JPH02119638A - Energy storage system using compressed air - Google Patents

Energy storage system using compressed air

Info

Publication number
JPH02119638A
JPH02119638A JP27243888A JP27243888A JPH02119638A JP H02119638 A JPH02119638 A JP H02119638A JP 27243888 A JP27243888 A JP 27243888A JP 27243888 A JP27243888 A JP 27243888A JP H02119638 A JPH02119638 A JP H02119638A
Authority
JP
Japan
Prior art keywords
air
compressed air
heat
turbine
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27243888A
Other languages
Japanese (ja)
Inventor
Toshiaki Ishise
俊明 石瀬
Osamu Kawada
修 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP27243888A priority Critical patent/JPH02119638A/en
Publication of JPH02119638A publication Critical patent/JPH02119638A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an air storage section from becoming high in temperature in an apparatus in which compressed air taken out of the air storage section to store the compressed air sent from an air compressing means is led into an energy recovering means to produce driving energy by interposedly providing a regenerated heat storing means between the air storage section and the air compressing means. CONSTITUTION:A ground plant 12 is provided with a compressor 14, which is driven by a motor-generator 16 connected to a feeding unit 22 through a clutch 18. The motor-generator 16 is connected to a turbine 28 through a clutch 26, and rotatingly driven by the turbine 28 while the clutch 26 is in engagement to supply generated electric power to the feeding unit 22. High temperature compressed air delivered by the compressor 14 is sent to a submarine air storage section 48 through piping 24, 42 to be stored there, and taken out of the section 48 for its introduction to the turbine 28 in the case of necessity. In this case, a regenerated heat accumulator 38 is provided on the way of the piping 42, and its inside is filled up with a heat regenerative material which absorbs the heat of the high temperature compressed air to melt, and conversely gives latent heat to the air having turned into low temperature to solidify.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気エネルギ等を空気の圧力エネルギとして水
中や岩盤内で蓄積する圧縮空気によるエネルギ貯蔵シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an energy storage system using compressed air that stores electrical energy or the like as air pressure energy in water or in rock.

[従来の技術] 電気エネルギを安定して供給するためには昼間時におけ
る電力使用ピーク時の負荷対策が重要な課題である。し
かし原子力発電が多くなると、負荷追従性が悪いので夜
間の余剰電力を利用した圧縮空気によるエネルギ貯蔵シ
ステムの需要性が高くなっている。
[Prior Art] In order to stably supply electrical energy, load countermeasures during peak power usage during the daytime are an important issue. However, as nuclear power generation increases, demand for compressed air energy storage systems that utilize surplus power at night is increasing due to poor load followability.

この装置として、岩盤的空洞に圧縮空気を貯蔵して電気
エネルギを圧力エネルギとして貯蔵する手段が研究され
ている。また本出願人はさらに経済効果を向上するため
に、水中に圧縮空気を貯蔵する手段を設けた圧縮空気に
よるエネルギ貯蔵システムを提案している(特願昭62
−73770号、特願昭62−73771号参照)。
As this device, a method of storing compressed air in a rock-like cavity and storing electrical energy as pressure energy is being researched. Furthermore, in order to further improve the economic effect, the applicant has proposed an energy storage system using compressed air, which is equipped with means for storing compressed air underwater (Japanese Patent Application No. 62
-73770, Japanese Patent Application No. 62-73771).

これらの圧縮空気によるエネルギ貯蔵システムでは夜間
に余剰電力で圧縮機を駆動し、圧縮空気を貯留部に貯留
し、昼間時等の必要時にこの圧縮空気を取り出してター
ビン駆動による発電機で電力を発生させるようになって
いる。
In these compressed air energy storage systems, surplus electricity is used to drive a compressor at night, the compressed air is stored in a storage section, and when needed during the daytime, this compressed air is extracted and used to generate electricity using a turbine-driven generator. It is designed to let you do so.

