JPH02118002A - Sintered laminating body for copper alloy powder sheet - Google Patents

Sintered laminating body for copper alloy powder sheet

Info

Publication number
JPH02118002A
JPH02118002A JP27213088A JP27213088A JPH02118002A JP H02118002 A JPH02118002 A JP H02118002A JP 27213088 A JP27213088 A JP 27213088A JP 27213088 A JP27213088 A JP 27213088A JP H02118002 A JPH02118002 A JP H02118002A
Authority
JP
Japan
Prior art keywords
alloy powder
copper alloy
sheet
base material
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27213088A
Other languages
Japanese (ja)
Inventor
Kazuhide Inohara
猪原 一英
Takemori Takayama
武盛 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP27213088A priority Critical patent/JPH02118002A/en
Publication of JPH02118002A publication Critical patent/JPH02118002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve slidability and wear resistance of a sintered laminating body by kneading the specific compositions of Cu-Sn (Zn) series raw material powder and synthetic resin binder, sticking a sheet obtd. by rolling on a base material and sintering. CONSTITUTION:The sheet is manufactured by kneading 85-97wt.% the raw material powder composed of at least one kind of 5-15% Sn and 10-43% Zn, 1-10% Pb, at least one kind of 0.5-10% Fe and Ni and balance of Cu, and 3-15% the synthetic resin binder and rolling. This sheet is stuck to the base material of piston shoe for hydraulic pump, etc., as a sliding material and jointed with the sintering to make the laminated body. In the above Cu alloy raw material powder, if necessary, at least one kind among Ti, Si, Mn and Al, boride of Mo2B, Zr2B, TiB2, etc., oxide of Al2O3, mullite, etc., nitride of TiN, Si3N4, etc., are contained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉末冶金法により摺動性、耐摩耗性に優れた銅
合金粉末シートを母材に焼結接合した積層体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laminate in which a copper alloy powder sheet having excellent sliding properties and wear resistance is sintered and bonded to a base material using a powder metallurgy method.

(従来の技術) 従来、この種の合金粉末としては、Ni系、Go系の自
溶性合金粉末と外回望性アクリル樹脂とを用いた合金粉
末シートを金属母材上にトルエンなどの溶剤で湿らせて
貼りつけうえ、大気雰囲気中で加熱融着することが知ら
れている。
(Prior art) Conventionally, this type of alloy powder has been produced by depositing an alloy powder sheet using a Ni-based or Go-based self-fusing alloy powder and a retractable acrylic resin on a metal base material with a solvent such as toluene. It is known that the adhesive is applied after being moistened and then heated and fused in the atmosphere.

(例えば特開昭51−838343号公報参照)このよ
うな合金粉末シートは、母材の表面に比較的容易に合金
層を形成することができる。
(For example, see Japanese Patent Application Laid-open No. 51-838343.) With such an alloy powder sheet, an alloy layer can be formed relatively easily on the surface of the base material.

(発明が解決しようとする課題) しかし、このような合金粉末シートを加熱焼結する場合
、200〜300°Cの温度で合成樹脂が焼失し、接着
性が失われるため、母材が平らな上面にしか通用できず
、斜面や、湾曲面さらに下面に対しては滑りや落下など
により、合金層を形成することができなかった。
(Problem to be Solved by the Invention) However, when heating and sintering such an alloy powder sheet, the synthetic resin is burned out at a temperature of 200 to 300°C and adhesiveness is lost, so the base material is flat. It was applicable only to the upper surface, and could not form an alloy layer on sloped surfaces, curved surfaces, or even the lower surface due to slipping or falling.

