JPH02119213A - Solid electrolytic capacitor and its manufacture - Google Patents

Solid electrolytic capacitor and its manufacture

Info

Publication number
JPH02119213A
JPH02119213A JP27354088A JP27354088A JPH02119213A JP H02119213 A JPH02119213 A JP H02119213A JP 27354088 A JP27354088 A JP 27354088A JP 27354088 A JP27354088 A JP 27354088A JP H02119213 A JPH02119213 A JP H02119213A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
capacitor
solid
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27354088A
Other languages
Japanese (ja)
Inventor
Yasuo Kudo
康夫 工藤
Soji Tsuchiya
土屋 宗次
Toshikuni Kojima
小島 利邦
Susumu Yoshimura
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27354088A priority Critical patent/JPH02119213A/en
Publication of JPH02119213A publication Critical patent/JPH02119213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a capacitor excellent in capacitor characteristics especially in frequency characteristics by using, as electrolyte, conductive high polymer containing alkylbenzene sulfonic group as dopant with compound selected among heterocyclic compounds as cycle unit. CONSTITUTION:With at least one kind of compound selected among heterocyclic compounds as cycle unit, conductive high polymer containing at least one kind of acid group selected among alkylbenzene sulfonic group whose number of carbons in alkyl group is 2 to 16 as dopant is used as solid electrolyte. Solid electrolyte made of the conductive high polymer is formed by means of electrolytic polymerization on a valve metal with manganese dioxide further applied after formation of a dielectric film, to have a solid electrolytic capacitor manufactured. For example, the heterocyclic compound is pyrrole, thiophene or their derivative, while the valve metal is aluminum or tantalum.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は導電性高分子を電解質として用いる、コンデン
サ特性とりわけ周波数特性の優れた固体電解コンデンサ
およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid electrolytic capacitor that uses a conductive polymer as an electrolyte and has excellent capacitor characteristics, particularly frequency characteristics, and a method for manufacturing the same.

従来の技術 近年、電気機器のディジタル化に伴って、コンデンサも
小型大容量で高周波数領域でのインピーダンスの低いも
のが要求されている。従来、高周波域で使用されるコン
デンサにはプラスチックコンデンサ、マイカコンデンサ
、積層セラミックコンデンサがあるが、これらのコンデ
ンサでは形状が犬きくなシ大容量化が難しい。一方、大
容量コンデンサとしてはアルミニウム乾式電解コンデン
サ、あるいはアルミニウムまたはタンタル固体電解コン
デンサなどの電解コンデンサがある。これらのコンデン
サでは用いている電解質(液体電解質あるいは固体の二
酸化マンガン)の抵抗が高いために、高周波領域で十分
低いインピーダンスを得る事は出来ない。
2. Description of the Related Art In recent years, with the digitization of electrical equipment, capacitors are required to be small, large in capacity, and have low impedance in a high frequency range. Traditionally, capacitors used in high frequency ranges include plastic capacitors, mica capacitors, and multilayer ceramic capacitors, but these capacitors have a rigid shape and are difficult to increase in capacity. On the other hand, examples of large capacity capacitors include electrolytic capacitors such as aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. Since the electrolyte (liquid electrolyte or solid manganese dioxide) used in these capacitors has a high resistance, it is not possible to obtain sufficiently low impedance in the high frequency range.