ところがこれらの圧縮空気によるエネルギ貯蔵システム
では圧縮された気体が高温となるので収容容器の耐熱温
度を考慮して圧縮過程中、ないしは圧縮終了後に空気を
冷却する必要がある。かつまた低温で貯留した空気をそ
のままタービンで膨張させるとタービン排気が極度に低
温となり、結氷等の困難を生ずる。これを回避するには
膨張前、又は膨張過程中に空気を燃焼等により加熱する
必要があり、全体的なエネルギ回収効率は低下せざるを
得ない。
However, in these energy storage systems using compressed air, the compressed gas reaches a high temperature, so it is necessary to cool the air during the compression process or after the compression is completed, taking into account the temperature resistance of the storage container. Moreover, if the air stored at low temperature is expanded in the turbine as it is, the turbine exhaust becomes extremely low temperature, causing problems such as freezing. To avoid this, it is necessary to heat the air by combustion or the like before or during the expansion process, which inevitably reduces the overall energy recovery efficiency.

[発明が解決する課題] 本発明は上記事実を考慮し、圧縮空気を貯蔵する場合に
貯蔵部が高温になることの不具合を解消できる圧縮空気
によるエネルギ貯蔵システムを得ることが目的である。
[Problems to be Solved by the Invention] In consideration of the above-mentioned facts, the present invention aims to provide an energy storage system using compressed air that can solve the problem of the storage section becoming high temperature when compressed air is stored.

[課題を解決するための手段] 本発明は、空気圧縮手段と、この圧縮された空気を圧縮
状態で貯蔵する蓄気部と、この蓄気部から取り出された
圧縮空気から駆動エネルギを得るエネルギ回収手段と、
を有する圧縮空気によるエネルギ貯蔵システムであって
、前記空気圧縮手段から蓄気部へ送られる圧縮空気から
熱吸収して圧縮空気を冷却し蓄気部からエネルギ回収手
段へ送られる圧縮空気を前記吸収した熱で加熱する再生
蓄熱手段と、を有することを特徴としている。
[Means for Solving the Problems] The present invention provides an air compression means, an air storage unit that stores the compressed air in a compressed state, and an energy storage unit that obtains driving energy from the compressed air taken out from the air storage unit. collection means,
An energy storage system using compressed air having: absorbing heat from the compressed air sent from the air compression means to the air storage unit to cool the compressed air; and absorbing the compressed air sent from the air storage unit to the energy recovery unit. It is characterized by having a regenerating heat storage means for heating with the heat generated.

このため本発明では、圧縮された空気が昇温しでも、再
生蓄熱手段で熱エネルギが吸収されて温度が低下した後
に貯蔵される。このため圧縮率を大きくしても蓄気部を
構成する材料は高耐熱性の容器としなくてもよく、かつ
蓄気部周囲への熱影響も少ない。
Therefore, in the present invention, even if the temperature of the compressed air increases, the heat energy is absorbed by the regenerative heat storage means and the air is stored after the temperature has decreased. Therefore, even if the compression ratio is increased, the material constituting the gas storage part does not need to be a highly heat-resistant container, and the heat effect on the surroundings of the gas storage part is small.

また蓄気部から取り出した圧縮空気は蓄熱手段で吸収し
た熱が再生付与されるので高温状態となってエネルギ回
収手段へと送られる。従って圧縮空気はタービン等でエ
ネルギを放出した後でも過度に低温とならず、しかも効
率よくエネルギ回収が可能である。
Further, the compressed air taken out from the air storage section is heated to a high temperature because the heat absorbed by the heat storage means is regenerated and sent to the energy recovery means. Therefore, compressed air does not become excessively low in temperature even after energy is released by a turbine or the like, and energy can be efficiently recovered.

[発明の実施例コ 第1図には本発明が適用された圧縮空気によるエネルギ
貯蔵システムの概念図が示されている。
[Embodiment of the Invention] FIG. 1 shows a conceptual diagram of an energy storage system using compressed air to which the present invention is applied.

地上プラント12には圧縮機14が設置され、モータ/
ジェネレータ16がクラッチ18を介して連結されてい
る。モータ/ジェネレータ16には給電設備22が接続
されている。
A compressor 14 is installed in the ground plant 12, and a motor/
A generator 16 is connected via a clutch 18. A power supply facility 22 is connected to the motor/generator 16 .

これによってクラッチ18の接合時にモータ/ジェネレ
ータ16は圧縮機14を回転し、空気取入口14Aから
大気を取込んで圧縮し空気送出口14Bから配管24へ
と送出すようになっている。
Thereby, when the clutch 18 is engaged, the motor/generator 16 rotates the compressor 14, takes in atmospheric air from the air intake port 14A, compresses it, and sends it out to the pipe 24 from the air delivery port 14B.