そこで、Cu−3n系、Cu−Zn系、粉末シートにつ
いては従来より軸受材として使用されているが、単一品
として製造し圧入して使用され、形状は円筒形のものに
限られていた。形状複雑な製品に合金層を形成するため
には、ろう接、溶射、鋳造による鋳包み後、加工して製
造しているが製造コストは高くなる6本発明はかかる課
題を解消するために銅合金粉末シートの焼結積層体を提
供するものである。
Therefore, although Cu-3n-based, Cu-Zn-based, and powder sheets have been used as bearing materials, they have been produced as a single product and press-fitted, and the shape has been limited to cylindrical ones. In order to form an alloy layer on a product with a complex shape, it is manufactured by processing after casting by brazing, thermal spraying, or casting, but the manufacturing cost is high6.The present invention aims to solve this problem by using copper. A sintered laminate of alloy powder sheets is provided.

(課題を解決するための手段) 上記目的を達成するため、本発明においてはSn:5〜
15Wt%もしくはZn:10〜43Wt%の少なくと
も1種とPb:1〜l0Wt%、P : 0.05〜1
.5 W t%、Fe、Niのうち少なくとも1種が0
.5〜10Wt%、Cu:残りからなる配分組成の原料
粉末85〜97Wむ%と合成樹脂バインダー3〜15W
t%を混練し圧延したシートを母材に貼着し、焼結によ
り接合したものである。また、前記原料粉末にTi、S
i、Mn、AIの少なくとも1種及びMoJ、 ZrJ
、 TiBgの硼化物、Afzos 、ムライトの酸化
物、SiC,、TiC,ZrC,TaC1WCの炭化物
、TiN 、 5iJa の窒化物とこれらの複合炭窒
化物の少なくとも1種を適量添加したものである。
(Means for solving the problem) In order to achieve the above object, in the present invention, Sn: 5 to
15 Wt% or at least one of Zn: 10-43 Wt% and Pb: 1-10 Wt%, P: 0.05-1
.. 5 W t%, at least one of Fe and Ni is 0
.. 5 to 10 Wt%, Cu: distribution composition consisting of the remainder 85 to 97 Wt% of raw material powder and 3 to 15 W of synthetic resin binder
A sheet obtained by kneading and rolling t% is adhered to a base material and joined by sintering. In addition, Ti, S
at least one of i, Mn, AI and MoJ, ZrJ
, TiBg boride, Afzos, mullite oxide, SiC, TiC, ZrC, TaC1WC carbide, TiN, 5iJa nitride, and a composite carbonitride of these.

さらに、これら原料粉末に金属、炭素、合成樹脂の少な
くとも1種の繊維もしくは網状物を適量添加したもので
ある。
Furthermore, an appropriate amount of fibers or meshes of at least one of metal, carbon, and synthetic resin is added to these raw material powders.

(作  用) 第1の発明の焼結積層体は、銅合金粉末シートと母材と
の室温から900°Cにいたる焼結途中の接着性を確保
するために、銅合金粉末と合成樹脂バインダーを混練、
圧延してなるシートを母材に貼着している。また、Pを
Fe−P合金(P:27〜30Wt%)粉末として添加
することにより、焼結時に接合する母材の表面の酸化膜
を除去して清浄に保つと共にFe(Pを含む)とCu−
3n、Cu−ZnのZ相域を作り接合強度を改善する。
(Function) The sintered laminate of the first invention uses copper alloy powder and a synthetic resin binder to ensure adhesion between the copper alloy powder sheet and the base material during sintering from room temperature to 900°C. knead,
The rolled sheet is attached to the base material. In addition, by adding P as a Fe-P alloy (P: 27 to 30 Wt%) powder, we can remove the oxide film on the surface of the base material to be joined during sintering and keep it clean, and also remove Fe (including P). Cu-
3n, creates a Z phase region of Cu-Zn and improves bonding strength.

(第5図参照)また、高温域で焼結しても、銅合金粉末
材料特有の異常膨張を防止し、高密度(空隙率10%以
下)の焼結ができる。
(See Fig. 5) Furthermore, even when sintered in a high temperature range, abnormal expansion peculiar to copper alloy powder materials can be prevented, and high-density sintering (porosity of 10% or less) can be achieved.

