JPH02118384A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH02118384A
JPH02118384A JP63271472A JP27147288A JPH02118384A JP H02118384 A JPH02118384 A JP H02118384A JP 63271472 A JP63271472 A JP 63271472A JP 27147288 A JP27147288 A JP 27147288A JP H02118384 A JPH02118384 A JP H02118384A
Authority
JP
Japan
Prior art keywords
cold air
temperature
cooling
air outlet
upper stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63271472A
Other languages
Japanese (ja)
Inventor
Tetsuro Yamada
山田 哲朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63271472A priority Critical patent/JPH02118384A/en
Publication of JPH02118384A publication Critical patent/JPH02118384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PURPOSE:To contrive the even cooling of the inside of a cooling chamber by a method wherein a cold air outflow position switching mechanism is switched so that cold air is made to flow out of a cold air outlet port corresponding to a temperature sensor showing a higher detecting temperature when the detecting temperatures of more than two sets of temperature sensors are higher than a predetermined cooling starting temperature. CONSTITUTION:The detecting temperatures of temperature sensors 11, 12 for upper and lower stages are judged whether they are higher than a predetermined cooling starting temperature Tu or not and when it is judged YES, an upper stage in a refrigerating chamber 3 is judged whether it is being cooled or not (whether cold air is made to flow out of the cold air outlet port 8 of the upper stage or not). When the same temperatures are judged that both of the temperatures in the upper and lower stages are higher than the cooling starting temperature Tu, the detecting temperatures of both of the temperature sensors 11, 12 are compared and when the detecting temperature of the upper stage is higher than the same of the lower stage, a 'flag showing the detecting temperature is higher than the cooling starting temperature' and 'flag showing that the upper stage is being cooled' are reset and cold air is made to flow out of the cold air outlet port 8 of the upper stage. The operation is effected by starting the motor 14 of a cold air outflow position switching mechanism 13 to pivot a cam 15 whereby a movable opening body 18 is moved to an upper stage cooling position.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、いわゆる間接冷却式の冷却室を備えた冷蔵庫
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a refrigerator equipped with a cooling chamber of a so-called indirect cooling type.

(従来の技術) 従来、間接冷却式の冷却室(例えば冷蔵室)は、一般に
、冷却室内に冷気吹出口と温度センサを1つずつ設け、
その温度センサの検知温度に基いて冷気吹出口の開度を
例えばモータダンパーで調節して、冷気の吹出量を調節
することによって、冷却室内の温度を調節するようにな
っていた。
(Prior Art) Conventionally, an indirect cooling type cooling room (for example, a refrigerator room) generally has one cold air outlet and one temperature sensor in the cooling room.
Based on the temperature detected by the temperature sensor, the opening degree of the cold air outlet is adjusted using, for example, a motor damper, and the amount of cold air blown out is adjusted, thereby controlling the temperature inside the cooling chamber.

(発明が解決しようとする課題) 上記従来構成では、冷気の吹出しが常に同じ位置からな
されるため、冷却室内に例えばガラス棚等の風通しの悪
い物を設けた場合、或は棚に多くの食品を載せてその棚
の風通しが悪くなった場合には、冷却室内の冷気の循環
が妨げられて冷却室内の温度分布に大きな偏りを生じ、
冷却室内を均一に冷却できないという欠点がある。特に
、近年のように冷却室(冷蔵室)が大形化する程、本来
的に冷気が隅々に行き渡りにくくなり、上述した事情と
相俟って冷却室内の温度分布が悪化する傾向にあった。
(Problems to be Solved by the Invention) In the above conventional configuration, the cold air is always blown from the same position, so if there is an object with poor ventilation, such as a glass shelf, in the cooling chamber, or if there are many foods on the shelf, If the ventilation of the shelf becomes poor due to the presence of a
The disadvantage is that the inside of the cooling chamber cannot be cooled uniformly. In particular, as cooling rooms (refrigerating rooms) have become larger in recent years, it has become increasingly difficult for cold air to spread to every corner, and this, combined with the above-mentioned circumstances, tends to worsen the temperature distribution within the cooling room. Ta.

本発明はこのような事情を考慮してなされたもので、従
ってその目的は、冷却室内の温度分布の偏りを逐次:J
:J整できて、冷却室内をむらなく冷却できる冷蔵庫を
提供するにある。
The present invention has been made in consideration of these circumstances, and its purpose is to sequentially correct the imbalance in temperature distribution within the cooling chamber.
A: To provide a refrigerator that is well-organized and can cool the cooling chamber evenly.