これに対し、最近、固体電解質として二酸化マンガンの
代わシに、導電性が高く、陽極酸化性の優れた有機半導
体、7,7,8,8.  テトランアノキノジメタンコ
ンプレックス塩(以下「TCNQ塩」と・略す)、を用
いることが提案されている。同一出願人らになる発明(
特公昭56−10777号公報)および丹羽信−氏によ
る発明(特開昭58−17909号公報)に公表されて
いるように、このよりなTCNQ塩を用いたアルミニウ
ム固体電解コンデンサでは、周波数特性および温度特性
が著しく改良され、低い漏れ電流特性が達成されている
。また、TCNQ塩は有機物の導電材料としては、熱的
な安定性に優れているため、得られたコンデンサの高温
寿命も従来の乾式電解コンデンサのそれを遥かに凌ぐと
されている。
In contrast, recently, in place of manganese dioxide as a solid electrolyte, organic semiconductors with high conductivity and excellent anodic oxidation properties have been developed. It has been proposed to use a tetraanoquinodimethane complex salt (hereinafter abbreviated as "TCNQ salt"). Inventions by the same applicant (
As disclosed in the invention by Shin Niwa (Japanese Patent Publication No. 58-17909), aluminum solid electrolytic capacitors using TCNQ salt have excellent frequency characteristics and Temperature characteristics are significantly improved and low leakage current characteristics are achieved. Furthermore, since TCNQ salt has excellent thermal stability as an organic conductive material, the high-temperature life of the obtained capacitor is said to far exceed that of conventional dry electrolytic capacitors.

さらに近年、ピロール、チオフェンなどの複素環式の七
ツマ−を支持電解質を用いて電解重合することにより、
支持電解質のアニオンをドーパントとして含む高導電性
の高分子を陽極体上に形成し、これを電解質として用い
る固体電解コンデンサも提案されている(特開昭60−
37114号公報、特開昭60−244017号公報参
照)。
Furthermore, in recent years, by electropolymerizing heterocyclic heptamers such as pyrrole and thiophene using a supporting electrolyte,
A solid electrolytic capacitor has also been proposed in which a highly conductive polymer containing the anion of the supporting electrolyte as a dopant is formed on the anode body and this is used as the electrolyte (Japanese Patent Application Laid-Open No. 1983-1999).
37114, JP-A-60-244017).

発明が解決しようとする課題 導電性高分子のドーパントとして過塩素酸イオンあるい
は四フッ化はう素イオン等が一般的に用いられている。
Problems to be Solved by the Invention Perchlorate ions, boron tetrafluoride ions, and the like are generally used as dopants for conductive polymers.

しかしながらこれらのハロゲン化物をドーパントとした
導電性高分子を固体電解質とし、アルミニウムを陽極と
して用いた場合、誘電体皮膜を劣化させ易く、またこれ
らのドーパントは脱ドープを起こしやすく、特に高温下
でその傾向が顕著で高温に暴露された場合、導電性高分
子の導電率特性を安定に保つことは困難であるといった
問題があった。これらはコンデンサの漏れ電流を大きく
させ、また容量・損失等の経時変化を大きくさせる原因
となるため、導電性高分子を電解質とした高特性・高信
頼性の固体電解コンデンサを実現することは困難であっ
た。
However, when a conductive polymer doped with these halides is used as a solid electrolyte and aluminum is used as an anode, the dielectric film tends to deteriorate, and these dopants tend to dedope, especially at high temperatures. There is a problem in that it is difficult to maintain the conductivity characteristics of conductive polymers stably when the tendency is remarkable and the conductive polymers are exposed to high temperatures. These factors increase the capacitor's leakage current and increase changes in capacity, loss, etc. over time, making it difficult to realize solid electrolytic capacitors with high characteristics and high reliability using conductive polymers as electrolytes. Met.

本発明は上記従来の課題を解決するもので、コンデンサ
特性とりわけ周波数特性の優れた固体電解コンデンサお
よびその製造方法の提供を目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a solid electrolytic capacitor with excellent capacitor characteristics, particularly frequency characteristics, and a method for manufacturing the same.