一方、銅合金粉末にPbを添加することにより、5n−
Pbの低融点はんだを生成して母材との濡れ性を改善し
低温での接着性の改善と焼結時の接合強度を向上してい
る。(第5図参照)さらに、Pbは焼結積層体の摺動性
や耐焼付性の改善も行なうものである。
On the other hand, by adding Pb to copper alloy powder, 5n-
A low melting point Pb solder is produced to improve wettability with the base material, thereby improving adhesion at low temperatures and bonding strength during sintering. (See FIG. 5) Furthermore, Pb improves the sliding properties and seizure resistance of the sintered laminate.

つぎに、本発明において、各成分の含有!(以下重量%
とする)を限定した理由を説明する。
Next, in the present invention, the content of each component! (hereinafter weight%
We will explain the reason why we limited the following.

(a)Snの含有量 銅合金粉末中のSnの含有量が5%未満では、Pbの蒸
発を抑えることができず、高密度で焼結することは難か
しい、一方15%を越えると保形性が低下することから
、Snの含有量を5〜15%と定めた。
(a) Sn content If the Sn content in the copper alloy powder is less than 5%, the evaporation of Pb cannot be suppressed and it is difficult to sinter at high density. The Sn content was determined to be 5 to 15% since the shape property was decreased.

(b)Znの含有量 Znは、銅合金の素地組成を決定し、靭性を確保するた
めにはα+β型、β型とする必要がある。Znの含有量
が10%未満ではα相が増加しβ相が減少して所望の耐
摩耗性を確保することができず、一方43%を越えると
α相の析出により跪化し強度も低下することからZnの
含有量を10〜43%と定めた。
(b) Zn content Zn determines the base composition of the copper alloy and needs to be α+β type or β type in order to ensure toughness. If the Zn content is less than 10%, the α phase will increase and the β phase will decrease, making it impossible to secure the desired wear resistance. On the other hand, if it exceeds 43%, the α phase will precipitate and the strength will decrease. Therefore, the Zn content was determined to be 10 to 43%.

(c)Pbの含有量 Pbの含有量が1.0%未満ではFeとの濡れ性改善効
果が不十分でありかつ摺動時に燐化物の硬質粒子による
カジリを防止できず、一方lO%を越えると焼結体の強
度が実用強度20kg / m m ”以下に低下する
ことがらPbの含有量を1.0〜10.0%と定めた。
(c) Pb content If the Pb content is less than 1.0%, the effect of improving wettability with Fe is insufficient and galling due to hard phosphide particles during sliding cannot be prevented. The Pb content was determined to be 1.0 to 10.0% since the strength of the sintered body would drop below the practical strength of 20 kg/mm'' if the Pb content was exceeded.

(d)Pの含有量 Pの含を量が0.05%未満では、母材との接合強度を
11保できず、焼結体のフクレを防止することもできな
い、一方3.5%を越えると、焼結体の伸びは3%以下
になり、かつ摺動時の耐焼付性も低下することがらPの
含有量を0.05〜3゜5%と定めた。
(d) P content If the P content is less than 0.05%, the bonding strength with the base material cannot be maintained or the blistering of the sintered body cannot be prevented. If it exceeds this, the elongation of the sintered body becomes 3% or less, and the seizure resistance during sliding also decreases, so the P content was set at 0.05 to 3.5%.

また、前記銅合金粉末85〜97%と合成樹脂バインダ
ー3〜15%を混練、圧延し銅合金粉末シートとして母
材に貼着する。ここで合成樹脂の種類および量を限定し
た理由を説明する。
Further, 85 to 97% of the copper alloy powder and 3 to 15% of the synthetic resin binder are kneaded and rolled to form a copper alloy powder sheet and adhered to a base material. Here, the reason for limiting the type and amount of synthetic resin will be explained.

(e)合成樹脂の種類 銅合金粉末シートを直接焼結によって母材上に良好な合
金層を形成するには次の条件を満足する必要がある。
(e) Type of synthetic resin In order to form a good alloy layer on a base material by directly sintering a copper alloy powder sheet, the following conditions must be satisfied.

(イ)常温で接着性をもちシートとしてフレキシブルで
ある。
(a) It has adhesive properties at room temperature and is flexible as a sheet.