[発明の構成] (課題を解決するための手段) 本発明の冷蔵庫は、冷却室内の複数箇所に設けられた複
数の冷気吹出口と、これら複数の冷気吹出口のうちから
択一的に冷気の吹出しを許容する冷気吹出位置切換機構
と、前記冷却室内における前記各冷気吹出口に対応する
各位置の温度を検知する複数の温度センサとを備えたも
のであって、2以上の温度センサの検知温度が所定の冷
却開始温度以上のときには、その検知温度が高い方の温
度センサに対応する冷気吹出口から冷気を吹出させるよ
うに前記冷気吹出位置切換機構を切換え、且つ冷気が吹
出されている冷気吹出口に対応する温度センサの検知温
度が前記冷却開始温度より低くなった後は当該冷気吹出
口からの冷気の吹出しを当該冷気吹出口に対応する温度
センサの検知温度が所定の冷却停止温度以下になるまで
続行させる制御手段を設けたものである。
[Structure of the Invention] (Means for Solving the Problems) The refrigerator of the present invention has a plurality of cold air outlets provided at a plurality of locations in a cooling chamber, and a cold air outlet that selectively outputs cold air from among the plurality of cold air outlets. and a plurality of temperature sensors that detect the temperature at each position corresponding to each of the cold air outlets in the cooling chamber. When the detected temperature is equal to or higher than a predetermined cooling start temperature, the cold air blowing position switching mechanism is switched so that the cold air is blown out from the cold air outlet corresponding to the temperature sensor whose detected temperature is higher, and the cold air is blown out. After the temperature detected by the temperature sensor corresponding to the cold air outlet becomes lower than the cooling start temperature, the cold air is blown out from the cold air outlet until the temperature detected by the temperature sensor corresponding to the cold air outlet reaches the predetermined cooling stop temperature. A control means is provided to continue the process until the following.

(作用) 冷却室内の複数箇所の温度が、それら各箇所に設けられ
た温度センサにより検知される。そして、2以上の温度
センサの検知温度が所定の冷却開始温度以上のときには
、その検知温度が高い方の温度センサに対応する冷気吹
出口から冷気を吹出させるように冷気吹出位置切換機構
を切換えるから、冷却室内のうちの温度が高い方の部分
を選択的に冷却できる。それ故に、たとえ冷却室内に冷
気の循環を妨げる物体(例えばガラス棚2食品等)があ
ったとしても、それによって生ずる冷却室内の温度分布
の偏り(特に高温領域の偏り)を逐次調整できて、冷却
室内をむらなく冷却できる。
(Function) Temperatures at multiple locations within the cooling chamber are detected by temperature sensors provided at each location. When the detected temperatures of two or more temperature sensors are equal to or higher than a predetermined cooling start temperature, the cold air blowout position switching mechanism is switched so that the cold air is blown out from the cold air outlet corresponding to the temperature sensor whose detected temperature is higher. , it is possible to selectively cool a portion of the cooling chamber with a higher temperature. Therefore, even if there is an object that obstructs the circulation of cold air in the cooling chamber (for example, food on two glass shelves, etc.), the resulting bias in the temperature distribution within the cooling chamber (particularly the bias in the high temperature area) can be successively adjusted. The cooling chamber can be cooled evenly.

(実施例) 以下、本発明の一実施例を図面に基いて説明する。まず
、冷蔵庫の縦断側面図を示す第41において、1は庫本
体で、その内部に冷凍室2、冷却室たる冷蔵室3及び野
菜−収納室4が上下3段に設けられ、これら各室が夫々
扉2a、3a、4aによって開閉される。5は冷蔵室3
内の中段に配設したガラス棚、6は庫本体1の背面に設
けた主送風ダクトで、冷凍室2内の背部に設けた冷却器
7と送風ファン7aとにより生成された冷風が、上記主
送風ダクト6を通して冷蔵室3側に導かれるようになっ
ている。そして、この主送風ダクト6の下端開口が上段
の冷気吹出口8として冷蔵室3内の上部(ガラス棚5の
上方)に位置している。
(Example) Hereinafter, one example of the present invention will be described based on the drawings. First, in No. 41 showing a longitudinal side view of the refrigerator, 1 is a refrigerator main body, and inside thereof, a freezing chamber 2, a refrigerating chamber 3 as a cooling chamber, and a vegetable storage chamber 4 are provided in three upper and lower levels, and each of these chambers is They are opened and closed by doors 2a, 3a, and 4a, respectively. 5 is refrigerator compartment 3
A glass shelf 6 installed in the middle of the freezer compartment 2 is a main air duct installed on the back of the refrigerator main body 1, and the cold air generated by the cooler 7 and the air blower fan 7a installed on the back of the freezer compartment 2 is It is led to the refrigerator compartment 3 side through the main air duct 6. The lower end opening of this main air duct 6 is located at the upper part of the refrigerator compartment 3 (above the glass shelf 5) as an upper cold air outlet 8.

