ちL字型試g、管中に可溶性キシラン4Irleと酵
素剤の各呈を加え、実施例2と同様に酵素反応を行った
That is, soluble xylan 4Irle and each enzyme agent were added to an L-shaped test tube, and an enzyme reaction was carried out in the same manner as in Example 2.

その結果は第7図に示したように、酵素剤添加量の増加
に件ってキシロビオース生成量が次第に上昇するが、キ
シロース、グルコースなとの単糖の生成量の伸びは者し
く少なく、本発明のキシラナーゼが麦芽粕の可溶性キシ
ランの分解によるキシロビオースの製造にも極めて有利
な^Y素剤であることが1′りっだ。
As shown in Figure 7, the amount of xylobiose produced gradually increases as the amount of added enzyme agent increases, but the increase in the amount of monosaccharides such as xylose and glucose is clearly small; It is clear that the xylanase of the invention is an extremely advantageous base agent for the production of xylobiose by decomposing soluble xylan in malt meal.

(実施例5) 本実施例5は、ハーチウンドキシランを基質にしで、酵
素剤 CGとI−I Lのキシラン分解限度を還元糖の
生成能を調べることによって比較したものて゛ある。即
も■−字型試験管にバーチウ、l−゛へ−シラン0.0
2−1 )i、 M7’20酢酸緩衝液(P I−15
,5)3.8+off、 lSy果液0.2+nR(4
00単位)を入れ、モノド式振盪槻55°Cで反応を開
始した。反応途中で酵素液0.]Jずつを数回添加し、
経時的に生成糖を測定した。
(Example 5) In this Example 5, the xylan decomposition limits of the enzyme agents CG and I-IL were compared by examining the ability to produce reducing sugars using heartland xylan as a substrate. Immediately put birch in a --shaped test tube and add silane 0.0 to l-゛.
2-1)i, M7'20 acetate buffer (PI-15
,5) 3.8+off, lSy fruit juice 0.2+nR(4
00 units), and the reaction was started at 55°C using a Monod shaker. Enzyme solution 0.0 during the reaction. ] J several times,
The sugar produced was measured over time.

結果は第8図に示すように、本発明のキシラナーゼCG
での分解(糖化)限度は土星でのそれよりも明らかに低
(、しかもその時点における糖組成は(f55表)の通
りであり、本発明のキシラナーゼ剤は分解(糖化)限度
に達−Yる迄の状態で使用しても、濃厚なキシロビオー
ス糖液を効率よく安定して製造し得ることが判った。
The results are shown in FIG. 8, where xylanase CG of the present invention
The decomposition (saccharification) limit at Saturn is clearly lower than that at Saturn (and the sugar composition at that time is as shown in the f55 table), and the xylanase agent of the present invention reaches the decomposition (saccharification) limit -Y It was found that a concentrated xylobiose sugar solution could be efficiently and stably produced even when used in conditions up to

(第5表) 2〇− (効果) 以上に詳しく説明したように、本発明によれば各種キシ
ランの酵素分解によってキシロオリゴ糖を製造する場合
、キシロースの生成が抑制される反面、特にキシロビオ
ースを効率よく生成させることができるため、その分取
精製が着しく容易になる利点がある。
(Table 5) 20- (Effects) As explained in detail above, according to the present invention, when xylooligosaccharides are produced by enzymatic decomposition of various xylans, the production of xylose is suppressed, but especially xylobiose is efficiently Since it can be easily produced, it has the advantage that its preparative purification is simple and easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明酵素剤CGの活性に及ぼす反応P Hの
影響を示すグラフ、第2図は活性に及ぼす反応温度の影
響を示すグラフ、第3図は酵素液の保存安定性に及ぼす
PHの影響を示すグラフ、第4図は酵素液の加熱処理が
活性に及ぼす影響を示すグラフ、第5図は種々の酵素剤
で各種キシランを分解したときの、生成糖を比較したグ
ラフ、第6図は不溶性麦芽粕キシランの酵素分解におけ
る各種酵素剤の効果を比較したグラフ、第7図は本発明
酵素剤CGによる可溶性麦芽粕キシランの酵素分解にお
ける生成糖の経緯を示したグラフ、第8図は匹及びT−
11−にょるバーチランドキシランの糖化限度を比較し
たグラフである。 出願人 食品産業バイオリアクタ ■ ズ 紫 型 I 兵 2 紫 ぜ メ 堤 千I 卸 阜 口D ヤ々 ヤ や ぜ (’/、)↓軍玉 雰t、口(+f−ai妬 (olo) *穿壬 鱒、、C(1gO/;〜 第8図 バーチウ・・汁゛Nシラン(BWX)の分角!(騎イ0
限度反応吟関 (hr) 改良時間 (hr)
Figure 1 is a graph showing the effect of reaction PH on the activity of the enzyme agent CG of the present invention, Figure 2 is a graph showing the effect of reaction temperature on activity, and Figure 3 is a graph showing the effect of PH on the storage stability of the enzyme solution. Figure 4 is a graph showing the influence of heat treatment of enzyme solution on activity. Figure 5 is a graph comparing sugars produced when various xylans are decomposed with various enzymes. The figure is a graph comparing the effects of various enzymes on the enzymatic decomposition of insoluble malt meal xylan. Figure 7 is a graph showing the history of sugar produced in the enzymatic decomposition of soluble malt meal xylan using the enzyme agent CG of the present invention. Figure 8 and T-
11 is a graph comparing the saccharification limits of birchland xylan. Applicant: Food industry bioreactor■ Zu Murasaki Type I Soldier 2 Murasaki Ze Me Tsutsumi Sen I Wholesale Fuguchi D Yaya ya yaze ('/,)↓Guntama atmosphere t, mouth (+f-ai envy (olo) *pierced Trout, C (1gO/; ~ Figure 8 Birch... N Silane (BWX) angle of fraction! (Kii 0
Limit reaction test (hr) Improvement time (hr)