(ロ)熱分解によりガス発生が少なく、発砲変形がなく
残材の量も少ない。
(b) Due to thermal decomposition, gas generation is small, there is no foaming deformation, and the amount of residual material is small.

(ハ)昇温中、母材との剥離を生ずることなく必要な形
状を保持できる。
(c) The required shape can be maintained without peeling from the base material during temperature rise.

これらの条件を満足するのは、アクリル樹脂のみであっ
て、250°Cで分解し、炭化をおこすことなく、かな
りの粘着性を有している。さらに温度が上昇すると炭化
は進行するが、ガス発生による[膨れjなどの現象は生
ぜず、600°C以上の温度でも、母材との剥離は生じ
ない。
The only resin that satisfies these conditions is acrylic resin, which decomposes at 250°C, does not cause carbonization, and has considerable adhesiveness. As the temperature rises further, carbonization progresses, but phenomena such as blistering due to gas generation do not occur, and even at temperatures of 600°C or higher, separation from the base material does not occur.

一方、熱硬化性樹脂のアクリルメラミン樹脂とアルキッ
ドメラミン樹脂、酢酸ビニール樹脂、二液硬化型(イソ
シアネート硬化型)樹脂はいずれも発砲し、ポリビニー
ルアルコールは保形性に問題がある。
On the other hand, thermosetting resins such as acrylic melamine resin, alkyd melamine resin, vinyl acetate resin, and two-component curing type (isocyanate curing type) resin all foam, and polyvinyl alcohol has problems in shape retention.

(r)合成樹脂の配分量 銅合金粉末シート化には次の二通りの方法がある。(r) Distribution amount of synthetic resin There are two methods for forming copper alloy powder into sheets:

(イ)アセトン、トルエン、M−E−K (メチル・エ
チル・ケトン)などの溶剤で希釈したアクリル樹脂と銅
合金粉末を混練して泥漿化した後、離型紙を被せた型枠
上に流し込み溶剤を蒸発させた後、圧延ロールに通して
シートとする。
(a) After kneading acrylic resin and copper alloy powder diluted with solvents such as acetone, toluene, and M-E-K (methyl ethyl ketone) to form a slurry, pour it onto a mold covered with release paper. After evaporating the solvent, it is passed through rolling rolls to form a sheet.

(ロ)4フン化エチレン樹脂エマルジツンとアクリル樹
脂エマルジタンを1対1に混合してバインダーを作る。
(b) A binder is prepared by mixing a tetrafluorinated ethylene resin emulsion and an acrylic resin emulsion at a ratio of 1:1.

これと銅合金粉末とをニーダにより十分混練した後、1
00〜150℃に加熱してバインダー中の水分を蒸発さ
せる。さらにこの混練物を80〜100°Cに加熱して
圧延ロールに通しシートとする。ここで、バインダーと
して用いるアクリル樹脂の配合量が3%未満では、粘着
性が不足してシートが脆化し、必要なシートの可撓性を
確保することがで、きす、一方15%を越えると樹脂分
が過剰となり、気孔率に悪影響を与えると同時に、母材
との接合が不可能となることから、アクリル樹脂の配合
量を3〜15%と定めた。
After thoroughly kneading this and copper alloy powder with a kneader, 1
The water in the binder is evaporated by heating to 00 to 150°C. Further, this kneaded product is heated to 80 to 100°C and passed through a rolling roll to form a sheet. If the blending amount of the acrylic resin used as a binder is less than 3%, the adhesiveness will be insufficient and the sheet will become brittle, making it difficult to secure the necessary flexibility of the sheet. The amount of acrylic resin blended was determined to be 3 to 15% because the resin content would be excessive, adversely affecting the porosity and making it impossible to bond to the base material.

