JPH02113921A - Production of nonporous tube bundle - Google Patents

Production of nonporous tube bundle

Info

Publication number
JPH02113921A
JPH02113921A JP63267684A JP26768488A JPH02113921A JP H02113921 A JPH02113921 A JP H02113921A JP 63267684 A JP63267684 A JP 63267684A JP 26768488 A JP26768488 A JP 26768488A JP H02113921 A JPH02113921 A JP H02113921A
Authority
JP
Japan
Prior art keywords
tube
tubes
sleeve
melting point
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63267684A
Other languages
Japanese (ja)
Inventor
Junji Nobe
野辺 淳嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP63267684A priority Critical patent/JPH02113921A/en
Publication of JPH02113921A publication Critical patent/JPH02113921A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/66Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by liberation of internal stresses, e.g. shrinking of one of the parts to be joined
    • B29C65/68Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by liberation of internal stresses, e.g. shrinking of one of the parts to be joined using auxiliary shrinkable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5227Joining tubular articles for forming multi-tubular articles by longitudinally joining elementary tubular articles wall-to-wall (e.g. joining the wall of a first tubular article to the wall of a second tubular article) or for forming multilayer tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • B29C66/91445Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91933Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined higher than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/725General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs
    • B29C66/7252General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs hollow-walled
    • B29C66/72523General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs hollow-walled multi-channelled or multi-tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • B29L2031/601Multi-tubular articles, i.e. composed of a plurality of tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To perform uniform fusion with good sealability by winding a stretching member thermally shrunk at the time of the heating and fusion around the outermost periphery of the end part of a tube bundle, in which sleeves or films made of fluoroplastics having m.p. lower than that of the tube are interposed, before heating. CONSTITUTION:Both end parts 10a, 10a of the bundles 10 having stretching members 11 wound therearound are arranged so as to be respectively brought into contact with the inner protruding edges 12a formed to molds 12, 12. Next, both molds 12, 12 are heated by a heater to heat the end parts 10a of the tubes 10 to the m.p. thereof or higher and, in this state, the end parts 10a of a plurality of the tubes 10 are mutually brought to a pressure contact state through molten sleeves 20 made of fluoroplastics by the shrinkage of the stretching member 11. Next, this fused tubes is taken out of the mold to cool the end parts 10a of the heated tubes 10. Cooling is performed by natural standing to cool or by spraying cooling air to perform forcible air cooling and continued until temp. is lowered at least to the m.p. of the material quality constituting the tubes 10 or lower.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、機械的強度、耐熱性ならびに耐薬品性に優れ
るが接青が困難なポリテトラフルオロエチレン製チュー
ブの端部外周を相互に良好に固着せしめ、主として熱交
換器などに用いられるチューブ束を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention provides a method for successfully adhering the outer peripheries of the ends of polytetrafluoroethylene tubes, which have excellent mechanical strength, heat resistance, and chemical resistance, but are difficult to attach to blue. , mainly relates to a method for manufacturing tube bundles used in heat exchangers and the like.

発明の技術的背景ならびにその問題点 従来、熱交換用チューブとしては、ステンレス鋼、ニッ
ケル、銅などの金属製熱交換用チューブが広く用いられ
てきた。このような金属製熱交換用チューブは、大きな
熱伝導率ならびに総括伝熱係数を資しているが、酸液な
どに対する耐腐食性が充分ではなく、また表面にスケー
ルが付召しやすいという問題点があった。
Technical background of the invention and its problems Conventionally, heat exchange tubes made of metals such as stainless steel, nickel, and copper have been widely used as heat exchange tubes. Although such metal heat exchange tubes have high thermal conductivity and overall heat transfer coefficient, they do not have sufficient corrosion resistance against acid solutions, and they also have the problem of being susceptible to scale formation on the surface. was there.