更に、冷蔵室3の背部には、角筒状の延長送風ダクト9
がその上端開口を上段の冷気吹出口8に臨ませるように
配設され、その下端開口が下段の冷気吹出口10として
冷蔵室3内の下部(ガラス棚5の下方)に位置している
。そして、上下両段の各冷気吹出口8.10に対応する
各位置の温度を検知するために、ガラス棚5の上方部と
冷蔵室3の底部には、夫々温度センサ11.12が設け
られている。13は上下両段の冷気吹出口8,1゜のう
ちから択一的に冷気の吹出しを許容する冷気吹出位置切
換機構で、以下、この構成について第2図乃至第4図に
基いて説明する。即ち、この冷気吹出位置切換機構13
は、モータ14によって回転されるカム15と、このカ
ム15の回転により前後方向にスライドされるスピンド
ル16と、このスピンドル16によって軸17を中心に
して揺動される可動目体18とから構成されている。
Furthermore, at the back of the refrigerator compartment 3, there is a rectangular cylindrical extended ventilation duct 9.
is arranged so that its upper end opening faces the upper cold air outlet 8, and its lower end opening is located at the lower part of the refrigerator compartment 3 (below the glass shelf 5) as the lower cold air outlet 10. In order to detect the temperature at each position corresponding to each of the upper and lower cold air outlets 8.10, temperature sensors 11.12 are provided at the upper part of the glass shelf 5 and at the bottom of the refrigerator compartment 3, respectively. ing. Reference numeral 13 denotes a cold air blowing position switching mechanism that selectively allows cold air to be blown out from the cold air blowing ports 8 and 1° in both the upper and lower stages.This configuration will be explained below with reference to FIGS. . That is, this cold air blowing position switching mechanism 13
consists of a cam 15 rotated by a motor 14, a spindle 16 slid back and forth by the rotation of the cam 15, and a movable eye 18 pivoted about a shaft 17 by the spindle 16. ing.

そして、可動目体18の背壁18aには、ヒンジ部19
を介して風向板部20が形成され、この風向板部20の
上端両側に突設した凸部21が、主送風ダクト6内の背
部両側に形成したガイド溝部22内を上下にスライド可
能になっている。この場合、可動目体18の位置は、第
2図から第4図に示す3段階に切換えられるようになっ
ており、第2図の位置(以下「上段開放位置」という)
では、可動目体18の背壁18aの下端が延長送風ダク
ト9の前壁9aの上端に合致し、可動目体18の下端開
口が冷蔵室3内の上段部分に向って開放されて、上段の
冷気吹出口8からの冷気冷蔵室3内への吹出しを許容す
る。また、第3図の位置(以下「下段開放位置」という
)では、可動目体18の下端開口が延長送風ダクト9の
上端開口に合致した状態になって、下段の冷気吹出口1
0からの冷気の吹出しを許容する。更に、第4図の位W
t(以下「閉鎖位置」という)では、可動目体18の下
端開口が延長送風ダクト9の背方に位置する閉鎖面部2
3に合致した状態になって、上下両段の冷気吹出口8,
10が共に閉鎖される。尚、可動目体18には、ばね(
図示せず)等によって第2図の矢印六方向への復帰力が
付与されている。
A hinge portion 19 is provided on the back wall 18a of the movable eye body 18.
A wind direction plate portion 20 is formed through the wind direction plate portion 20, and convex portions 21 protruding from both sides of the upper end of this wind direction plate portion 20 can slide up and down in guide groove portions 22 formed on both sides of the back inside the main air duct 6. ing. In this case, the position of the movable eye body 18 can be switched to three stages shown in FIG. 2 to FIG. 4, and the position shown in FIG. 2 (hereinafter referred to as "upper open position")
In this case, the lower end of the back wall 18a of the movable eye body 18 matches the upper end of the front wall 9a of the extended ventilation duct 9, and the lower end opening of the movable eye body 18 is opened toward the upper part of the refrigerator compartment 3. Allows cold air to be blown into the refrigerator compartment 3 from the cold air outlet 8. In the position shown in FIG. 3 (hereinafter referred to as the "lower open position"), the lower end opening of the movable eye 18 is aligned with the upper end opening of the extended air duct 9, and the lower cold air outlet 1
Allow cold air to blow out from 0. Furthermore, the position W in Figure 4
t (hereinafter referred to as the "closed position"), the lower end opening of the movable eye body 18 is located in the closed surface portion 2 located behind the extended ventilation duct 9.
3, both upper and lower cold air outlets 8,
10 are closed together. In addition, the movable eye body 18 is equipped with a spring (
(not shown) etc., a return force is applied in the six directions of the arrows in FIG.

斯かる構成の冷気吹出位置切換機構13は、制御手段(
図示せず)によって第5図のフローチャートに示すよう
に制御される。即ち、まず、上下両段の温度センサ11
,12の検知温度が所定の冷却開始温度Tu以上である
か否かを判断しくステップP1)、否(NO)の場合に
は、「冷却開始温度以上フラグ」をリセットする(ステ
ップP2)。一方、ステップP1で是(YES)と判断
した場合には、ステップP3に移行して、「上段冷却中
フラグ」がオンされているか否か、即ち冷蔵室3内の上
段が冷却中であるか否か(上段の冷気吹出口8から冷気
が吹出しているか否か)が判断される。ここで、否(N
O)と判断されれば、ステップP4に移行して、「下段
冷却中フラグ」がオンされているか否か、即ち冷蔵室3
内の下段が冷却中であるか否か(下段の冷気吹出口10
から冷気が吹出しているか否か)が判断される。ここで
、否(No)と判断されれば、ステップP5に移行して
、上段の温度センサ11の検知温度が所定の冷却開始温
度Tu以上であるか否かを判断し、是(YES)であれ
ば、ステップP6で下段の温度センサ12の検知温度が
所定の冷却開始温度Tu以上であるか否かを判断する。
The cold air blowing position switching mechanism 13 having such a configuration has a control means (
(not shown) as shown in the flowchart of FIG. That is, first, the upper and lower temperature sensors 11
, 12 is determined to be equal to or higher than a predetermined cooling start temperature Tu (step P1). If NO, the "cooling start temperature or higher flag" is reset (step P2). On the other hand, if it is determined YES in step P1, the process moves to step P3 to check whether the "upper stage cooling flag" is turned on, that is, whether the upper stage in the refrigerator compartment 3 is being cooled. It is determined whether or not (whether or not cold air is blowing out from the upper cold air outlet 8). Here, no (N
O), the process moves to step P4 and checks whether the "lower stage cooling flag" is turned on, that is, whether or not the refrigerator compartment 3
Whether the lower stage of the
It is determined whether cold air is blowing out from the If the determination is No, the process moves to step P5, where it is determined whether the temperature detected by the upper temperature sensor 11 is equal to or higher than the predetermined cooling start temperature Tu. If so, it is determined in step P6 whether the temperature detected by the lower temperature sensor 12 is equal to or higher than a predetermined cooling start temperature Tu.