また、第2の発明は前記原料粉末にTi、Si、Mn、
AfLの少なくとも1種及びその他の硼化物、酸化物、
炭化物、窒化物等の添加により焼結積層体の耐摩耗性及
び機械的強度を向上させる。さらに第3の発明はこれら
の原料粉末に、金属、炭素、合成樹脂の繊維等の添加に
より、焼結積層体の前記特性を一層向上させるものであ
る。
Further, the second invention includes Ti, Si, Mn,
At least one AfL and other borides, oxides,
Addition of carbides, nitrides, etc. improves the wear resistance and mechanical strength of the sintered laminate. Furthermore, the third invention further improves the properties of the sintered laminate by adding metal, carbon, synthetic resin fibers, etc. to these raw material powders.

(実施例) 以下に、本発明の焼結積層体を実施例により図面を参照
しながら説明する。
(Example) Hereinafter, the sintered laminate of the present invention will be described by way of example with reference to the drawings.

実施例1 第1図は、油圧ポンプ用ピストンシューの母材lの接合
部3に摺動材2を接合焼結する実施例1の断面図である
。摺動材2としては、粒度200メツシユ以下のSnを
11%、粒度200メツシユ以下のPbを3%、粒度3
50メツシユ以下の燐鉄粉CP:21%含有)を3%(
p:o、a%)、粒度200メツシユ以下の電解銅粉8
3%を用いてケロシン0.1%を添加後、均一に混合し
、アセトンで希釈したアクリル樹脂7%中に入れて混練
し泥漿状にして離型紙上に流し込みシート化したもので
ある。
Embodiment 1 FIG. 1 is a sectional view of Embodiment 1 in which a sliding material 2 is bonded and sintered to a bonded portion 3 of a base material 1 of a piston shoe for a hydraulic pump. As the sliding material 2, 11% Sn with a particle size of 200 mesh or less, 3% Pb with a particle size of 200 mesh or less, and 3% Pb with a particle size of 3
Phosphorous iron powder CP of 50 mesh or less: 3% (contains 21%)
p: o, a%), electrolytic copper powder with a particle size of 200 mesh or less 8
After adding 3% of kerosene and 0.1% of kerosene, they were mixed uniformly, put into 7% of acrylic resin diluted with acetone, kneaded, and made into a slurry, which was then poured onto release paper and made into a sheet.

これをSCM440H(Cr1%、Mo0.3%)の銅
製母材1の接合部3に貼り、AXガス雰囲気中で加熱速
度15°C/分、温度900 ”Cで焼結接合した後、
加工してピストンシェーの形状とした。この時の接合強
度引張強度、摺勅材の摩耗量を第1表に示す。
This was pasted on the joining part 3 of the copper base material 1 of SCM440H (Cr 1%, Mo 0.3%), and after sintering and joining at a heating rate of 15°C/min and a temperature of 900''C in an AX gas atmosphere,
It was processed into the shape of a piston shell. Table 1 shows the joint strength, tensile strength, and wear amount of the sliding material at this time.

比較材PC31C(高力黄銅)と比べて優れた摺動特性
を示している。なお、500H耐久テストは、定トルク
負荷で150 H1斜板切替で150H1圧力切替で1
50H1圧力容量一定で50Hの4種のパターンを組合
せてテストしたものである。
It shows superior sliding characteristics compared to the comparative material PC31C (high strength brass). In addition, the 500H durability test was conducted under constant torque load with 150H1 swash plate switching and 150H1 pressure switching.
50H1 A test was conducted by combining four types of 50H patterns with a constant pressure capacity.