課題を解決するための手段 本発明は上記目的を達成するもので、その技術的手段は
、複素環式化合物から選ばれる少なくても一種の化合物
を繰り返し単位とし、アルキル基の炭素数が2ないし1
6のアルキルベンゼン刃レフオン酸基をドーパントとし
て含む導電性高分子を電解質として用いることにより、
特性・信頼性の優れた固体電解コンデンサを得られるよ
うにしたものである。複素環式化合物としては、ピロー
ル、チオフェンあるいはそれらの誘導体が使用できる。
Means for Solving the Problems The present invention achieves the above object, and its technical means consists of using at least one type of compound selected from heterocyclic compounds as a repeating unit, and an alkyl group having 2 to 2 carbon atoms. 1
By using a conductive polymer containing 6 alkylbenzene blade lefonic acid groups as a dopant as an electrolyte,
This makes it possible to obtain a solid electrolytic capacitor with excellent characteristics and reliability. As the heterocyclic compound, pyrrole, thiophene or derivatives thereof can be used.

導電性高分子電解質の形成は、誘電体皮膜上に二酸化マ
ンガンを付着させた弁金属上にドーパントを均一かつ高
濃度にドープしその導電率を高め、かつまた陽極との密
着性を高めるため、上記の複素環式化合物を七ツマ−と
し、アルキル基の炭素数が2ないし16のアルキルベン
ゼンスルフォン酸あるいはそれらの塩を支持電解質とし
て、電解重合により行うことが望ましい。
The conductive polymer electrolyte is formed by doping a dopant uniformly and at a high concentration onto the valve metal with manganese dioxide attached to the dielectric film to increase its conductivity and also to improve its adhesion to the anode. It is preferable to carry out electrolytic polymerization using the above-mentioned heterocyclic compound as a hexamer and an alkylbenzenesulfonic acid having an alkyl group having 2 to 16 carbon atoms or a salt thereof as a supporting electrolyte.

作    用 本発明による導電性高分子は、非ハロゲン系でしかもベ
ンゼン核を含む比較的分子量の大きなアニオンをドーパ
ントとして用いているため、アルミニウムを陽極として
用いた場合でも陽極酸化皮膜を劣化させに<<、また高
温下においても脱ドープによる導電性高分子の劣化が起
こりにくい。
Function The conductive polymer according to the present invention uses a non-halogen based anion containing a benzene nucleus and has a relatively large molecular weight as a dopant, so even when aluminum is used as an anode, it does not cause deterioration of the anodic oxide film. In addition, deterioration of the conductive polymer due to dedoping is less likely to occur even at high temperatures.

したがって、これを電解質として用いた場合、漏れ電流
が小さく、高温使用下においてもコンデンサ特性の経時
変化の少ない固体電解コンデンサを容易に得ることがで
きる。なお誘電体皮膜を設けた陽極上に二酸化マンガン
を付着させるのは、外部から接触させた補助電極を介し
て電解重合により導電性高分子皮膜を容易に形成するた
めであり、さらに二酸化マンガンが有する陽極化成性に
より、誘電体皮膜の修復性を向上させるためである。
Therefore, when this is used as an electrolyte, it is possible to easily obtain a solid electrolytic capacitor with low leakage current and with little change in capacitor characteristics over time even when used at high temperatures. The reason why manganese dioxide is deposited on the anode provided with the dielectric film is to easily form a conductive polymer film by electrolytic polymerization via an auxiliary electrode that is brought into contact with the outside. This is to improve the repairability of the dielectric film due to its anodic formation properties.

実施例 以下6本発明の実施例について述べる。Example Six embodiments of the present invention will be described below.