このような問題点を解決するため、最近では、フッ素樹
脂製の熱交換用チューブが開発されている。このフッ素
樹脂製熱交換用チューブは、優れた耐熱性、耐薬品性を
Hするとともに、表面が滑らかであるためスケールが付
着しにくいという利点をも在している。ところが、この
ようなフッ素樹脂製熱交換用チューブを用いて熱交換器
を構成するには、多数のフン素樹脂製熱交換用チューブ
を束ねて両端を熱融着して一体化する必要かあるが、こ
の一体化が困難であった。
In order to solve these problems, heat exchange tubes made of fluororesin have recently been developed. This fluororesin heat exchange tube has excellent heat resistance and chemical resistance, and also has the advantage that scale is difficult to adhere to because the surface is smooth. However, in order to construct a heat exchanger using such fluororesin heat exchange tubes, it is necessary to bundle a large number of fluororesin heat exchange tubes and heat-seal both ends to integrate them. However, this integration was difficult.

フッ素樹脂製チューブの端部外周を一体に束ねてフッ素
樹脂製熱交換用チューブ束を製造するための従来の方法
としては、特公昭46−4228号公報に示すように、
多数のフッ素樹脂製チューブを引き揃え、その端部分を
ボリテ]・ラフルオロエチレン樹脂(PTロシ)等の硬
いスリーブ内に挿入し5、この端部分の内部に加熱流体
を導入し、次に、加熱されたチューブの内外間に圧力差
を加え、それによりチューブ端部夕を周相り−を/)ニ
カム状に変形して融着させると共にスリーブ内面にも一
体に融着させてシール構造とする方法か提案されている
As shown in Japanese Patent Publication No. 46-4228, a conventional method for manufacturing a fluororesin heat exchange tube bundle by bundling the outer peripheries of the ends of fluororesin tubes together is as follows:
A large number of fluororesin tubes are aligned, the end portions of which are inserted into a hard sleeve made of fluoroethylene resin (PT Rossi), etc.5, heated fluid is introduced into the end portions, and then, A pressure difference is applied between the inside and outside of the heated tube, thereby deforming the circumference of the tube end into a nicomb-like shape and fusing it together, and also welding it to the inner surface of the sleeve, creating a seal structure. Is there a proposed way to do this?

しか1.なから、このようなチューブ束の製造方法にあ
っては、各チューブの管径が小さい場合等に特に加熱流
体の流通が各チューブ毎に不均一になる可能性があり、
これによって各チューブの加熱が不均一になり、各チュ
ーブ端部外周相互の融着が不均一になるという問題点が
あった。もし各チューブの加熱が不均一になると、各チ
ューブ端部のうち加熱が過大な部分では、チューブの粘
度が低下し過ぎてチューブの潰れ現象が生し、加熱が不
十分の部分ては融着が不完全となり隙間が生してシール
性が不十分となる虞れがあった。したがって、このよう
にして得られたチューブ束を熱交換用チューブとして用
いた場合には、チューブ内の流体の流れが吸いと共に水
密か十分てなく、満足する熱交換性能をiXIられない
虞があった。
Only 1. Therefore, in such a method of manufacturing a tube bundle, there is a possibility that the distribution of the heating fluid may become uneven among the tubes, especially when the tube diameter of each tube is small.
This poses a problem in that the heating of each tube becomes non-uniform and the outer periphery of each tube ends becomes non-uniformly fused to each other. If the heating of each tube is uneven, the viscosity of the tube will decrease too much in the overheated part of each tube end, causing the tube to collapse, and the part with insufficient heating will cause fusion. There was a risk that the sealing performance would be insufficient due to incomplete sealing and gaps. Therefore, when the tube bundle obtained in this way is used as a heat exchange tube, there is a risk that the fluid flow inside the tube will not be sufficiently watertight due to suction, and a satisfactory heat exchange performance may not be achieved. Ta.

そこで、このような不都合を解消するために、特開昭6
1−21..524号公報に示すように、束ねたチュー
ブの端部を外周側からヒータて加熱すると」1にチュー
ブの端面を加熱板で加熱するようにしたチューブ束の製
造方法か提案されている。
Therefore, in order to eliminate such inconvenience,
1-21. .. As shown in Japanese Patent No. 524, a method for manufacturing a tube bundle is proposed in which the ends of the bundled tubes are heated from the outer periphery using a heater.

