JPH0211975B2 - - Google Patents

Info

Publication number
JPH0211975B2
JPH0211975B2 JP16341781A JP16341781A JPH0211975B2 JP H0211975 B2 JPH0211975 B2 JP H0211975B2 JP 16341781 A JP16341781 A JP 16341781A JP 16341781 A JP16341781 A JP 16341781A JP H0211975 B2 JPH0211975 B2 JP H0211975B2
Authority
JP
Japan
Prior art keywords
electron beam
plasma
plasma electron
cathode
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16341781A
Other languages
Japanese (ja)
Other versions
JPS5866242A (en
Inventor
Teru Kanbe
Kanji Yoshida
Michio Nagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP16341781A priority Critical patent/JPS5866242A/en
Publication of JPS5866242A publication Critical patent/JPS5866242A/en
Publication of JPH0211975B2 publication Critical patent/JPH0211975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/077Electron guns using discharge in gases or vapours as electron sources

Description

【発明の詳細な説明】 この発明は移動式プラズマ電子ビーム発生装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mobile plasma electron beam generator.

一般に、金属の溶接、溶融や加工、高温化学反
応およびプラズマ風胴等にプラズマ電子ビームを
使用することは知られており、それぞれの応用分
野に適したプラズマ電子ビーム発生装置が開発さ
れ、実用化されている。このようなプラズマ電子
ビーム発生装置において、プラズマ電子ビームの
安定な作動条件は雰囲気ガスすなわちプラズマガ
スの種類、圧力およびプラズマ電子ビーム銃(カ
ソード)とプラズマ電子ビームを受ける対象物す
なわち被処理物との間の距離によつて変化し、雰
囲気ガスは通常アルゴンやヘリウム等の不活性ガ
スで、その圧力は1×10-3〜10Torr程度であり、
また銃と被処理物との距離は作業性に応じて任意
に調整され、そして電気的条件としては電圧20〜
100V程度の直流が用いられる。このためプラズ
マ電子ビーム銃の電源には最大電圧150V程度の
直流源が多く用いられている。
It is generally known that plasma electron beams are used for metal welding, melting and processing, high-temperature chemical reactions, plasma wind tunnels, etc., and plasma electron beam generators suitable for each application field have been developed and put into practical use. has been done. In such a plasma electron beam generator, stable operating conditions for the plasma electron beam depend on the type and pressure of the atmospheric gas, that is, the plasma gas, and the relationship between the plasma electron beam gun (cathode) and the object receiving the plasma electron beam, that is, the object to be processed. The atmospheric gas is usually an inert gas such as argon or helium, and the pressure is about 1×10 -3 to 10 Torr.
In addition, the distance between the gun and the workpiece is arbitrarily adjusted according to the workability, and the electrical conditions are as follows:
A direct current of about 100V is used. For this reason, a DC source with a maximum voltage of about 150V is often used as the power source for plasma electron beam guns.

しかしながら、このような電源では、カソード
低温状態すなわち熱電子放出の少ない状態の場合
プラズマ電子ビーム銃を作動させることは困難で
ある。そのため普通高周波電圧を重畳させて放電
を促進させ、カソードの温度で高温にまで予熱す
る必要がある。このような高周波放電による従来
のプラズマ電子ビーム銃においては、本来安定し
てプラズマ電子ビームが発生すべきはずのカソー
ドからだけでなく、その他の部位から電子ビーム
発生時に異常な放電が発生し易くプラズマ電子ビ
ームは不安定となる。このため、従来この種のプ
ラズマ電子ビーム銃では異常な放電を防止するた
め非常に複雑な電気的絶縁手段が施されている。
その結果このように構成された装置を例えば真空
槽内で使用する場合、電気導線、冷却用の冷媒ホ
ースおよびプラズマ電子ビームを発生させるため
に供給するプラズマガス用ホース等を装着したプ
ラズマ電子ビーム銃を移動させて作動させること
は困難である。
However, with such a power source, it is difficult to operate the plasma electron beam gun when the cathode is in a low temperature state, that is, in a state where there is little thermionic emission. Therefore, it is usually necessary to superimpose a high-frequency voltage to accelerate the discharge and preheat the cathode to a high temperature. In conventional plasma electron beam guns that use such high-frequency discharge, abnormal discharge tends to occur not only from the cathode, where the plasma electron beam is supposed to be generated stably, but also from other parts when the electron beam is generated. The electron beam becomes unstable. For this reason, conventional plasma electron beam guns of this type have been provided with very complicated electrical insulation means to prevent abnormal discharge.
As a result, when a device configured in this manner is used, for example, in a vacuum chamber, a plasma electron beam gun equipped with electrical conductors, a refrigerant hose for cooling, a hose for supplying plasma gas to generate a plasma electron beam, etc. It is difficult to move and operate the