〈実施例1〉 8X20mmのアルミニウムエツチド箔を3%アジピン
酸アンモニウム水溶液を用い、約70℃で35V印加し
て陽極酸化により誘電体皮膜を形成後、硝酸マンガン3
0 %水溶液に浸漬しさらに250°Cで10分加熱し
熱分解二酸化マンガンを表面に付着させて陽極を作製し
た。この陽極箔にステンレス製の補助電極を接触させ、
ピロール(0,3M)、エチルベンゼンスルフオン酸ナ
トリウム(0,1M)、水からなる電解液に浸し、補助
電極を介して箔を貴電位として3vを印加してポリピロ
ールにエチルベンゼンスルフォン酸基がドープされた電
解重合膜を形成させた。水を用いて洗浄し乾燥後、電解
重合膜上にカーボンペーストと銀ペーストを塗布して陰
極リードを取)出し、さらにエポキシ樹脂を用いて外装
して5個のコンデンサを完成させた。13Vでエージン
グを行った後の、120H2Kおける初期の容量、損失
およびIOVにおける漏れ電流の平均値はそれぞれ23
.5μF 2.4%、95μA1また125℃500時
間無負荷放置後はそれぞれ222μF2.7%、623
μAであった。比較のためエチルベンゼンスルフオン酸
ナトリウムに代えて過塩素酸テトラn−ブチルアンモニ
ウム(0,1M)を、また水に代えてアセトニトリルを
用いた以外同様にしてコンデンサを作製した。この場合
120Hzにおける初期の容量、損失および10vにお
ける漏れ電流の平均値はそれぞれ22.6μF、 2.
hチ、1560μ人であり、また125℃500時間無
負荷放置後は13.7μF、 6.7チ、3290μA
であった。
<Example 1> After forming a dielectric film by anodizing an 8x20 mm aluminum etched foil using a 3% ammonium adipate aqueous solution and applying 35 V at about 70°C, manganese nitrate 3
The anode was prepared by immersing it in a 0% aqueous solution and heating it at 250°C for 10 minutes to adhere pyrolytic manganese dioxide to the surface. A stainless steel auxiliary electrode is brought into contact with this anode foil,
Polypyrrole was doped with ethylbenzenesulfonic acid groups by immersing it in an electrolytic solution consisting of pyrrole (0.3M), sodium ethylbenzenesulfonate (0.1M), and water, and applying 3V to the foil as a noble potential through an auxiliary electrode. An electrolytically polymerized film was formed. After washing with water and drying, carbon paste and silver paste were applied to the electrolytically polymerized membrane, the cathode lead was taken out, and the membrane was packaged with epoxy resin to complete five capacitors. After aging at 13V, the average initial capacity, loss and leakage current at 120H2K are 23
.. 5μF 2.4%, 95μA1 and 222μF 2.7%, 623 after being left unloaded for 500 hours at 125°C, respectively.
It was μA. For comparison, a capacitor was produced in the same manner except that tetra-n-butylammonium perchlorate (0.1M) was used instead of sodium ethylbenzenesulfonate and acetonitrile was used instead of water. In this case, the initial capacitance at 120Hz, the average value of the loss, and the leakage current at 10V are each 22.6μF, 2.
The current is 13.7μF, 6.7μA, and 3290μA after being left unloaded for 500 hours at 125°C.
Met.

以上から、エチルベンゼンスルフォン酸基がドープされ
たポリピロールを電解質として用いた場合、過塩素酸基
の場合と比較して初期の漏れ電流特性に優れ、なおかつ
高温無負荷放置時の容量および損失の劣化の小さい固体
電解コンデンサが得られることが明らかであシ、本発明
による電解コンデンサは極めて優れた初期特性と信頼性
特性を有することが実証された。
From the above, when polypyrrole doped with ethylbenzenesulfonic acid groups is used as an electrolyte, it has superior initial leakage current characteristics compared to the case of perchloric acid groups, and it also shows less deterioration in capacity and loss when left unloaded at high temperatures. It is clear that a small solid electrolytic capacitor can be obtained, and it has been demonstrated that the electrolytic capacitor according to the invention has very good initial performance and reliability characteristics.