しかしながら、このようなチューブ束の製造方法にあっ
ては、束ねられたチューブの端部外周側面からヒータで
加熱するようにしているため、チューブ束の外周側と中
心部分とで温度分布が生し、依然として、各チューブ端
部外周i[1互の融着が不均一になったり、チューブが
潰れたり、シール性かも十分になるという問題点があっ
た。
However, in this method of manufacturing tube bundles, since the heater is used to heat the bundled tubes from the outer peripheral side of the ends, there is a temperature distribution between the outer peripheral side and the center of the tube bundle. However, there were still problems in that the outer periphery of each tube end was not uniformly fused to each other, the tube was crushed, and the sealing performance was insufficient.

特にPTFEはフッ素樹脂の中でも極めて耐熱性、耐婁
品性および非粘着性に優れ、熱交換用チューブの+4質
として好適に用いられることが期待されるが、その非r
u tり性故に、各チューブの端部を融11させること
か困難であり、各チューブが潰れることなく、しかも各
チューブ端部間に1シ;目g]なく PTFE製チュー
ブ束を製造することは従来ては困難であった。
In particular, PTFE has excellent heat resistance, durability, and non-adhesiveness among fluororesins, and is expected to be suitably used as a +4 material for heat exchange tubes.
Due to its bendability, it is difficult to melt the ends of each tube, and to manufacture a PTFE tube bundle without crushing each tube and without having a hole between each tube end. has traditionally been difficult.

発明のtII’l′J 本宅明は、上記のような従来技市に伴う問題点を解決し
ようとするものであって、束ねられたPTF E製非多
孔質チューブ束の端部外周を、チューブの1111曲や
漬れを生じさせることなく、均一に、しかもシール性良
く斤いに融むさせることができ、したがって耐薬品性に
優れた熱交換器等に好適に用いられる非多孔質チューブ
束の製造方法を提供することを目的としている。
The present invention aims to solve the problems associated with the conventional technology as described above, and the purpose of the present invention is to remove the outer periphery of the end of the bundled PTF E non-porous tube bundle from the tube. 1111 A non-porous tube bundle that can be melted uniformly and with good sealing properties without causing bending or soaking, and is therefore suitable for use in heat exchangers, etc. with excellent chemical resistance. The purpose is to provide a manufacturing method for.

発明の概要 かかる目的を達成するために、本発明は、束ねられた複
数のポリテトラフルオロエチレン樹脂製非多孔質チュー
ブの各端部間の少なくとも一部に、当該チューブを(1
■成する(イ質の融点より低い融点を有する材質により
構成されたフッ素樹脂製スリーブもしくはフィルムを介
在させ、当該束ねられたチューブの端部最外周に前記チ
ューブを構成する材質の融点と同等以上の融点を有しか
つ少なくとも前記チューブの融点温度において収縮する
延伸部材を巻回し、この延伸部材が巻回された前記チュ
ーブの端部を加熱手段によりチューブの融点以上に加熱
し、前記各チューブの端部外周を前記スリーブを介して
圧接状聾で相互に融着させることを特徴としている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a plurality of bundled polytetrafluoroethylene resin non-porous tubes, at least in part between each end thereof.
(A fluororesin sleeve or film made of a material with a melting point lower than that of the material is interposed, and the outermost periphery of the bundled tubes has a melting point equal to or higher than the melting point of the material constituting the tubes.) A stretched member having a melting point of It is characterized in that the outer peripheries of the end portions are fused to each other in a pressure-welded manner via the sleeve.

前記延伸部材は、596以上好ましくは5〜500%の
延伸率で一軸延伸されたテープであることが好ましい。
The stretching member is preferably a tape uniaxially stretched at a stretching ratio of 596 or more, preferably 5 to 500%.