配管24の途中には開閉弁25が設けられている。An on-off valve 25 is provided in the middle of the pipe 24.

一方モータ/ジェネレータ16はクラッチ26を介して
タービン28へ連結されており、クラッチ26の接合時
にタービン28によって回転されて発電し、給電設備2
2へ電力を供給できるようになっている。このタービン
28は空気人口28Aから圧縮空気が供給され、タービ
ン28を回転した後に空気出口28Bから大気へ放出さ
れるようになっている。空気入口28Aへ連通された配
管32の中間部には開閉弁34が介在されている。
On the other hand, the motor/generator 16 is connected to a turbine 28 via a clutch 26, and when the clutch 26 is engaged, the motor/generator 16 is rotated by the turbine 28 to generate electricity.
It is now possible to supply power to 2. Compressed air is supplied to this turbine 28 from an air outlet 28A, and after rotating the turbine 28, is discharged to the atmosphere from an air outlet 28B. An on-off valve 34 is interposed in the middle of the pipe 32 communicating with the air inlet 28A.

これらの配管24.32の先端部には配管36が連通さ
れており、再生蓄熱器38の一端と連通されている。こ
の再生蓄熱器38は一例としてフッ化リチウムとフッ化
ベリリウムを主成分とじた相変化による蓄熱材を用いる
ことができる。従ってこの再生蓄熱器38は圧縮機14
で圧縮されて高温となった空気の熱を吸収して融解し、
逆に低温になった空気へ潜熱を与えて凝固するようにな
っている。
A pipe 36 is connected to the tips of these pipes 24 and 32, and is connected to one end of a regenerative heat storage device 38. For this regenerative heat storage device 38, for example, a phase change heat storage material containing lithium fluoride and beryllium fluoride as main components can be used. Therefore, this regenerative heat storage 38 is connected to the compressor 14.
It absorbs the heat of the compressed air and melts it,
Conversely, it imparts latent heat to the cold air, causing it to solidify.

再生蓄熱器38の他端には配管42が接続されている。A pipe 42 is connected to the other end of the regenerative heat storage device 38 .

この配管42は中間部に開閉弁44を有すると共に、海
面46を通して海中へ延長され、先端部が海底の蓄気部
48へ連通されている。この蓄気部48は下端部が開口
48Aを通して海中と連通されたコンクリート製の容器
であり、配管42を通して圧縮空気が供給されると開口
48Aから海水を排除してこの圧縮空気を内部に貯留で
きるようになっている。
This piping 42 has an on-off valve 44 in its middle portion, extends into the sea through the sea surface 46, and has a distal end communicating with an air storage section 48 on the seabed. This air storage unit 48 is a concrete container whose lower end communicates with the sea through an opening 48A, and when compressed air is supplied through the pipe 42, seawater can be expelled from the opening 48A and this compressed air can be stored inside. It looks like this.

次にこの実施例の作用を説明する。Next, the operation of this embodiment will be explained.

夜間等の電力余剰時に地上プラント12内ではこの余剰
電力を給電設備22からモータ/ジェネレータ16へ伝
えてモータ/ジェネレータ16を回転させる。クラッチ
26を開放すると共にクラッチ18を接合すると、圧縮
機14が回転され空気取入口14Aから取込まれた大気
が圧縮されて空気送出口14Bから配管24を通って再
生蓄熱器38へと送られる。この状態では開閉弁25を
開放し、開閉弁34を閉止した状態とする。
When there is surplus power, such as at night, in the ground plant 12, this surplus power is transmitted from the power supply equipment 22 to the motor/generator 16 to rotate the motor/generator 16. When the clutch 26 is released and the clutch 18 is engaged, the compressor 14 is rotated, and the air taken in from the air intake port 14A is compressed and sent from the air delivery port 14B through the piping 24 to the regenerative heat storage device 38. . In this state, the on-off valve 25 is opened and the on-off valve 34 is closed.