この発明の目的は、上述のような従来装置に伴
なうプラズマ電子ビーム発生初期の異常放電を減
少すると共に真空槽内で移動して使用できる改良
型のプラズマ電子ビーム発生装置を提供すること
にある。
It is an object of the present invention to provide an improved plasma electron beam generation device that can reduce the abnormal discharge at the initial stage of plasma electron beam generation that accompanies the conventional device as described above, and can be moved and used within a vacuum chamber. be.

この目的で、この発明による装置においてはカ
ソード予熱用電源すなわちスタート用電源として
高周波電源を用いず、中空陰極グロー放電を発生
する直流電源が使用され、これにより異常放電を
防止してカソードからのみ安定したプラズマ電子
ビームを発生させることができる。
For this purpose, the device according to the present invention does not use a high-frequency power source as a cathode preheating power source, that is, a starting power source, but instead uses a DC power source that generates a hollow cathode glow discharge, thereby preventing abnormal discharge and stabilizing only from the cathode. It is possible to generate a plasma electron beam.

使用するスタート用の直流電源は好ましくは電
圧400〜600V、低電流で、カソードが赤熱すれば
よい。この発明の一実施例によれば、無負荷電圧
がタウンゼント放電の発生する電圧600V、定格
電圧が中空陰極グロー放電の発生する電圧250V、
定格電流が20〜50Aである直流電源が使用され得
る。
The DC power source used for starting should preferably have a voltage of 400 to 600 V and a low current, as long as the cathode becomes red hot. According to an embodiment of the present invention, the no-load voltage is 600V, the voltage at which Townsend discharge occurs, and the rated voltage is 250V, the voltage at which hollow cathode glow discharge occurs.
A DC power supply with a rated current of 20-50A may be used.

この発明によれば、カソード予熱用電源として
従来使用されてきた高周波電源の代りに直流電源
を使用することにより、プラズマ電子ビーム発生
時初期の異常放電を減少することができ、従つて
従来必要であつた複雑な電気的絶縁処理を施す必
要がなく、プラズマ電子ビーム銃の電気的絶縁処
理が簡単となり、プラズマ電子ビーム銃自体の構
造が簡素化され、その結果製造コストが低減で
き、また異常放電の減少により銃の寿命が長くな
ると同時に信頼性が向上する。さらに、電気絶縁
手段の簡単化により、電気導線やプラズマガスお
よび冷却水等用の各種ホース類の真空内での取付
けが可能となり、それによつてプラズマ電子ビー
ム銃を槽内移動式に構成することができる。その
結果、従来例えば長尺ものを溶解する場合等溶解
物を移動させるため比較的大きな真空槽を必要と
していたものを長尺ものの溶解等でも真空槽の形
状を小型化することができる。
According to the present invention, by using a DC power source in place of the high frequency power source conventionally used as a power source for preheating the cathode, it is possible to reduce abnormal discharge at the initial stage when a plasma electron beam is generated. There is no need to perform complicated electrical insulation treatment, the electrical insulation treatment of the plasma electron beam gun is simplified, the structure of the plasma electron beam gun itself is simplified, and as a result, manufacturing costs can be reduced, and abnormal discharge can be avoided. This reduction increases the gun's lifespan and reliability. Furthermore, by simplifying the electrical insulation means, it becomes possible to install electrical conductors and various hoses for plasma gas, cooling water, etc. in a vacuum, thereby making it possible to configure the plasma electron beam gun to be movable within the tank. Can be done. As a result, the shape of the vacuum chamber can be reduced in size even when melting long objects, which conventionally required a relatively large vacuum chamber to move the melt, such as when melting long objects.

以下この発明を添付図面を参照してさらに説明
する。
The present invention will be further described below with reference to the accompanying drawings.

第1図にはこの発明による装置の電気回路を示
し、MSは主電源であり、その定格電圧は使用ガ
スの種類およびカソードCAと被処理物ATとの
間の距離によつて決められ、例えばDC25〜100V
に選定され、また、定格電流は被処理物ATの溶
量により決められ得る。
FIG. 1 shows the electrical circuit of the device according to the present invention, where MS is the main power supply, and its rated voltage is determined by the type of gas used and the distance between the cathode CA and the object to be treated AT, e.g. DC25~100V
Further, the rated current can be determined depending on the amount of dissolved substance AT to be treated.