このような本発明に係る非多孔質チューブ束の製造方法
によれば、非多孔質チューブの端部外周に、当該チュー
ブの融点より低い融点のフッ素樹脂製スリーブもしくは
フィルムを介在させ、このフッ素樹脂製スリーブもしく
はフィル14が介在されたチューブ東端部最外周に、チ
ューブの加熱w告時に熱収縮する延伸部材を巻回した後
に、jJII熱するようにしているため、当該延伸部材
の収縮力により各チューブ端部外周が圧接された状態で
、しかも端部が漬れることなく、熱融着することになる
。つまり、フッ素樹脂製スリーブもしくはフィルムを介
r[させる工程と、この端部を延伸部材により巻回して
束ねる工程と、その後に当該端部をIJII熱する■−
程とにより、均一でしかもシール性良くバ巾着された非
多孔質チューブ束をiすることかできる。
According to the method for manufacturing a non-porous tube bundle according to the present invention, a sleeve or film made of a fluororesin having a melting point lower than that of the tube is interposed around the outer periphery of the end of the non-porous tube, and the fluororesin is Since a stretched member that heat-shrinks when the tube is heated is wound around the outermost periphery of the eastern end of the tube where the plastic sleeve or fill 14 is interposed, it is heated. The tube ends are heat-sealed in a state where the outer periphery is pressed and the ends are not soaked. In other words, there is a step of interposing a fluororesin sleeve or film, a step of winding and bundling this end with a stretching member, and then heating the end at a high temperature.
Through this process, it is possible to create a non-porous tube bundle that is uniformly wrapped and has good sealing properties.

したかって、本発明によれば、非多孔質チューブの端部
外周を接着剤を使用することなく確実に、しかも容易に
一体化することができ、熱交換器等に使用し得る耐薬品
性および耐熱性に優れた非多孔質チューブ束を、優れた
生産性をもって提供することができる。
Therefore, according to the present invention, the outer periphery of the end of a non-porous tube can be reliably and easily integrated without using an adhesive, and has chemical resistance and properties that can be used in heat exchangers, etc. A non-porous tube bundle with excellent heat resistance can be provided with excellent productivity.

発明の詳細な説明 以−F、本発明を図面に示す実施例に基づき詳細に説明
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will now be described in detail based on embodiments shown in the drawings.

第1図は本発明の一実施例に係る非多孔質チューブ束の
製造方法を示す工程図、第2図は同非多孔質チューブ束
の製造方法を示す断面図、第3図は同実施例のチューブ
端部を示す要部断面図、第4図は同実施例のチューブ端
面を示す正面図、第5図は同実施例のスリーブ融着工程
を示す要部断面図、第6図は本発明の他の実施例を示す
断面図、第7図は本発明の他の実帷例に係るチューブ束
の横断面図である。また第8図は、一般的な非多孔質チ
ューブ束を使用した熱交換チューブを示す正面図である
FIG. 1 is a process diagram showing a method for manufacturing a non-porous tube bundle according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a method for manufacturing the same non-porous tube bundle, and FIG. 3 is a process diagram showing the same embodiment. 4 is a front view showing the tube end surface of the same embodiment. FIG. 5 is a sectional view of the main part showing the sleeve fusion process of the same embodiment. FIG. 7 is a cross-sectional view of a tube bundle according to another embodiment of the present invention. Further, FIG. 8 is a front view showing a heat exchange tube using a general non-porous tube bundle.

本発明に係る方法にて製造される非多孔質チューブ束を
構成する各チューブの材質としては、フッ素樹脂の中で
も特に耐熱性、耐薬品性および非枯青性に優れたポリテ
トラフルオロエチレン樹脂(PTFI′:)が用いられ
る。
The material of each tube constituting the non-porous tube bundle manufactured by the method according to the present invention is polytetrafluoroethylene resin (polytetrafluoroethylene resin, which has particularly excellent heat resistance, chemical resistance, and non-blighting property among fluororesins). PTFI':) is used.