高圧縮比率で圧縮された大気は断熱圧縮によって高温と
なっているので、再生蓄熱器38内の蓄熱材を加熱する
。従ってこの蓄熱材は熱吸収によって一部が融解して液
状となる。
Since the air compressed at a high compression ratio has a high temperature due to adiabatic compression, the heat storage material in the regenerative heat storage device 38 is heated. Therefore, this heat storage material partially melts and becomes liquid due to heat absorption.

この場合、再生蓄熱器38の出口部の温度を計測して蓄
熱材が全て融解したと判断し圧縮機14を停止したり、
送り込んだ圧縮空気量が所定値に達したことにより、全
ての蓄熱材が融解する前に圧縮機14を停止することに
より蓄熱材の潜熱を有効に使うと共に、適切に圧縮空気
の冷却不足を回避できる。また蓄熱材の潜熱のみでなく
顕熱をも利用する場合には、圧縮機14の停止時期をこ
れに応じてずらせばよい。
In this case, the temperature at the outlet of the regenerative heat storage device 38 is measured and it is determined that all the heat storage material has melted, and the compressor 14 is stopped.
When the amount of compressed air sent reaches a predetermined value, the compressor 14 is stopped before all of the heat storage material melts, thereby effectively using the latent heat of the heat storage material and appropriately avoiding insufficient cooling of the compressed air. can. Furthermore, when not only the latent heat of the heat storage material but also the sensible heat is utilized, the timing of stopping the compressor 14 may be shifted accordingly.

冷却された圧縮空気は配管42を通して蓄気部48へと
送られる。このため蓄気部48内では圧縮空気が海水を
開口48Aを通して海中へ押出し、蓄気部48内へと蓄
積される。この蓄積された圧縮空気はすでに再生蓄熱器
38で冷却されているので蓄気部48の容器がコンクリ
ート製であっても、高温のためにコンクリートを損傷し
たり、海水を高温にする恐れはない。圧縮空気の蓄積時
には開閉弁44を閉止しておく。
The cooled compressed air is sent to the air storage section 48 through the pipe 42. Therefore, compressed air within the air storage section 48 pushes seawater into the sea through the opening 48A, and the seawater is accumulated in the air storage section 48. This accumulated compressed air has already been cooled in the regenerative heat storage unit 38, so even if the container of the air storage unit 48 is made of concrete, there is no risk of damaging the concrete or making the seawater hot due to high temperatures. . The on-off valve 44 is kept closed when compressed air is accumulated.

蓄積された圧力エネルギを放出しようとする場合には、
開閉弁25を閉止して開閉弁34を開放し、クラッチ1
8を遮断してクラッチ26を接合する。;の状態で開閉
弁44を開放すると蓄気部48内の圧縮空気は再生蓄熱
器38、配管32を通ってタービン28へと送られる。
When trying to release the accumulated pressure energy,
Closing the on-off valve 25 and opening the on-off valve 34, the clutch 1
8 and engages the clutch 26. When the on-off valve 44 is opened in the state shown in FIG.

この場合再生蓄熱器38を通過する圧縮空気が高温状態
となっている蓄熱材によって加熱された後にタービン2
8へと送られる。このため再生蓄熱器38ではすでに蓄
積されている保有熱を放出して再び凝固状態となる。
In this case, the compressed air passing through the regenerative heat storage device 38 is heated by the high temperature heat storage material, and then the turbine 2
Sent to 8. For this reason, the regenerated heat storage device 38 releases the already stored heat and becomes solidified again.

タービン28において空気入口28Aから入り込む圧縮
空気がタービン28を回転し、モータ/ジェネレータ1
6を駆動して発電が行われ、この電力は給電設備22を
介して逆送され、使用に供される。また圧力エネルギを
放出した空気は空気出口28Bから大気に放出される。
Compressed air entering the turbine 28 from the air inlet 28A rotates the turbine 28 and the motor/generator 1
6 is driven to generate power, and this power is sent back through the power supply equipment 22 and used. Further, the air that has released pressure energy is released into the atmosphere from the air outlet 28B.

このタービン28へ送られる空気は再生蓄熱器38によ
って加熱されているので、断熱膨張によってタービン2
8を回転した場合にも、過度に低温となることがなく、
タービン28での障害がない。
Since the air sent to the turbine 28 is heated by the regenerative heat storage 38, the turbine 28 is heated by the adiabatic expansion.
Even when rotating 8, the temperature does not become excessively low,
There is no failure in the turbine 28.