Claims (1)

【特許請求の範囲】 1)ケトミウム(Chaetomium)属に属し、キ
シラナーゼ生産能を有する微生物を培養して酵素剤を調
製し、これを各種のキシランに作用させることによりキ
シロビオースを主体とするキシロオリゴ糖を生成させ、
その生成物からキシロビオースを採取することを特徴と
するキシロビオースの製造法。 2)ケトミウム属の微生物がケトミウム・グラシル(C
haetomiumgracile)IFO6568及
びその変異株であることを特徴とする特許請求の範囲第
1項記載のキシロビオースの製造法。
[Scope of Claims] 1) A microorganism belonging to the genus Chaetomium and capable of producing xylanase is cultivated to prepare an enzyme preparation, and this is allowed to act on various types of xylan to produce xylo-oligosaccharides mainly consisting of xylobiose. generate,
A method for producing xylobiose, which comprises collecting xylobiose from the product. 2) Microorganisms of the genus Chaetomium are Chaetomium gracil (C
2. The method for producing xylobiose according to claim 1, characterized in that the xylobiose is produced using M. haetomium gracile) IFO6568 and its mutant strains.
JP63274785A 1988-10-31 1988-10-31 Production of xylobiose Pending JPH02119790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274785A JPH02119790A (en) 1988-10-31 1988-10-31 Production of xylobiose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274785A JPH02119790A (en) 1988-10-31 1988-10-31 Production of xylobiose

Publications (1)

Publication Number Publication Date
JPH02119790A true JPH02119790A (en) 1990-05-07

Family

ID=17546528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274785A Pending JPH02119790A (en) 1988-10-31 1988-10-31 Production of xylobiose

Country Status (1)

Country Link
JP (1) JPH02119790A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660838A (en) * 1990-05-31 1997-08-26 Suntory Limited Skin preparations for external use
US5922579A (en) * 1995-12-18 1999-07-13 Rohm Enzyme Finland Oy Xylanases and uses thereof
US6228629B1 (en) 1995-12-18 2001-05-08 Röhn Enzyme Finland OY Xylanases, genes encoding them, and uses thereof
US6635464B1 (en) 1995-12-18 2003-10-21 Rohm Enzyme Finland Oy Xylanases, genes encoding them, and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155095A (en) * 1985-12-27 1987-07-10 Shokuhin Sangyo Baioriakutaa Syst Gijutsu Kenkyu Kumiai Production of xylobiose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155095A (en) * 1985-12-27 1987-07-10 Shokuhin Sangyo Baioriakutaa Syst Gijutsu Kenkyu Kumiai Production of xylobiose

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660838A (en) * 1990-05-31 1997-08-26 Suntory Limited Skin preparations for external use
US5922579A (en) * 1995-12-18 1999-07-13 Rohm Enzyme Finland Oy Xylanases and uses thereof
US6228629B1 (en) 1995-12-18 2001-05-08 Röhn Enzyme Finland OY Xylanases, genes encoding them, and uses thereof
US6635464B1 (en) 1995-12-18 2003-10-21 Rohm Enzyme Finland Oy Xylanases, genes encoding them, and uses thereof

Similar Documents

Publication Publication Date Title
KR101261666B1 (en) Method of producing fungal culture
US3880742A (en) {62 -1,4,/{62 1,3 Glucanase
US4115591A (en) Process for producing koji and utilization of the koji
DE2528490C2 (en) Process for the production of acidic protease
JP3347163B2 (en) Useful intestinal bacteria growth promoter
DE2532078A1 (en) PROCESS FOR THE PRODUCTION OF SUGARED STARCH PRODUCTS WITH MALTOSE AS THE MAIN INGREDIENT
Drysdale et al. Citric acid production by Aspergillus niger in surface culture on inulin
JPS6239994B2 (en)
JPH02119790A (en) Production of xylobiose
DE4017150A1 (en) PROCESS FOR PREPARING A BACKACTIVE PENTOSANASE PREPARATION
RU2104301C1 (en) Method of bacterium growth delay in alcoholic fermentation media
US6143295A (en) Low- molecular active ingredient extract from yeasts and method for producing it
WO1999062347A1 (en) Process for producing seasoning liquors with flavor of vegetables pickled in salted rice bran paste
JP2003095773A (en) Fertilizer utilizing waste molasses and method of producing the same
JP4068649B2 (en) Method for producing liquid koji using yellow koji mold
JPH0235052A (en) Method for treating by-product of grains
KR20200099308A (en) Production method of polyamine-rich fermentation product using soybean embryo
KR100350110B1 (en) candy cake-based medium for yeast culture
JP3585032B2 (en) Nutrient source for mushroom cultivation and mushroom cultivation method using the nutrient source
JPS61254174A (en) Water hyacinth liquor and production thereof
JPS6135779A (en) Food vinegar and its preparation
JPH0889230A (en) Production of sake
KR20050017954A (en) Process for preparing high quality wine by adding amylase which decomposes starch materials to be easily fermented to improve availability of raw materials of wine and fermentation efficiency
US2415777A (en) Production of aliphatic acids from sulphite waste liquor
Paulchamy et al. Solid-state cultivation of Aspergillus niger NCIM 548 for glucoamylase production on groundnut shell