第1表 第2実施例 第2図は、シリンダーブロックの母材4の球面接合部6
に摺動材5を接合焼結する実施例2の断面図である。摺
動材5としては、粒度200メツシユ以下のSnを11
%、粒度200メツシユ以下のPbを10%、粒度35
0メノシエ以下の燐鉄粉(P:27%含有)を1.5%
(P:0.4%)、粒度200メソシユ以下の電解銅粉
を残部として用い、ケロシン0.1 %を添加後均−に
混合し、これに4フツ化エチレン樹脂エマルジヨンとア
クリル樹脂エマルジョンを1対1に混合して作った合成
樹脂バインダー7%を加え、ニーダにより十分混練し、
これを100−150°Cに加熱して合成樹脂バインダ
ー中の水分を蒸発させ、ついでこの混合物を80〜10
0°Cに加熱しロール圧延してシート化し、これをSC
M440Hの鋼製母材4の曲面摺動部6に貼り、AXガ
ス雰囲気で7++熱速度15゛C/分、温度870°C
で焼結接合した後、加工してシリンダーブロックの形状
とした。この時の接合強度、引張り強度、摺動材の摩耗
量を第1表に示す。比較材LBC(鉛毒fry )と比
べて優れた摺動特性を示している。
Table 1, Example 2, Figure 2 shows the spherical joint 6 of the base material 4 of the cylinder block.
FIG. 3 is a cross-sectional view of Example 2 in which a sliding material 5 is bonded and sintered. As the sliding material 5, 11 pieces of Sn with a particle size of 200 mesh or less are used.
%, 10% Pb with particle size of 200 mesh or less, particle size of 35
1.5% of phosphorous iron powder (P: 27% content) below 0 menoshie
(P: 0.4%), electrolytic copper powder with a particle size of 200 mS or less was used as the balance, and after adding 0.1% of kerosene, it was mixed evenly, and to this, 1% of a tetrafluoroethylene resin emulsion and an acrylic resin emulsion were added. Add 7% of synthetic resin binder made by mixing 1:1 and thoroughly knead with a kneader.
This was heated to 100-150°C to evaporate the water in the synthetic resin binder, and then the mixture was heated to 80-150°C.
It is heated to 0°C and rolled into a sheet, which is then SC
Pasted on the curved sliding part 6 of the M440H steel base material 4, heated at 7++ in an AX gas atmosphere at a thermal rate of 15°C/min and a temperature of 870°C.
After sintering and joining, it was processed into the shape of a cylinder block. Table 1 shows the joint strength, tensile strength, and amount of wear of the sliding material at this time. It shows superior sliding properties compared to the comparative material LBC (lead poison fly).

第3図、および第4図は前記第1実施例における接合部
3近傍の金属組織写真であり、それぞれ接合界面のPの
分布とFeの分布を示したもので、接合界面にFe3P
相が晶出した二相部を形成している。このように接合界
面が凹凸形状になるので接合強度は向上する。
Figures 3 and 4 are photographs of the metal structure near the joint 3 in the first embodiment, showing the P distribution and Fe distribution at the joint interface, respectively.
A two-phase region is formed in which the phases crystallize. Since the bonding interface has an uneven shape in this way, the bonding strength is improved.

これらの実施例ではCu−3n系焼結材で説明したがC
u−Zn系その他の銅合金焼結材においても同様の結果
が得られる。
In these examples, Cu-3n based sintered material was explained, but C
Similar results can be obtained with u-Zn-based and other copper alloy sintered materials.

(発明の効果) 以上説明したように、本発明によれば、次の効果を奏す
る。シリンダーブロック、バルブプレート等の油圧部品
をはじめとして銅系摺動材を鋼に接合して使用する部品
は多いが、本発明による強固な接合性をもつ合金層の形
成により、これら部品の製造コストが大幅に低減される
(Effects of the Invention) As explained above, according to the present invention, the following effects are achieved. There are many parts, including hydraulic parts such as cylinder blocks and valve plates, in which copper-based sliding materials are bonded to steel, but the formation of an alloy layer with strong bonding properties according to the present invention reduces the manufacturing costs of these parts. is significantly reduced.