−例として再生蓄熱器38内の蓄熱材としてフン化リチ
ウムとフッ化ベリリウムの混合体を用いた場合、融点4
59℃、密度2. 056kg/m’、潜熱107kc
al/kg、なので容積潜熱220,0QQkcal/
m’となり、容積比熱1. 040kcal/m”・℃
である。このことから、圧縮比を32とした場合、有望
な蓄熱材と考えられる。この時のシステム各部の圧力、
温度、単位重量当りの容積の第1表 第1表中のPは圧力、Tは絶対温度、tは摂氏温度、■
は単位重量当りの容積である。
- For example, when a mixture of lithium fluoride and beryllium fluoride is used as the heat storage material in the regenerative heat storage device 38, the melting point is 4
59°C, density 2. 056kg/m', latent heat 107kc
al/kg, so the volumetric latent heat is 220.0QQkcal/
m', and the volumetric specific heat is 1. 040kcal/m"・℃
It is. From this, when the compression ratio is set to 32, it is considered to be a promising heat storage material. The pressure in each part of the system at this time,
Table 1 of temperature and volume per unit weight In Table 1, P is pressure, T is absolute temperature, t is temperature in degrees Celsius, ■
is the volume per unit weight.

これを工程順に説明すると、空気取入口14Aでは27
℃の大気が空気送出口14Bでは断熱圧縮されるので5
92℃となるが、再生蓄熱器38ではその中間部で49
0℃となり、出口部では80℃となって蓄気部48へ蓄
積される。約12時間後にこの蓄気部48から取り出す
圧縮空気は、50℃まで低下しており、再生蓄熱器38
へ送込むと、再生蓄熱器38内の蓄熱材によって加熱さ
れて蓄熱器38の中央部では200℃となり、蓄熱器出
口及びタービンの空気入口28Aでは430℃となって
タービン28を作動させた後に38℃となり大気へ放出
される。
To explain this step by step, the air intake port 14A has 27
℃ air is adiabatically compressed at the air outlet 14B, so 5
The temperature is 92℃, but in the regenerative heat storage 38, the temperature is 49℃ in the middle part.
The temperature becomes 0° C., and the temperature becomes 80° C. at the outlet and is accumulated in the air storage section 48. The compressed air taken out from this air storage unit 48 after about 12 hours has dropped to 50°C and is stored in the regenerative heat storage unit 38.
When the heat storage material in the regenerative heat storage device 38 heats the temperature at the center of the heat storage device 38, the temperature reaches 200° C., and at the outlet of the heat storage device and the air inlet 28A of the turbine, the temperature reaches 430° C. After the turbine 28 is operated, The temperature reaches 38℃ and is released into the atmosphere.

第2図には本実施例によるエントロピ(横軸)、エンタ
ルピ(縦軸)線図が示されており、図中の■〜■は第1
表に対応している。
FIG. 2 shows entropy (horizontal axis) and enthalpy (vertical axis) diagrams according to this example, and ■ to ■ in the figure are the first
Compatible with tables.

次に第3.4図にはプラント12の具体例が示されてお
り、図中の各符号は第1図に対応して示されている。こ
の図では再生蓄熱器38が複数段けられ、圧縮機14か
らの圧縮空気がそれぞれ供給されるようになっている。
Next, FIG. 3.4 shows a concrete example of the plant 12, and each reference numeral in the figure corresponds to that in FIG. In this figure, the regenerative heat storage device 38 is arranged in multiple stages, and compressed air from the compressor 14 is supplied to each stage.

本発明は上記の構成の他にも蓄気部に変えて圧縮空気を
岩盤内へ貯留する等の他の蓄気手段を適用してもよい。
In addition to the above configuration, the present invention may also apply other air storage means such as storing compressed air in rock instead of the air storage section.

また再生蓄熱器としては溶融塩蓄熱材の他にも各種の再
生蓄熱材が適用できる。
In addition to the molten salt heat storage material, various types of recycled heat storage materials can be used as the regenerated heat storage device.