〈実施例2〉 エチルベンゼンスルフオン酸ナトリウムに代えてブチル
ベンゼンスルフオン酸ナトリウムを用いた以外実施例1
と同様にしてコンデンサを作製し、やはり同様に特性の
測定を行った。120Hzにおける初期の容量、損失お
よびIOVにおける漏れ電流の平均値はそれぞれ23.
6μF2.5%、8.2μAであり、また125°C5
00時間無負荷放置後はそれぞれ224μF2.9%、
54.8μAであった。実施例1の場合と同様、ここで
も本発明による電解コンデンサは極めて優れた初期特性
と信頼性特性を有することが実証された。
<Example 2> Example 1 except that sodium butylbenzenesulfonate was used instead of sodium ethylbenzenesulfonate
A capacitor was manufactured in the same manner as above, and its characteristics were measured in the same manner. The average values of initial capacity, loss and leakage current at IOV at 120Hz are 23.
6μF2.5%, 8.2μA, and 125°C5
After 00 hours of no load, 224μF2.9%,
It was 54.8 μA. As in Example 1, it was demonstrated here that the electrolytic capacitor according to the present invention has extremely excellent initial characteristics and reliability characteristics.

〈実施例3〉 エチルベンゼンスルフオン酸ナトリウムに代えてオクチ
ルベンゼンスルフオン酸ナトリウムを用いた以外実施例
1と同様にしてコンデンサを作製し、やはシ同様に特性
の測定を行った。120Hzにおける初期の容量、損失
およびIOVにおける漏れ電流の平均値はそれぞれ24
.3μF2.3%、8.9μAであり、また125°C
500時間無負荷放置後はそれぞれ227μF2.7%
、 50.1μAであった。実施例1の場合と同様、こ
こでも本発明による電解コンデンサは極めて優れた初期
特性と信頼性特性を有することが実証された。
<Example 3> A capacitor was manufactured in the same manner as in Example 1 except that sodium octylbenzenesulfonate was used in place of sodium ethylbenzenesulfonate, and the characteristics were measured in the same manner as in Example 1. The average values of initial capacity, loss and leakage current at IOV at 120Hz are 24
.. 3 μF 2.3%, 8.9 μA, and 125°C
227μF2.7% after 500 hours of no load
, 50.1 μA. As in Example 1, it was demonstrated here that the electrolytic capacitor according to the present invention has extremely excellent initial characteristics and reliability characteristics.

〈実施例4〉 エチルベンゼンスルフオン酸ナトリウムに代えてドデシ
ルベンゼンスルフオン酸ナトリウムを用いた以外実施例
1と同様にしてコンデンサを作製し、やはり同様に特性
の測定を行った。120Hzにおける初期の容量、損失
およびIOVにおける漏れ電流の平均値はそれぞれ23
.1μF2.2%、10.4μAであり、また125℃
500時間無負荷放置後はそれぞれ21.7μF2,8
%、62.7μAであった。実施例1の場合と同様、こ
こでも本発明による電解コンデンサは極めて優れた初期
特性と信頼性特性を有することが実証された。なおピロ
ールに代えて、ピロールとN−メチルピロールの混合物
、チオフェン、3−メチルチオフェンを用いた場合につ
いてもコンデンサを作製したが、やはシ同様の結果が得
られた。
<Example 4> A capacitor was produced in the same manner as in Example 1 except that sodium dodecylbenzenesulfonate was used instead of sodium ethylbenzenesulfonate, and the characteristics were measured in the same manner. The average values of initial capacity, loss and leakage current at IOV at 120Hz are 23
.. 1μF2.2%, 10.4μA, and 125℃
After being left unloaded for 500 hours, the values are 21.7 μF2 and 8, respectively.
%, 62.7 μA. As in Example 1, it was demonstrated here that the electrolytic capacitor according to the present invention has extremely excellent initial characteristics and reliability characteristics. Note that capacitors were also produced using a mixture of pyrrole and N-methylpyrrole, thiophene, and 3-methylthiophene instead of pyrrole, but similar results were obtained.