銅合金焼結材特有の異常膨張、膨れを防ぎ、より高密度
に焼結できるので、高面圧下で使用される。摺動材、耐
摩耗材を安いコストで提供できる。
It is used under high surface pressure because it prevents the abnormal expansion and blistering characteristic of sintered copper alloy materials and can be sintered to a higher density. We can provide sliding materials and wear-resistant materials at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例】の断面図、第2図は同じ〈
実施例2の断面図、第3図及び第4図は本発明の実施例
1における接合部の図面にかわる金属組織写真であり、
第5図は本発明の焼結積層体の接合強度を示す回である
。 l、4・・・母材 2.5・・・摺動材(銅合金粉末シート)3.6・・・
接合部
FIG. 1 is a sectional view of the embodiment of the present invention, and FIG. 2 is the same
The cross-sectional view of Example 2, FIGS. 3 and 4 are metal structure photographs in place of the drawings of the joint in Example 1 of the present invention,
FIG. 5 shows the bonding strength of the sintered laminate of the present invention. l, 4... Base material 2.5... Sliding material (copper alloy powder sheet) 3.6...
joint

Claims (3)

【特許請求の範囲】[Claims] (1)Sn:5〜15Wt%もしくはZn:10〜43
Wt%の少なくとも1種とPb:1〜10Wt%、P:
0.05〜1.5Wt%、Fe、Niの少なくとも1種
が0.5〜10Wt%、Cu:残りからなる配合組成の
原料粉末85〜97%Wt%と合成樹脂バインダー3〜
15Wt%を混練し、圧延したシートを母材に貼着し、
焼結により接合してなることを特徴とする銅合金粉末シ
ートの焼結積層体。
(1) Sn: 5 to 15 Wt% or Zn: 10 to 43
At least one type of Wt% and Pb: 1 to 10 Wt%, P:
0.05-1.5 Wt%, 0.5-10 Wt% of at least one of Fe and Ni, Cu: 85-97% Wt% of raw material powder and 3-3 Wt% of a synthetic resin binder.
15 Wt% was kneaded and the rolled sheet was attached to the base material,
A sintered laminate of copper alloy powder sheets that is bonded together by sintering.
(2)請求項1記載の原料粉末に、Ti、Si、Mn、
Alの少なくとも1種及びMo_2B、Zr_2B、T
i8_2の硼化物、Al_2O_3、ムライトの酸化物
、SiC、TiC、ZrC、TaC、WCの炭化物、T
iN、Si_3N_4の窒化物とこれらの複合炭、窒化
物の少なくとも1種を添加してなることを特徴とする銅
合金粉末シートの焼結積層体。
(2) The raw material powder according to claim 1 includes Ti, Si, Mn,
At least one of Al and Mo_2B, Zr_2B, T
i8_2 boride, Al_2O_3, mullite oxide, SiC, TiC, ZrC, TaC, WC carbide, T
A sintered laminate of copper alloy powder sheets, characterized in that it is made by adding nitrides of iN, Si_3N_4, and at least one of these composite carbons and nitrides.
(3)請求項1または2記載の原料粉末に、金属、炭素
、合成樹脂の少なくとも1種の繊維もしくは網状物を添
加してなることを特徴とする銅合金粉末シートの焼結積
層体。
(3) A sintered laminate of copper alloy powder sheets, characterized in that the raw material powder according to claim 1 or 2 is added with fibers or meshes of at least one of metal, carbon, and synthetic resin.
JP27213088A 1988-10-27 1988-10-27 Sintered laminating body for copper alloy powder sheet Pending JPH02118002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27213088A JPH02118002A (en) 1988-10-27 1988-10-27 Sintered laminating body for copper alloy powder sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27213088A JPH02118002A (en) 1988-10-27 1988-10-27 Sintered laminating body for copper alloy powder sheet

Publications (1)

Publication Number Publication Date
JPH02118002A true JPH02118002A (en) 1990-05-02

Family

ID=17509510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27213088A Pending JPH02118002A (en) 1988-10-27 1988-10-27 Sintered laminating body for copper alloy powder sheet

Country Status (1)