[発明の効果コ 本発明は上記の構成としたので断熱圧縮した気体を高温
で蓄積する必要がなく、かつ再生時に外部からの特別の
エネルギを加えることなく、回収した熱を使用して加熱
できる優れた効果を有する。
[Effects of the Invention] Since the present invention has the above structure, there is no need to store the adiabatic compressed gas at high temperature, and the recovered heat can be used for heating without adding special energy from the outside during regeneration. Has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用された圧縮空気によるエネルギ貯
蔵システムを示す概念図、第2図は本実施例によるエン
タルピ、エントロピ線図、第3図は発電プラントの具体
例を示す側面図、第4図は第3図の平面図である。 14・・・圧縮機、 16・・・モータ/ジェネレータ、 28・・・タービン、 38・・・再生蓄熱器、 48・・・蓄気部。
FIG. 1 is a conceptual diagram showing an energy storage system using compressed air to which the present invention is applied, FIG. 2 is an enthalpy and entropy diagram according to this embodiment, and FIG. 3 is a side view showing a specific example of a power generation plant. FIG. 4 is a plan view of FIG. 3. 14... Compressor, 16... Motor/generator, 28... Turbine, 38... Regeneration heat storage device, 48... Air storage section.

Claims (1)

【特許請求の範囲】[Claims] (1)空気圧縮手段と、この圧縮された空気を圧縮状態
で貯蔵する蓄気部と、この蓄気部から取り出された圧縮
空気から駆動エネルギを得るエネルギ回収手段と、を有
する圧縮空気によるエネルギ貯蔵システムであって、前
記空気圧縮手段から蓄気部へ送られる圧縮空気から熱吸
収して圧縮空気を冷却し蓄気部からエネルギ回収手段へ
送られる圧縮空気を前記吸収した熱で加熱する再生蓄熱
手段と、を有する圧縮空気によるエネルギ貯蔵システム
(1) Energy generated by compressed air, which includes an air compression means, an air storage unit that stores the compressed air in a compressed state, and an energy recovery unit that obtains driving energy from the compressed air taken out from the air storage unit. The storage system is a regeneration system that cools the compressed air by absorbing heat from the compressed air sent from the air compression means to the energy storage unit, and heats the compressed air sent from the air storage unit to the energy recovery unit with the absorbed heat. A compressed air energy storage system having a heat storage means.
JP27243888A 1988-10-28 1988-10-28 Energy storage system using compressed air Pending JPH02119638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27243888A JPH02119638A (en) 1988-10-28 1988-10-28 Energy storage system using compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27243888A JPH02119638A (en) 1988-10-28 1988-10-28 Energy storage system using compressed air

Publications (1)

Publication Number Publication Date
JPH02119638A true JPH02119638A (en) 1990-05-07

Family

ID=17513917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27243888A Pending JPH02119638A (en) 1988-10-28 1988-10-28 Energy storage system using compressed air

Country Status (1)

Country Link
JP (1) JPH02119638A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024933A2 (en) * 2007-08-22 2009-02-26 Universidade Da Beira Interior Aquatic system for energy storage in the form of compressed air
WO2009114205A3 (en) * 2008-03-14 2010-02-04 Energy Compression Llc Adsorption-enhanced compressed air energy storage
JP2012097737A (en) * 2010-10-29 2012-05-24 Nuovo Pignone Spa System and method for pre-heating compressed air in advanced adiabatic compressed air energy storage system
JP2012229908A (en) * 2011-03-22 2012-11-22 Nuovo Pignone Spa Vessel of heat storage and release apparatus, heat storage and release assembly and energy production plant
JP2012530213A (en) * 2009-06-18 2012-11-29 ジェデエフ・スエズ Temperature control method of regenerator used in equipment for storing energy by adiabatic compression of air
WO2012175178A1 (en) * 2011-06-24 2012-12-27 Adensis Gmbh Method and device for storing energy by means of a combined heat and pressure storage device
JP2013506078A (en) * 2009-09-23 2013-02-21 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Underwater compressed fluid energy storage system
JP2013515945A (en) * 2009-12-24 2013-05-09 ジェネラル コンプレッション インコーポレイテッド Method and apparatus for optimizing heat transfer in compression and / or expansion devices
US8621857B2 (en) 2008-03-14 2014-01-07 Energy Compression Inc. Adsorption-enhanced compressed air energy storage
CN107842399A (en) * 2017-11-13 2018-03-27 清华大学 A kind of throttling Hui Leng adiabatic compression air energy storage systems