本発明の一実施例においては、まず第3図に示すように
、複数の非多孔質チューブ10の端部1(]aの外周に
フッ素樹脂製スリーブ20を外嵌する(第1図に示すフ
ッ素樹脂製スリーブ介在上程1)  このフッ素樹脂製
スリーブ20は、チューブ10を構成する材質の励1.
へより低い融点をaする熱溶融性フッ素樹脂により(&
代する。チューブ10はPTFE製なので、フン素樹脂
製スリーブ2〔]は、PTFEU外のフッ素樹脂、たと
えば、テトラフルオロエチレンとパーフルオロアルキル
ビニルエーテルとの共重合体(以下、PFAと言う)、
テトラフルオロエチレンと/\キサフルオロプロピレン
との共重合体(以■;、FEPと言う)、テトラフルオ
ロエチレンとへキサフルオロプロピレンとパーフルオロ
ビニルエチルとの共重合体(以下、EPEと言う)、エ
チレンとテトラフルオロエチレンとの共重合体(以’F
SETFEと言う)などで(I■成され、好ましくはP
FAで構成される。
In one embodiment of the present invention, first, as shown in FIG. 3, a fluororesin sleeve 20 is fitted around the outer periphery of the end portion 1(]a of a plurality of non-porous tubes 10 (as shown in FIG. 1). Intervention of Fluororesin Sleeve 1) This fluororesin sleeve 20 is made of a material that constitutes the tube 10.
(&
substitute. Since the tube 10 is made of PTFE, the fluororesin sleeve 2 [] is made of a fluororesin other than PTFEU, such as a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether (hereinafter referred to as PFA),
A copolymer of tetrafluoroethylene and /\xafluoropropylene (hereinafter referred to as FEP), a copolymer of tetrafluoroethylene, hexafluoropropylene and perfluorovinylethyl (hereinafter referred to as EPE), Copolymer of ethylene and tetrafluoroethylene (hereinafter referred to as 'F')
SETFE) etc., preferably P
Consists of FA.

また、このフッ素樹脂製スリーブ20の形状は、第3図
に示すように、チューブ10の外径形状にほぼ等しいか
あるいは僅かに大きい内径を有する円筒形状であっても
良い。しかも、スリーブ20は、須めスリーブ状に形成
されたものでも良いか、チューブ10の端部にフン素樹
脂製フィルムを巻回することにより構成しても良い。さ
らに、チューブ10の断面形状か異形管形状(円管以外
の形状を言う)である場合には、前記フッ素樹脂製スリ
ーブ20の内径形状は、チューブ10の外径形状に対応
した形状であることが好ましい。
Further, the shape of the fluororesin sleeve 20 may be a cylindrical shape having an inner diameter approximately equal to or slightly larger than the outer diameter of the tube 10, as shown in FIG. Moreover, the sleeve 20 may be formed in the shape of a closed sleeve, or may be constructed by winding a fluorine resin film around the end of the tube 10. Further, if the tube 10 has a cross-sectional shape or an irregular tube shape (meaning a shape other than a circular tube), the inner diameter shape of the fluororesin sleeve 20 should correspond to the outer diameter shape of the tube 10. is preferred.

また、フッ素樹脂製スリーブ20の外嵌長さは、第2図
に示すように、チューブ10の端部1.Oaを加熱する
加熱幅りに応じて決定され、この加熱幅りが長い場合に
は、当該フッ素樹脂製スリーブ20の外嵌長さもそれに
応じて長くすることが好ましく、場合によっては、この
フッ素樹脂製スリーブ20を予めチューブ10の全長に
わたって外嵌しておいても良い。
Further, the length of the fluororesin sleeve 20 that is fitted onto the outside of the tube 10 is as shown in FIG. It is determined according to the heating width for heating Oa, and if this heating width is long, it is preferable to increase the external fitting length of the fluororesin sleeve 20 accordingly. The sleeve 20 may be fitted over the entire length of the tube 10 in advance.

次に、第2,4図に示すように、このようにしてフッ素
樹脂製スリーブ20が外嵌された複数のチューブ10の
端部1.Oaを集束する(第1図に示す集束工程2)。
Next, as shown in FIGS. 2 and 4, the ends 1. of the plurality of tubes 10 are fitted with the fluororesin sleeves 20 in this manner. Focus Oa (focusing step 2 shown in FIG. 1).