Country Link
JP (1) JPH02118002A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256494A (en) * 1990-11-29 1993-10-26 Daido Metal Company Ltd. Sliding member with a sintered copper alloy layer
US5334460A (en) * 1992-01-29 1994-08-02 Daido Metal Company CU-PB system alloy composite bearing having overlay
GB2359822A (en) * 2000-02-29 2001-09-05 Daido Metal Co Copper sliding alloy
CN1325676C (en) * 2005-07-11 2007-07-11 合肥波林新材料有限公司 Leadless copper base high temperature self lubricating composite material
CN102744408A (en) * 2012-07-25 2012-10-24 哈尔滨工业大学 Preparation method of titanium aluminum-based laminated composite material plate
WO2017070808A1 (en) * 2015-10-30 2017-05-04 苏州天兼新材料科技有限公司 Titanium carbide particle-reinforced copper-based composite alloy material
WO2017070806A1 (en) * 2015-10-30 2017-05-04 苏州列治埃盟新材料技术转移有限公司 High-strength titanium carbide particle-reinforced copper-based composite material and preparation method therefor
CN109722560A (en) * 2018-12-03 2019-05-07 江西理工大学 A kind of ZrC Reinforced Cu-Fe based composites and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256494A (en) * 1990-11-29 1993-10-26 Daido Metal Company Ltd. Sliding member with a sintered copper alloy layer
US5334460A (en) * 1992-01-29 1994-08-02 Daido Metal Company CU-PB system alloy composite bearing having overlay
GB2359822A (en) * 2000-02-29 2001-09-05 Daido Metal Co Copper sliding alloy
US6334914B2 (en) 2000-02-29 2002-01-01 Daido Metal Company Ltd. Copper alloy sliding material
GB2359822B (en) * 2000-02-29 2003-07-30 Daido Metal Co Copper alloy sliding material
CN1325676C (en) * 2005-07-11 2007-07-11 合肥波林新材料有限公司 Leadless copper base high temperature self lubricating composite material
CN102744408A (en) * 2012-07-25 2012-10-24 哈尔滨工业大学 Preparation method of titanium aluminum-based laminated composite material plate
WO2017070808A1 (en) * 2015-10-30 2017-05-04 苏州天兼新材料科技有限公司 Titanium carbide particle-reinforced copper-based composite alloy material
WO2017070806A1 (en) * 2015-10-30 2017-05-04 苏州列治埃盟新材料技术转移有限公司 High-strength titanium carbide particle-reinforced copper-based composite material and preparation method therefor
CN109722560A (en) * 2018-12-03 2019-05-07 江西理工大学 A kind of ZrC Reinforced Cu-Fe based composites and preparation method thereof
CN109722560B (en) * 2018-12-03 2020-09-08 江西理工大学 ZrC reinforced Cu-Fe-based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3112697B2 (en) Thermal spray powder mixture
JPS6343441B2 (en)
JP2617752B2 (en) Abrasive material and method for producing the same
US4596746A (en) Powder sheet for sintering
US4131459A (en) High temperature resistant cermet and ceramic compositions
WO1996036746A1 (en) Process for producing sputtering target
US20060078749A1 (en) Composite material consisting of intermetallic phases and ceramics and production method for said material
JPH04501137A (en) Titanium diboride/titanium alloy metal matrix/microcomposite fired products
JPH11508201A (en) Coating method, manufacturing method of ceramic-metal structure, bonding method, and structure formed by them
JPH02118002A (en) Sintered laminating body for copper alloy powder sheet
SU1704634A3 (en) Thermal reduction powdered mixture for flame spraying of coatings
JP4234865B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JPH0249361B2 (en)
JP2001303233A (en) Member for molten metal excellent in erosion resistance to molten metal and producing method thereof
JP4119667B2 (en) Composite cermet powder and method for producing the same
JP3130220B2 (en) Conductor roll for electroplating line and method of manufacturing the same
JP4177467B2 (en) High toughness hard alloy and manufacturing method thereof
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JPS63143236A (en) Composite boride sintered body
JPH02159359A (en) Chromium carbide-metal composite powder
JPS6244507A (en) Method for sintering and joining hard sintered alloy film to steel stock
JP2004018886A (en) Corrosion resistant and wear resistant member and method of producing the same
JP2000096109A (en) Composite sintered frictional material and its production
JPS60206557A (en) Joining method of cast iron and cermet
JPS6247409A (en) Autogenous alloy powder sheet and method for reforming surface of metallic base material using said sheet