上述したステップP5,6で上下両段共に冷却開始温度
Tu以上であると判断した場合には、ステップP7で両
温度センサ11.12の検知温度を比較し、上段の検知
温度が下段のそれより高い場合には、「冷却開始温度以
上フラグ」と「上段冷却中フラグ」とをセットして(ス
テップP8.9)、上段の冷気吹出口8から冷気を吹出
させる(ステップP12)。この動作は、冷気吹出位置
切換機構13のモータ14を起動してカム15を回動さ
せて行い、それによって可動目体18を第2図の上段冷
却位置へ移動させて行う。
If it is determined in steps P5 and 6 that both the upper and lower stages are equal to or higher than the cooling start temperature Tu, the detected temperatures of both temperature sensors 11 and 12 are compared in step P7, and the detected temperature of the upper stage is higher than that of the lower stage. If it is high, the "cooling start temperature or higher flag" and the "upper stage cooling flag" are set (step P8.9), and cold air is blown out from the upper stage cold air outlet 8 (step P12). This operation is performed by starting the motor 14 of the cold air blowing position switching mechanism 13 and rotating the cam 15, thereby moving the movable eye body 18 to the upper cooling position in FIG. 2.

一方、ステップP7で、下段の検知温度が上段のそれよ
り高いと判断された場合には、r冷却開始温度以上フラ
グ」と「下段冷却中フラグ」をセットして(ステップp
H,12)、下段の冷気吹出口8から冷気を吹出させる
(ステップP13)この動作は、可動目体18を第3図
の下段冷却位置へ移動させて行う。
On the other hand, if it is determined in step P7 that the detected temperature of the lower stage is higher than that of the upper stage, the r cooling start temperature or higher flag and the lower stage cooling flag are set (step p
H, 12), blowing out cold air from the lower cold air outlet 8 (step P13) This operation is performed by moving the movable eye body 18 to the lower cooling position shown in FIG.

また、ステップP5で、上段の検知温度が冷却開始温度
Tuより低いと判断された場合には、ステップP14に
移行して、下段の検知温度が冷却開始温度Tu以上であ
るか否かが判断される。ここで、是(YES)と判断さ
れれば、ステップP12.13に移行して、下段の冷気
吹出口10から冷気を吹出させる。一方、ステップP1
4で否(NO)と判断されれば、ステップP15に移行
して、可動目体18を第3図の閉鎖位置へ移動させて冷
却を停止する。
Furthermore, if it is determined in step P5 that the detected temperature of the upper stage is lower than the cooling start temperature Tu, the process proceeds to step P14, where it is determined whether the detected temperature of the lower stage is equal to or higher than the cooling start temperature Tu. Ru. Here, if it is determined to be YES, the process moves to step P12.13, and cold air is blown out from the cold air outlet 10 in the lower stage. On the other hand, step P1
If it is determined NO in step P15, the movable eye body 18 is moved to the closed position shown in FIG. 3 and cooling is stopped.

また、ステップP6で否(N O)と判断された場合、
即ち上段のみが冷却開始温度Tu以上である場合には、
ステップP9.10に移行して、上段の冷却を開始する
Moreover, if it is determined that step P6 is negative (NO),
That is, if only the upper stage is at the cooling start temperature Tu or higher,
Proceeding to step P9.10, cooling of the upper stage is started.