〈実施例5〉 エチルベンゼンスルフオン酸ナトリウムに代えてヘキサ
デシルベンゼンスルフオン酸ナトリウムを用いた以外実
施例1と同様にしてコンデンサを作製し、やはり同様に
特性の測定を行った。120Hz における初期の容量
、損失およびIOVにおける漏れ電流の平均値はそれぞ
れ23.9μF2.4%、8.3μAであり、また12
5℃500時間無負荷放置後はそれぞれ21,2μF3
.2チ、49.5μ人であった。実施例1の場合と同様
、ここでも本発明による電解コンデンサは極めて優れた
初期特性と信頼性特性を有することが実証された。
<Example 5> A capacitor was produced in the same manner as in Example 1 except that sodium hexadecylbenzenesulfonate was used in place of sodium ethylbenzenesulfonate, and the characteristics were measured in the same manner. The average initial capacitance, loss, and leakage current at IOV at 120Hz are 23.9μF2.4% and 8.3μA, respectively, and 12
After being left unloaded for 500 hours at 5℃, the values are 21 and 2 μF3, respectively.
.. There were 2 people, 49.5μ people. As in Example 1, it was demonstrated here that the electrolytic capacitor according to the present invention has extremely excellent initial characteristics and reliability characteristics.

なお実施例では、支持電解質としてアルキルベンゼンス
ルフォン酸のナトリウム塩を用いる場合についてのみ述
べたが、遊離の酸の形態で用いてもよく、その外のアル
カリ金属塩、アンモニウム塩あるいは第4級アンモニウ
ム塩を用いてもまたよく、本発明はそれらのカチオンに
限定されるものではない。
In the examples, only the case where the sodium salt of alkylbenzenesulfonic acid is used as the supporting electrolyte is described, but it may be used in the form of free acid, and other alkali metal salts, ammonium salts, or quaternary ammonium salts may also be used. The invention is not limited to these cations.

なお実施例では溶媒が水の場合についてのみ述べたが、
支持電解質および七ツマ−が溶解するものであれば他を
用いてもよく、本発明は溶媒の種類によって限定されな
い。
Note that in the examples, only the case where the solvent was water was described, but
Any other solvent may be used as long as it dissolves the supporting electrolyte and the solvent, and the present invention is not limited by the type of solvent.

なお実施例では、支持電解質を単独で用いた場合につい
てのみ述べたが、混合して用いることもでき、また七ツ
マ−の混合についてはピロールおよびN−メチルピロー
ル用いる場合についてのみ述べだが、チオフェンあるい
はその誘導体についても同様混合して用いることもでき
る。
In the examples, only the case where the supporting electrolyte was used alone was described, but it is also possible to use it in a mixture, and the case where pyrrole and N-methylpyrrole are used as a mixture of hexamers is described, but thiophene or The derivatives thereof can also be mixed and used in the same manner.

なお実施例では、陽極としてアルミニウムを用いる場合
について述べたが、発明の主旨からタンタルを用いるこ
とも可能であシ、アルミニウムの場合と同様信頼性の優
れた固体電解コンデンサを得ることができる。
In the embodiment, a case is described in which aluminum is used as the anode, but tantalum can also be used in view of the spirit of the invention, and a solid electrolytic capacitor with excellent reliability can be obtained as in the case of aluminum.

発明の効果 以上要するに本発明は、複素環式化合物を繰り返し単位
とし、アルキル基の炭素数が2ないし16のアルキルベ
ンゼンスルフォン酸基ラド−パントとして含む導電性高
分子を固体電解質として用いた固体電解コンデンサおよ
びその製造方法を提供するもので、初期特性なかでも漏
れ電流特性および高温無負荷時の容量・損失の劣化が小
さく信頼性特性の優れた固体電解コンデンサが容易に得
られるという利点を有する。
Effects of the Invention In summary, the present invention provides a solid electrolytic capacitor using, as a solid electrolyte, a conductive polymer containing a heterocyclic compound as a repeating unit and an alkyl group having 2 to 16 carbon atoms as an alkylbenzenesulfonic acid group radopant. The present invention provides a solid electrolytic capacitor with excellent initial characteristics, such as leakage current characteristics, low deterioration of capacity and loss at high temperature and no load, and excellent reliability characteristics.