すると、束ねられたチューブ10の端部間にスリーブ2
0が介在される。この後に、予め所定の割合に延伸加工
されたテープ形状の延伸部材11を、前記集束したチュ
ーブ10の端部10a最外周に巻回する(第1図に示す
延伸部材巻回上程3)。この延伸部材11の巻回幅gは
、前述したフッ素樹脂製スリーブ20と同様に、後述す
る加熱融着工程4における加熱幅りに応じて決定され、
この加熱幅りが長い場合には、当該延伸部材11の巻回
幅gもそれに応して長くすることが好ましい。また、こ
の延伸部材11の巻同厚さは、チューブが溶融時に溶出
しない程度であることが好ましい。
Then, the sleeve 2 is inserted between the ends of the bundled tubes 10.
0 is interposed. Thereafter, a tape-shaped stretching member 11 that has been previously stretched to a predetermined ratio is wound around the outermost circumference of the end portion 10a of the bundled tubes 10 (upper stage 3 of winding the stretching member shown in FIG. 1). The winding width g of this stretched member 11 is determined according to the heating width in the heat fusing step 4 described later, similarly to the fluororesin sleeve 20 described above.
When this heating width is long, it is preferable that the winding width g of the stretching member 11 is also increased accordingly. Further, it is preferable that the thickness of the stretching member 11 is such that the tube does not elute when melted.

なお、このような延伸部材巻回工程時に、後工程での延
伸部材除去工程を行ない易くするために、チューブ束の
端部10a外周に延伸部材1〕を巻回する前に、端部1
0a外周にたとえばアルミ箔、などの金属箔なとの剥離
用部材を巻回するようにしても良い。
In addition, during such a stretching member winding process, in order to facilitate the stretching member removal process in the subsequent process, before winding the stretching member 1] around the outer periphery of the end 10a of the tube bundle, the end 1
A peeling member such as a metal foil such as aluminum foil may be wound around the outer periphery of 0a.

この延伸部材11の材質としては、チューブ10を構成
する材質の融点と同等以上の融点を存し、延伸性に富む
ものであれば何でも良いが、例えばPTFEなどが好ま
しく用いられる。前記延伸部材11はたとえば一軸延伸
もしくは二軸延伸加工されたものであり、その延伸率は
5%以上好ましくは5〜500%であることが望ましい
。前記延伸率の選択は、チューブ10の収縮率、接召性
、さらには加熱条件等によって好適に行なえば良く、加
熱融着工程4において当該延伸部材11が収縮し、チュ
ーブ10の端部1.Oaに適当な圧接力を与えることか
できれば良い。
The material for the stretched member 11 may be any material as long as it has a melting point equal to or higher than the melting point of the material constituting the tube 10 and is highly stretchable. For example, PTFE is preferably used. The stretched member 11 is, for example, uniaxially stretched or biaxially stretched, and the stretching ratio is preferably 5% or more, preferably 5 to 500%. The stretching ratio may be suitably selected depending on the shrinkage ratio of the tube 10, the approachability, heating conditions, etc. In the heat fusing step 4, the stretching member 11 contracts, and the end portion 1. It is only necessary to apply an appropriate pressure to Oa.

次に、このように延伸部材11が巻回されたチューブ1
0の端部1.Oaを、この非多孔質チューブ10を構成
するPTFEの融点以上の温度にて加熱する(第1図に
示す加熱融着工程4)。
Next, the tube 1 around which the elongated member 11 is wound in this way
0 end 1. Oa is heated at a temperature higher than the melting point of PTFE constituting this non-porous tube 10 (thermal fusing step 4 shown in FIG. 1).

一般的に前記加熱7m度は、チューブ10の熱劣化及び
延伸部材11の除去性等を考慮すれば、327〜400
℃であることが好ましい。
Generally, the heating temperature of 7 m degrees is 327 to 400 degrees, considering thermal deterioration of the tube 10 and removability of the stretched member 11.
Preferably it is ℃.

また、この加熱手段としては、加熱流体を用いて加熱す
る手段(特公昭46−4.228号公報)や、加熱ヒー
タによりチューブ束10の外周から加熱する手段(特開
昭60−259.898号公報)等の種々の手段が採用
され得るが、たとえば以Fの方法により行なわれる。
Further, as this heating means, there is a means for heating using a heating fluid (Japanese Patent Publication No. 46-4.228), a means for heating the tube bundle 10 from the outer periphery with a heater (Japanese Patent Publication No. 60-259.898). For example, the following method F is used.