一方、ステップP3で、「上段冷却中フラグ」がオンさ
れている(上段が冷却中である)と判断された場合には
、ステップP16に移行して、「冷却開始温度以上フラ
グ」がオンされているか否かが判断される。これが是(
YES)と判断された場合には、上段の検知温度が「下
段の検知温度−1degJより高いか否かが判断さる(
ステップP17)。このとき、上段の検知温度が「下段
の検知温度−1dcgJより高ければ、上段の冷却を続
行し、そうでない場合には、ステップP18に移行し、
「上段冷却中フラグ」をリセットして「下段冷却中フラ
グ」をセットすると共に、可動目体18を第3図の下段
冷却位置へ移動させて下段の冷却に切換える。尚、ステ
ップP17で、上段の検知温度を「下段の検知温度−1
68gJと比較する理由は、制御系のチャタリングを防
止するためである。
On the other hand, if it is determined in step P3 that the "upper stage cooling flag" is turned on (the upper stage is being cooled), the process proceeds to step P16, where the "cooling start temperature or higher flag" is turned on. It is determined whether the This is it (
If it is determined (YES), it is determined whether the detected temperature in the upper row is higher than the detected temperature in the lower row - 1degJ (
Step P17). At this time, if the detected temperature of the upper stage is higher than the detected temperature of the lower stage - 1 dcgJ, cooling of the upper stage is continued; otherwise, the process moves to step P18,
The "upper stage cooling flag" is reset and the "lower stage cooling flag" is set, and the movable eye body 18 is moved to the lower stage cooling position in FIG. 3 to switch to lower stage cooling. In addition, in step P17, the detected temperature of the upper stage is changed to "detected temperature of the lower stage - 1".
The reason for comparing it with 68gJ is to prevent chattering in the control system.

一方、ステップP16で、否(NO)と判断された場合
には、ステップP19に移行して、上段の検知温度が所
定の冷却停止温度TL以下であるか否かが判断され、否
(NO)の場合には上段の冷却を続行するが、そうでな
い場合には、ステップP20に移行して、下段の検知温
度が冷却停止温度Te以下であるか否かが判断される。
On the other hand, if it is determined in step P16 that the result is negative (NO), the process proceeds to step P19, where it is determined whether the detected temperature of the upper stage is equal to or lower than the predetermined cooling stop temperature TL, and the result is negative (NO). In this case, cooling of the upper stage is continued, but if not, the process moves to step P20, and it is determined whether the detected temperature of the lower stage is equal to or lower than the cooling stop temperature Te.

ここで、否(NO)と判断された場合には、ステップP
21に移行し、「上段冷却中フラグ」をリセ、ツトして
[下段冷却中7ラグ」をセットすると共に、可動臼体1
8を第3図の下段冷却位置に移動させて下段の冷却に切
換える。一方、ステップP19゜20が共に是(YES
)の場合、即ち上下両段共に冷却停止温度T(以下であ
る場合には、ステップP22に移行し、「上段冷却中フ
ラグ」をリセットして、可動臼体18を第4図の閉鎖位
置へ移動させ、冷却を停止する。
Here, if the determination is negative (NO), step P
21, reset and turn off the "upper stage cooling flag" and set the "lower stage cooling flag 7", and set the movable mortar body 1.
8 to the lower cooling position in FIG. 3 to switch to lower cooling. On the other hand, both steps P19 and 20 are YES.
), that is, if both the upper and lower stages are at a cooling stop temperature T (or lower), proceed to step P22, reset the "upper stage cooling flag", and move the movable mortar body 18 to the closed position shown in FIG. Move and stop cooling.

一方、ステップP4で、「下段冷却中フラグ」がオンさ
れている(下段が冷却中である)と判断された場合には
、ステップP23に移行して、「冷却開始温度以上フラ
グ」がオンされているか否かが判断される。これが是(
YES)と判断された場合には、下段の検知温度が「上
段の検知温度−1degJより高いか否かが判断さる(
ステップP24)。このとき、下段の検知温度が「上段
の検知温度−1degJより高ければ、下段の冷却を続
行し、そうでない場合には、ステップP25に移行し、
「下段冷却中フラグ」をリセットして「上段冷却中フラ
グ」をセットすると共に、可動臼体18を第2図の上段
冷却位置へ移動させて上段の冷却に切換える。
On the other hand, if it is determined in step P4 that the "lower stage cooling flag" is turned on (the lower stage is being cooled), the process proceeds to step P23, where the "cooling start temperature or higher flag" is turned on. It is determined whether the This is it (
If it is determined (YES), it is determined whether the lower detected temperature is higher than the upper detected temperature - 1degJ (
Step P24). At this time, if the detected temperature of the lower stage is higher than the detected temperature of the upper stage - 1 degJ, cooling of the lower stage is continued, otherwise, the process moves to step P25,
The "lower stage cooling flag" is reset and the "upper stage cooling flag" is set, and the movable mortar body 18 is moved to the upper stage cooling position in FIG. 2 to switch to upper stage cooling.