この主電源MSと並列にカソードCAと被処理
物ATとの端子間にスタート用の直流電源SSが設
けられ、この直流電源の定格電圧は上述のように
中空陰極グロー放電の発生する電圧に設定され、
また定格電流はカソードCAの大きさに応じて決
められる。また第1図においてSWはスタート用
直流電源SSの作動用のスイツチである。
A DC power supply SS for starting is provided in parallel with this main power supply MS between the terminals of the cathode CA and the workpiece AT, and the rated voltage of this DC power supply is set to the voltage at which hollow cathode glow discharge occurs as described above. is,
Further, the rated current is determined according to the size of the cathode CA. Further, in FIG. 1, SW is a switch for operating the starting DC power supply SS.

第2図にはこの発明による装置の要部の構成を
概略的に示す。第2図において、1は真空槽の壁
であり、2は例えばアルゴンやヘリウム等の不活
性ガスまたはこれらにH2やN2を混合したもので
あり得るプラズマガス供給用の管であり、その一
端2aは電気絶縁性の可動ホース3を介して外部
供給源(図示してない)連結され、また他端2b
は開放しており、そしてカソード4に連接してい
る。5はプラズマガス供給用の管2の周囲に設け
られた電極で、その内部に冷却用通路6を備えて
おり、この冷却用通路6には冷却水供給用の電気
絶縁性の可動ホース7から冷却水が供給され、上
記通路6内を循環した冷却水は可動ホース7と同
様な冷却水排出用の可動ホース8から排出され
る。このようにして構成された電極組立体すなわ
ちプラズマ電子ビーム銃はアルミナ等の無機質材
料から成る電気絶縁部材9を介して可動の支持部
材10によつて真空槽内に移動可動に挿置され
る。また11は真空槽の壁1に取付けられたベー
クライト等有機材料でよい絶縁リングでこのリン
グ11を通つて可動電気リード線12が電極5に
接続される。
FIG. 2 schematically shows the configuration of the main parts of the apparatus according to the present invention. In Figure 2, 1 is the wall of the vacuum chamber, and 2 is a tube for supplying plasma gas, which can be an inert gas such as argon or helium, or a mixture of these with H 2 or N 2 . One end 2a is connected to an external supply source (not shown) via an electrically insulating movable hose 3, and the other end 2b
is open and connected to cathode 4. Reference numeral 5 denotes an electrode provided around the tube 2 for supplying plasma gas, and is provided with a cooling passage 6 inside thereof, and an electrically insulating movable hose 7 for supplying cooling water is connected to the cooling passage 6. Cooling water is supplied, and the cooling water that has circulated in the passage 6 is discharged from a movable hose 8 for discharging the cooling water, which is similar to the movable hose 7. The electrode assembly thus constructed, that is, the plasma electron beam gun, is movably inserted into a vacuum chamber by a movable support member 10 via an electrically insulating member 9 made of an inorganic material such as alumina. Further, reference numeral 11 denotes an insulating ring which may be made of an organic material such as Bakelite and is attached to the wall 1 of the vacuum chamber, and a movable electrical lead wire 12 is connected to the electrode 5 through this ring 11.

このようにこの発明においては従来必要とされ
てきた電極全体を覆う絶縁部材を省略することが
でき、プラズマガスおよび冷却水の供給を例えば
ナイロンやテフロン製の可動性ホースを用いて行
なうことによつて移動して使用することができ
る。
In this way, in this invention, it is possible to omit an insulating member that covers the entire electrode, which was conventionally required, and by supplying plasma gas and cooling water using a movable hose made of, for example, nylon or Teflon. It can be moved and used.

また実験によれば従来の高周波方式では3〜4
回に1回スタートに失敗するのが、この発明の装
置ではスタートの失敗率を1/10程度に減少するこ
とができた。
Also, according to experiments, in the conventional high frequency method, 3 to 4
The device of this invention has been able to reduce the start failure rate to about 1/10, whereas the start failure rate is once per cycle.