第2図に示すように、延伸部材11が巻回されたチュー
ブ10の束の両端部10a、10aをそれぞれ金型12
.12の下部に形成された内方突縁1.2aに当接させ
るように設置する。次に、第2図に示す状態で前記両金
型12.12を図示しないヒータ等により加熱する。な
お、金型12は、チューブ10を設置する前に予め加熱
しておいても良いことは言うまでもない。
As shown in FIG. 2, both ends 10a, 10a of the bundle of tubes 10 around which the stretching member 11 is wound are placed in a mold 12.
.. It is installed so as to be brought into contact with the inner protrusion 1.2a formed at the lower part of 12. Next, both molds 12 and 12 are heated by a heater or the like (not shown) in the state shown in FIG. It goes without saying that the mold 12 may be heated in advance before the tube 10 is installed.

この加熱状態が所定時間続いて、チューブ10の端部1
. Oaが融点以上に加熱された状態で、延伸部材11
の収縮によって複数のチューブ10の端部10aが、溶
融されたフッ素樹脂製スリーブ20を介して、杆1互に
■接され仔いに融dする。
This heating state continues for a predetermined time, and the end 1 of the tube 10
.. With Oa heated above its melting point, the stretching member 11
Due to the contraction, the ends 10a of the plurality of tubes 10 are brought into contact with the rods through the fused fluororesin sleeve 20 and fused together.

その後、これを金型12から取出して、加熱されたチュ
ーブ10の端部10aを冷却する。たたし、金型12か
ら取り出さずに冷却してもよい。この冷却は、自然放冷
、あるいは冷風を吹付けることによる強制空冷等によっ
て行なわれ、少なくともチューブ10を構成する材質の
融点以下に温度が低下するまでこの冷却を行なう。
Thereafter, it is taken out from the mold 12, and the heated end 10a of the tube 10 is cooled. However, it may be cooled without being taken out from the mold 12. This cooling is performed by natural cooling or forced air cooling by blowing cold air, and this cooling is performed at least until the temperature drops below the melting point of the material forming the tube 10.

このような加熱融着は、チューブ10の両端部10a 
、  1− Oaを同時に行なうようにしてら良いが、
一端部]、、 Oaを加熱融着した後に冷却し、その後
他端部]、Oaを同様な方法によって加熱融着するよう
にしても良い。これらの選択は、例えば、前記チューブ
】0の長さなどによって適宜行なえば良く、チューブ1
0の長さが長い場合にあ、っては、加熱装置か大型化す
るため、後者の方法、つまりチューブ10を一端毎に加
熱継若する方法によれば良い。
Such heat fusion is performed at both ends 10a of the tube 10.
, 1- It would be better to do Oa at the same time,
One end], Oa may be heat-fused and then cooled, and then the other end] and Oa may be heat-fused by a similar method. These selections may be made appropriately depending on, for example, the length of the tube 0, etc.
If the length of the tube 10 is long, the size of the heating device will be increased, so the latter method, that is, the method of heating and repeating the tube 10 at each end, may be used.

このように加熱すると、非多孔質チューブ10の端部1
.Oaは、溶融状聾となったフッ素樹脂製スリーブ20
を介して、延伸部材11の収縮力により互いに任接され
た状態で融着する。その際に、P ’r F E製の非
多孔質チューブ10自体は、融点以上に加熱されたとし
ても、溶融粘度が高いために、このチューブ10の端部
10aが潰れることはない。
When heated in this way, the end 1 of the non-porous tube 10
.. Oa is a fused fluororesin sleeve 20
are fused to each other in an arbitrary state by the contraction force of the stretching member 11. At this time, even if the non-porous tube 10 made of P'rFE itself is heated above its melting point, the end portion 10a of the tube 10 will not be crushed due to its high melt viscosity.