一方、ステップP23で、否(N O)と判断された場
合には、ステップP26に移行して、下段の検知温度が
所定の冷却停止温度TI以下であるか否かが判断され、
否(N O)の場合には下段の冷却を続行するが、そう
でない場合には、ステップP27に移行して、上段の検
知温度が冷却停止温度Tl以下であるか否かが判断され
る。ここで、否(N O)と判断された場合には、ステ
ップP28に移行し、「下段冷却中フラグ」をリセット
して「上段冷却中フラグ」をセットすると共に、可動臼
体18を第2図の上段冷却位置に移動させて上段の冷却
に切換える。一方、ステップP26゜27が共に是(Y
ES)の場合、即ち上下両段共に冷却停止温度Tj以下
である場合には、ステップP29に移行し、「下段冷却
中フラグ」をリセットして、可動臼体18を第4図の閉
鎖位置へ移動させ、冷却を停止する。
On the other hand, if it is determined NO in step P23, the process moves to step P26, where it is determined whether the detected temperature of the lower stage is below a predetermined cooling stop temperature TI,
If NO (NO), cooling of the lower stage is continued, but if not, the process moves to step P27, where it is determined whether the detected temperature of the upper stage is equal to or lower than the cooling stop temperature Tl. If the determination is NO, the process moves to step P28, where the "lower stage cooling flag" is reset, the "upper stage cooling flag" is set, and the movable mortar body 18 is moved to the second stage. Move to the upper cooling position in the figure and switch to upper cooling. On the other hand, both steps P26 and 27 are correct (Y
ES), that is, when both the upper and lower stages are below the cooling stop temperature Tj, the process moves to step P29, the "lower stage cooling flag" is reset, and the movable mortar body 18 is moved to the closed position shown in FIG. Move and stop cooling.

次に、上記制御手段による実際の温度制御の一例を第6
図に基いて説明する。第6図において、時刻t1では、
上下両段共に、冷却開始温度TLI以上になっている。
Next, an example of actual temperature control by the above control means will be explained in the sixth section.
This will be explained based on the diagram. In FIG. 6, at time t1,
Both the upper and lower stages are at or above the cooling start temperature TLI.

この時刻t!から制御を開始したものとすると、ステッ
プP1,3乃至10を順に経て、可動臼体18を第2図
の上段冷却位置に移動させて上段の冷気吹出口8から冷
気を吹出させる。この上段側への冷気の吹出しにより、
上段の検知温度が、「下段の検知温度−1degJ以下
になったとき、換言すれば、下段の温度センサ12の検
知温度が、上段の検知温度より1 deg以上高くなっ
たとき(時刻tz)に、可動臼体18を第3図の下段冷
却位置へ移動させて下段の冷却に切換える(ステップP
19,20.21)。この下段の冷却により、時刻t3
以後は、上段の検知温度が下段のそれよりも高くなるが
、両検知温度が共に冷却開始温度Tu以上になる範囲(
時刻t3からti)では、両者の温度差は1 deg以
下であるため、冷気の吹出位置は切換えられず、下段の
冷却が続行される。これにより、−旦、下段の検知温度
が冷却開始温度Tu以下になると、上下両段の温度差が
たとえ1 deg以上になっても、冷気の吹出位置の切
換えは行われず、冷気の吹出側である下段の検知温度が
冷却停止温度T1.以下になるまで下段の冷却を続行す
る。そして、下段の検知温度が冷却停止温度T1.以下
になった時点(時刻ts)で、直ちに、可動臼体18を
第2図の上段冷却位置に移動させて、上段の冷却に切換
える(ステップP 26. 27. 28)。その後、
時刻t6で上段の検知温度が冷却停止温度T 、e以下
になったときには、下段側も冷却停止温度7.<以下に
なっているため、可動目体18をff14図の閉鎖位置
に移動させて冷気の吹出しを停止する(ステップP29
)。その後、上下両段の検知温度のいずれか一方が冷却
開始温度Tu以上になった時点(時刻ty)で、冷気の
吹出しを開始し、以後、上述した動作を繰返して上段側
と下段側の温度を共に適正温度範囲θ内に収めるように
制御する。
This time t! If the control is started from , steps P1, 3 to 10 are sequentially performed, and the movable mortar body 18 is moved to the upper cooling position shown in FIG. 2, and cold air is blown out from the upper cold air outlet 8. Due to this blowing of cold air to the upper side,
When the detected temperature of the upper stage becomes lower than the detected temperature of the lower stage - 1 degJ, in other words, when the detected temperature of the lower stage temperature sensor 12 becomes 1 deg or more higher than the detected temperature of the upper stage (time tz). , move the movable mortar body 18 to the lower cooling position in FIG. 3 and switch to lower cooling (step P
19, 20. 21). Due to this cooling of the lower stage, time t3
After that, the detected temperature of the upper stage becomes higher than that of the lower stage, but within the range where both detected temperatures are equal to or higher than the cooling start temperature Tu (
From time t3 to time ti), since the temperature difference between the two is 1 degree or less, the cold air blowing position is not changed and cooling of the lower stage continues. As a result, when the detected temperature of the lower stage becomes lower than the cooling start temperature Tu, even if the temperature difference between the upper and lower stages becomes 1 deg or more, the cold air blowing position will not be switched, and the cold air blowing position will not change. The detected temperature at a lower level is the cooling stop temperature T1. Continue cooling the lower stage until the Then, the detected temperature in the lower row is the cooling stop temperature T1. At the time (time ts), the movable mortar body 18 is immediately moved to the upper stage cooling position in FIG. 2 and switched to upper stage cooling (steps P 26, 27, and 28). after that,
When the detected temperature on the upper stage becomes lower than the cooling stop temperature T,e at time t6, the lower stage also reaches the cooling stop temperature 7. <Since it is below, move the movable eye body 18 to the closed position shown in Figure ff14 to stop blowing out the cold air (Step P29
). After that, when one of the detected temperatures of both the upper and lower stages becomes equal to or higher than the cooling start temperature Tu (time ty), the blowing of cold air is started, and from then on, the above-mentioned operation is repeated to increase the temperature of the upper and lower stages. are controlled so that both are within the appropriate temperature range θ.