Claims (4)

【特許請求の範囲】[Claims] (1) 複素環式化合物から選ばれる少なくとも一種の
化合物を繰り返し単位とし、アルキル基の炭素数が2な
いし16のアルキルベンゼンスルフォン酸基から選ばれ
る少なくとも一種の酸基をドーパントとして含む導電性
高分子を固体電解質として用いた固体電解コンデンサ。
(1) A conductive polymer containing at least one compound selected from heterocyclic compounds as a repeating unit and at least one acid group selected from alkylbenzenesulfonic acid groups whose alkyl group has 2 to 16 carbon atoms as a dopant. Solid electrolytic capacitor used as a solid electrolyte.
(2) 複素環式化合物がピロール、チオフェンあるい
はそれらの誘導体である請求項1記載の固体電解コンデ
ンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the heterocyclic compound is pyrrole, thiophene, or a derivative thereof.
(3) 弁金属がアルミニウムもしくはタンタルである
請求項1又は2記載の固体電解コンデンサ。
(3) The solid electrolytic capacitor according to claim 1 or 2, wherein the valve metal is aluminum or tantalum.
(4) 請求項1記載の導電性高分子からなる固体電解
質を、誘電体皮膜形成後さらに二酸化マンガンを付着さ
せた弁金属上に電解重合により形成する固体電解コンデ
ンサの製造方法。
(4) A method for manufacturing a solid electrolytic capacitor, comprising forming a solid electrolyte made of the conductive polymer according to claim 1 by electrolytic polymerization on a valve metal to which manganese dioxide is further attached after forming a dielectric film.
JP27354088A 1988-10-28 1988-10-28 Solid electrolytic capacitor and its manufacture Pending JPH02119213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27354088A JPH02119213A (en) 1988-10-28 1988-10-28 Solid electrolytic capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27354088A JPH02119213A (en) 1988-10-28 1988-10-28 Solid electrolytic capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH02119213A true JPH02119213A (en) 1990-05-07

Family

ID=17529257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27354088A Pending JPH02119213A (en) 1988-10-28 1988-10-28 Solid electrolytic capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH02119213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169924A (en) * 1989-08-10 1992-12-08 Mitsui Toatsu Chemicals, Incorporated Copolymer of propylene and butene-1
US5959832A (en) * 1994-11-25 1999-09-28 Nec Corporation Solid electrolytic capacitor with heat resisting polyaniline and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169924A (en) * 1989-08-10 1992-12-08 Mitsui Toatsu Chemicals, Incorporated Copolymer of propylene and butene-1
US5959832A (en) * 1994-11-25 1999-09-28 Nec Corporation Solid electrolytic capacitor with heat resisting polyaniline and method of manufacturing same

Similar Documents

Publication Publication Date Title
EP0895259A2 (en) Solid electrolytic capacitor using a conducting polymer and method of making same
EP0358239B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2000133550A (en) Solid electrolytic capacitor
JPH04307914A (en) Manufacture of solid electrolytic capacitor
JPH0473924A (en) Solid-state electrolytic capacitor and its manufacture
JP6878896B2 (en) Electrolytic capacitors and their manufacturing methods
JP4547730B2 (en) Electrode for electrolytic capacitor, electrolytic capacitor and manufacturing method thereof
JPS61240625A (en) Solid electrolytic capacitor
JP4236719B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0682590B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH02119213A (en) Solid electrolytic capacitor and its manufacture
JPH03291909A (en) Solid-state electrolytic capacitor
JP2001148330A (en) Method for forming conductive polymer film on metal oxide electrode and manufacturing method for solid electrolytic capacitor using it
JPH1167602A (en) Capacitor and its manufacture
JPH02238613A (en) Solid electrolytic capacitor
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JPH02119212A (en) Solid electrolytic capacitor and its manufacture
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JP3551118B2 (en) Capacitor and manufacturing method thereof
JPH06101418B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2734652B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2716032B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2522986B2 (en) Solid electrolytic capacitor
KR102337435B1 (en) Electrolytic capacitor and manufacturing method thereof