さらに、プラズマ電子ビーム銃の製造コストを
従来の高周波駆動型のものに比べて10〜20%減少
することができ、そしてまた破損し易い石英ガラ
スやアルミナ等から成る電極被覆絶縁部材を省略
できたことにより運転費用のうち消耗品費用を20
〜30%減少することができた。
In addition, the manufacturing cost of the plasma electron beam gun can be reduced by 10 to 20% compared to conventional high-frequency drive types, and the electrode covering insulation material made of quartz glass, alumina, etc., which is easily damaged, can be omitted. This reduces consumables costs by 20% of operating costs.
could be reduced by ~30%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による装置の電気回路図、第
2図はこの発明による装置の要部を概略的に示す
断面図である。 図中2:プラズマガス供給の管、4:カソー
ド、5:電極、6:冷却用通路、MS:主電源、
SS:スタート用直流電源。
FIG. 1 is an electrical circuit diagram of a device according to the present invention, and FIG. 2 is a sectional view schematically showing the main parts of the device according to the present invention. In the figure 2: plasma gas supply tube, 4: cathode, 5: electrode, 6: cooling passage, MS: main power supply,
SS: DC power supply for starting.

Claims (1)

【特許請求の範囲】[Claims] 1 一端が開放されてカソードに連接し、他端に
プラズマガスの供給される管状電極組立体から成
り、プラズマに電気エネルギを供給してプラズマ
電子ビームを発生するように構成したプラズマ電
子ビーム発生装置において、スタート用電源とし
て中空陰極グロー放電を発生する直流電源を設
け、電極組立体を真空槽内で移動できるように構
成したことを特徴とする移動式プラズマ電子ビー
ム発生装置。
1. A plasma electron beam generating device consisting of a tubular electrode assembly with one end open and connected to a cathode and the other end supplied with plasma gas, and configured to supply electrical energy to plasma and generate a plasma electron beam. A mobile plasma electron beam generating device characterized in that a DC power source for generating a hollow cathode glow discharge is provided as a starting power source, and the electrode assembly is configured to be movable within a vacuum chamber.
JP16341781A 1981-10-15 1981-10-15 Mobile plasma electron beam generator unit Granted JPS5866242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16341781A JPS5866242A (en) 1981-10-15 1981-10-15 Mobile plasma electron beam generator unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16341781A JPS5866242A (en) 1981-10-15 1981-10-15 Mobile plasma electron beam generator unit

Publications (2)

Publication Number Publication Date
JPS5866242A JPS5866242A (en) 1983-04-20
JPH0211975B2 true JPH0211975B2 (en) 1990-03-16

Family

ID=15773496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16341781A Granted JPS5866242A (en) 1981-10-15 1981-10-15 Mobile plasma electron beam generator unit

Country Status (1)

Country Link
JP (1) JPS5866242A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800083B2 (en) * 2007-11-06 2010-09-21 Axcelis Technologies, Inc. Plasma electron flood for ion beam implanter

Also Published As

Publication number Publication date
JPS5866242A (en) 1983-04-20

Similar Documents

Publication Publication Date Title
US4174477A (en) Method of and device for arc welding
US6541915B2 (en) High pressure arc lamp assisted start up device and method
US5357747A (en) Pulsed mode cathode
JP6887251B2 (en) High energy efficiency, high power plasma torch
RU2270491C2 (en) High-frequency neutron source such as neutralizer
US6965629B2 (en) Method and apparatus for initiating a pulsed arc discharge for nanopowder synthesis
JPH0211975B2 (en)
US3480805A (en) Magnetohydrodynamic apparatus
CA2490246A1 (en) Industrial hollow cathode
US1961749A (en) Gaseous electric discharge device
US20080006521A1 (en) Method for initiating a pulsed arc discharge for nanopowder synthesis
RU2099573C1 (en) Electric arc rocket engine
US3628181A (en) Gas discharge lasers
JPS6293834A (en) Ion source
US11473568B2 (en) Apparatus and method for operating a heaterless hollow cathode, and an electric space propulsion system employing such a cathode
US2770710A (en) Arc working apparatus
Kovarik et al. Initiation of hot cathode arc discharges by electron confinement in Penning and magnetron configurations
JPH06231709A (en) Method for generating pulse ion beam
JPH0837099A (en) Plasma generating device
RU2114487C1 (en) Magnetron method of spraying
SU1358114A1 (en) Vacuum erosion plasma accelerator
JP3294744B2 (en) Ozone generator
JPH0837098A (en) Plasma generating device
SU967722A1 (en) Apparatus for vacuum welding by non-consumable electrode
SU143177A1 (en) Vacuum welding method