この場合、冷却開始温度Tu以下では、上下両段の温度
差がたとえ1 deg以上になっても、冷気の吹出位置
の切換えは行わないが、これは、冷却開始温度Tu以下
の温度が食品の保温にとって適当な温度であるからであ
る。
In this case, if the temperature is below the cooling start temperature Tu, the cold air blowing position will not be switched even if the temperature difference between the upper and lower stages is 1 degree or more. This is because the temperature is suitable for keeping warm.

上記実施例によれば、2個の温度センサ11゜12によ
って冷蔵室3内の上下両段の温度を検知し、その上下両
段の検知温度が冷却開始温度Tu以上のときには、その
検知温度が高い方の温度センサに対応する冷気吹出口か
ら冷気を吹出させるように切換えるから、冷蔵室3内の
うちの温度が高い方の部分を選択的に冷却できる。それ
故に、たとえ冷蔵室3内に冷気の循環を妨げる物体(例
えばガラス棚50食品等)があったとしても、それによ
って生ずる冷蔵室3内の温度分布の偏り(特に食品の保
存性に悪影響を及ぼす高温領域の偏り)を逐次調整でき
て、冷蔵室3内をむらなく冷却できる。
According to the above embodiment, the two temperature sensors 11 and 12 detect the temperatures of both the upper and lower stages in the refrigerator compartment 3, and when the detected temperatures of the upper and lower stages are equal to or higher than the cooling start temperature Tu, the detected temperatures are Since the cold air is switched to be blown out from the cold air outlet corresponding to the higher temperature sensor, it is possible to selectively cool the higher temperature portion of the refrigerator compartment 3. Therefore, even if there is an object in the refrigerator compartment 3 that obstructs the circulation of cold air (for example, a glass shelf 50 food item, etc.), this will cause an imbalance in the temperature distribution in the refrigerator compartment 3 (in particular, it will have a negative effect on the shelf life of food). This makes it possible to sequentially adjust the deviation in the high temperature region, and the inside of the refrigerator compartment 3 can be cooled evenly.

尚、上記実施例では、冷気吹出口と温度センサを各々2
個ずつ設けたが、これらを3個以上ずつ設ける構成とし
ても良い。また、上記実施例は、冷蔵室3内の冷却を行
う場合の適用例であるが、他の冷却室、例えば冷凍室或
はいわゆる氷温室(チルドルーム)等にも適用できる。
In the above embodiment, there are two cold air outlets and two temperature sensors each.
Although these are provided one by one, it is also possible to provide three or more of these. Moreover, although the above embodiment is an example of application in the case of cooling the inside of the refrigerator compartment 3, it can also be applied to other cooling compartments, such as a freezing compartment or a so-called ice room (chilled room).

更には、冷気吹出位置切換機構としては、例えば各冷気
吹出口に夫々ダンパーを設け、各ダンパーをモータ。
Furthermore, as a cold air blowing position switching mechanism, for example, a damper is provided at each cold air blowing outlet, and each damper is driven by a motor.

電磁石等で選択的に開閉する構成のものであっても良い
It may be configured to selectively open and close using an electromagnet or the like.

[発明の効果] 本発明は以上の説明から明らかなように、2以上の温度
センサの検知温度が所定の冷却開始温度以上のときには
、その検知温度が高い方の温度センサに対応する冷気吹
出口から冷気を吹出させるように冷気吹出位置切換機構
を切換えるから、たとえ冷却室内に冷気の循環を妨げる
物体(例えばガラス棚1食品等)があったとしても、そ
れによって生ずる冷却室内の温度分布の偏り(特に高温
領域の偏り)を逐次調整できて、冷却室内をむらなく冷
却できるという優れた効果を奏する。
[Effects of the Invention] As is clear from the above description, the present invention provides, when the detected temperatures of two or more temperature sensors are equal to or higher than a predetermined cooling start temperature, the cold air outlet corresponding to the temperature sensor with the higher detected temperature. Since the cold air blowout position switching mechanism is switched so that cold air is blown from (Especially the deviation in the high temperature region) can be successively adjusted, and the inside of the cooling chamber can be cooled evenly, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示したもので、第1図は冷蔵
庫全体の縦断側面図、第2図乃至第4図は冷気吹出位置
切換機構の動作を説明するために夫々異なる状態で示す
要部の拡大縦断側面図、第5図は制御プログラムの内容
を示すフローチャート、第6図は冷却運転時の温度変化
と冷気吹出位置の切換との関係を示す図である。 図面中、3は冷蔵室(冷却室)、5はガラス棚、6は主
送風ダクト、8は上段の冷気吹出口、9は延長送風ダク
ト、10は下段の冷気吹出口、11は上段の温度センサ
、12は下段の温度センサ、1°3は冷気吹出位置切換
機構、18は可動目体である。
The drawings show one embodiment of the present invention, and FIG. 1 is a vertical sectional side view of the entire refrigerator, and FIGS. 2 to 4 are shown in different states to explain the operation of the cold air blowing position switching mechanism. FIG. 5 is a flowchart showing the contents of the control program, and FIG. 6 is a diagram showing the relationship between temperature change and switching of the cold air blowing position during cooling operation. In the drawing, 3 is the refrigerator room (cooling room), 5 is the glass shelf, 6 is the main air duct, 8 is the upper cold air outlet, 9 is the extended air duct, 10 is the lower cold air outlet, and 11 is the upper temperature. 12 is a lower temperature sensor, 1°3 is a cold air blowing position switching mechanism, and 18 is a movable eye.