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009024933A2 (en) * 2007-08-22 2009-02-26 Universidade Da Beira Interior Aquatic system for energy storage in the form of compressed air
WO2009024933A3 (en) * 2007-08-22 2009-04-30 Univ Da Beira Interior Aquatic system for energy storage in the form of compressed air
WO2009114205A3 (en) * 2008-03-14 2010-02-04 Energy Compression Llc Adsorption-enhanced compressed air energy storage
GB2470337A (en) * 2008-03-14 2010-11-17 Energy Compression Llc Adsorption-enchanced compressed air energy storage
EP2262993A2 (en) * 2008-03-14 2010-12-22 Energy Compression LLC Adsorption-enhanced compressed air energy storage
US8621857B2 (en) 2008-03-14 2014-01-07 Energy Compression Inc. Adsorption-enhanced compressed air energy storage
EP2262993A4 (en) * 2008-03-14 2013-12-18 Energy Compression Llc Adsorption-enhanced compressed air energy storage
JP2012530213A (en) * 2009-06-18 2012-11-29 ジェデエフ・スエズ Temperature control method of regenerator used in equipment for storing energy by adiabatic compression of air
JP2013506078A (en) * 2009-09-23 2013-02-21 ブライト エナジー ストレージ テクノロジーズ,エルエルピー. Underwater compressed fluid energy storage system
JP2013515945A (en) * 2009-12-24 2013-05-09 ジェネラル コンプレッション インコーポレイテッド Method and apparatus for optimizing heat transfer in compression and / or expansion devices
JP2012097737A (en) * 2010-10-29 2012-05-24 Nuovo Pignone Spa System and method for pre-heating compressed air in advanced adiabatic compressed air energy storage system
JP2012229908A (en) * 2011-03-22 2012-11-22 Nuovo Pignone Spa Vessel of heat storage and release apparatus, heat storage and release assembly and energy production plant
EP2503213A3 (en) * 2011-03-22 2018-04-18 Nuovo Pignone S.p.A. Vessel of a heat storage and release apparatus
WO2012175178A1 (en) * 2011-06-24 2012-12-27 Adensis Gmbh Method and device for storing energy by means of a combined heat and pressure storage device
CN107842399A (en) * 2017-11-13 2018-03-27 清华大学 A kind of throttling Hui Leng adiabatic compression air energy storage systems

Similar Documents

Publication Publication Date Title
US4873828A (en) Energy storage for off peak electricity
JP5990711B2 (en) Apparatus and method for storing energy
EP0015106B1 (en) Absorption-desorption system
JP3178961B2 (en) Compressed air energy storage method and system
US9217423B2 (en) Energy storage system using supercritical air
EP2603684B1 (en) Adiabatic compressed air energy storage process
CN102758748B (en) High-pressure liquid air energy storage/release system
US11624560B2 (en) Mechanical-chemical energy storage
JPH02119638A (en) Energy storage system using compressed air
CN107060927A (en) Waste heat recycling system and its method and power station
US4262739A (en) System for thermal energy storage, space heating and cooling and power conversion
CN107044307A (en) Heat energy utilization dynamical system and new energy motor device
CN202811238U (en) High-pressure liquid-state air energy storage/release system
CN215981985U (en) Electrical heating type metal hydrogen storage and release system
CN113236969B (en) Electrical heating type metal hydrogen storage and release system
CN105937416A (en) Cryogenic liquid air energy storage system utilizing waste heat lithium bromide to perform refrigeration
CN208515383U (en) A kind of clutch component and its electric automobile chassis
JPS63208627A (en) Air storage type gas turbine device
JPH11200884A (en) Gas turbine equipment and liquefied natural gas combined cycle power generation plant including this gas turbine equipment
JP2000014052A (en) Compressed air storing power generation equipment
JP4647847B2 (en) Closed cycle gas turbine and power generation system using the same
CN208439312U (en) A kind of battery component and its electric automobile chassis
TWI519711B (en) Compressed air electrical energy storage and release system and method thereof
JP2023514812A (en) Energy storage plant and energy storage method
CN105783300A (en) Thermodynamics circulation system achieving heat circulation through environment working media and application