Claims (1)

【特許請求の範囲】[Claims] 1、冷却室内の複数箇所に設けられた複数の冷気吹出口
と、これら複数の冷気吹出口のうちから択一的に冷気の
吹出しを許容する冷気吹出位置切換機構と、前記冷却室
内における前記各冷気吹出口に対応する各位置の温度を
検知する複数の温度センサとを備えたものであって、2
以上の温度センサの検知温度が所定の冷却開始温度以上
のときには、その検知温度が高い方の温度センサに対応
する冷気吹出口から冷気を吹出させるように前記冷気吹
出位置切換機構を切換え、且つ冷気が吹出されている冷
気吹出口に対応する温度センサの検知温度が前記冷却開
始温度より低くなった後は当該冷気吹出口からの冷気の
吹出しを当該冷気吹出口に対応する温度センサの検知温
度が所定の冷却停止温度以下になるまで続行させる制御
手段を設けたことを特徴とするする冷蔵庫。
1. A plurality of cold air outlets provided at a plurality of locations in the cooling chamber, a cold air outlet position switching mechanism that selectively allows cold air to be blown out from among the plurality of cold air outlets, and each of the cold air outlets in the cooling chamber. and a plurality of temperature sensors that detect the temperature at each position corresponding to the cold air outlet,
When the detected temperature of the above temperature sensor is equal to or higher than a predetermined cooling start temperature, the cold air blowing position switching mechanism is switched so as to blow out cold air from the cold air blowing outlet corresponding to the temperature sensor whose detected temperature is higher; After the temperature detected by the temperature sensor corresponding to the cold air outlet that is being blown out becomes lower than the cooling start temperature, the cold air is blown out from the cold air outlet until the temperature detected by the temperature sensor corresponding to the cold air outlet is lower than the cooling start temperature. A refrigerator comprising a control means for continuing cooling until the temperature reaches a predetermined stop temperature or lower.
JP63271472A 1988-10-26 1988-10-26 Refrigerator Pending JPH02118384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63271472A JPH02118384A (en) 1988-10-26 1988-10-26 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63271472A JPH02118384A (en) 1988-10-26 1988-10-26 Refrigerator

Publications (1)

Publication Number Publication Date
JPH02118384A true JPH02118384A (en) 1990-05-02

Family

ID=17500511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63271472A Pending JPH02118384A (en) 1988-10-26 1988-10-26 Refrigerator

Country Status (1)

Country Link
JP (1) JPH02118384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007062905A1 (en) * 2005-11-30 2007-06-07 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device comprising a circulating cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007062905A1 (en) * 2005-11-30 2007-06-07 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device comprising a circulating cooling system
US7980091B2 (en) 2005-11-30 2011-07-19 Bsh Bosch Und Siemens Hausgeraete Gmbh Refrigeration device comprising a circulating cooling system

Similar Documents

Publication Publication Date Title
US5983654A (en) Freezer-equipped refrigerator
US5826437A (en) Refrigeration for discharging cool air from a door
US5809799A (en) Refrigerator having a device for generating an air curtain
KR100223225B1 (en) Control method and apparatus of a refrigerator
JPH04177074A (en) Refrigerator
JPH1137630A (en) Open/close operation control method for cold air delivery port of refrigerator
US6647734B2 (en) Air circulation system of refrigerator
EP0893660B1 (en) Refrigerator
JPH0743059A (en) Cold air circulation type refrigeraed showcase
JPH02118384A (en) Refrigerator
JPH05141843A (en) Refrigerating and cooling cabinet
KR0136054Y1 (en) Cool air adjustment apparatus of a refrigerator
JPH1089832A (en) Refrigerator
JPH02118383A (en) Refrigerator
JPH0541339Y2 (en)
JP2004003710A (en) Refrigerator
JPH0285673A (en) Refrigerator
KR19980084860A (en) Refrigeration air supply unit
KR20030065943A (en) Air circulation system of side by side type Refrigerator
JPH0328288Y2 (en)
JPH05126453A (en) Refrigerator
KR100459457B1 (en) Concentration cooling method for high temperature food in refrigeration room of refrigerator
JPH1123133A (en) Two-temperature type open showcase
JP7293759B2 (en) Round open showcase
KR100374563B1 (en) Apparatus for supplying cooling air in refrigerator