次に、このようにして加熱融着された複数のチューブ1
0の端部10a外周に巻回された前記延伸部オイ11を
取り除く (第1図に示す延伸部材除去工程5)ことが
好ましい。但し、延伸部材かPTFEの場合は、スリー
ブ20と相互に融着するので必ず(7も延伸部材11を
取り除く1必要かない。というのも延伸部材11が、後
述する外枠スノーブ14になり得るからである。
Next, a plurality of tubes 1 that have been heat-fused in this way are
It is preferable to remove the stretched portion oil 11 wound around the outer periphery of the end portion 10a of the wire (stretched member removal step 5 shown in FIG. 1). However, in the case of the stretched member or PTFE, since it is fused to the sleeve 20, it is not necessary to remove the stretched member 11. This is because the stretched member 11 can become the outer frame snow 14, which will be described later. It is.

この後、当該延伸部材11によって一体化された前記チ
ューブ10の端部10a外周に、外枠スJ−ブ14を挿
入し、加熱融着する(第1図に示すスリーブ融着工程6
)。この状態を第5図に示す。この外枠スリーブ14は
、複数束ねられたチューブ10本体の外周部分とほぼ同
一外径形状もしくはそれより大きい外径形状に形成され
たもので、その材質とり、では、チューブ10およびス
リーブ20と加熱時に融着するものであることが好まし
い。例えば、スリーブ20がPFA。
Thereafter, the outer frame sleeve 14 is inserted into the outer periphery of the end 10a of the tube 10 integrated by the stretching member 11, and heat fused (sleeve fusion step 6 shown in FIG. 1).
). This state is shown in FIG. The outer frame sleeve 14 is formed to have an outer diameter that is approximately the same as or larger than the outer circumferential portion of the main body of the tube 10 that is bundled together. It is preferable that the material be fused at times. For example, the sleeve 20 is made of PFA.

FEP、ETFEなどのフッ素樹脂製であることから、
外枠スリーブ14はやはりそれぞれPFA。
Because it is made of fluororesin such as FEP and ETFE,
The outer frame sleeves 14 are each made of PFA.

FEP、ETFE、、PTFEなどのフッ素樹脂製であ
ることが好ましい。
It is preferably made of fluororesin such as FEP, ETFE, or PTFE.

この外枠スリーブ1−4に挿入されたチューブ10の加
熱は、前記加熱融着工程4の説明で述べたような従来公
知の加熱手段(例えば、特公昭46−4,228号公報
に開示された加熱流体を使用する加熱方法や、特開昭6
0−259,898号公報に開示された加熱ヒータを使
用(、た加熱方法)によっても可能であるが、たとえば
以ドに示すような方法によっても行なうことかできる。
The tube 10 inserted into the outer frame sleeve 1-4 is heated by a conventionally known heating means (for example, the method disclosed in Japanese Patent Publication No. 46-4,228) as described in the explanation of the heat-fusion step 4. Heating methods using heated fluids and JP-A-6
Although it is possible to use the heating method disclosed in Japanese Patent No. 0-259,898, it is also possible to use the method shown below.

つまり、前記加熱融着工程4と同様に第5図に示すよう
に、まず外枠スリーブが外嵌されたチューブの束の両端
部10a、10aをそれぞれ金型12,1.2の下部に
形成された内方突縁12aに当接させるように設置する
。次に、この第5図に示す状態で前記両全型1.2.1
2を加熱する。このときの加熱温度は、チューブ10、
スJ−ブ20及び外枠スリーブ14の材質によって決定
され、例えば、スリーブ20がPFAであり、外枠スリ
ーブ14がPTFEである場合には、−327〜400
℃が良い。
That is, as in the heat fusing step 4, as shown in FIG. It is installed so as to be in contact with the inner protrusion 12a. Next, in the state shown in FIG. 5, both the molds 1.2.1
Heat 2. The heating temperature at this time is the tube 10,
It is determined by the materials of the tube 20 and the outer frame sleeve 14. For example, if the sleeve 20 is PFA and the outer frame sleeve 14 is PTFE, the range is -327 to 400.
Good temperature.

このようにして外枠スリーブ融着工程6を終了したチュ
ーブ束10を、前記金型12から取出し、その加熱され
た両端部1.0aを冷却する。この冷却は、前記加熱融
着工程4と同様に、自然放冷ても、あるいは強制冷却で
も良く、チューブ1o、スリーブ20及び外枠スリーブ
14を構成する材質の融点以下に温度が低下するまで当
該冷却を行つO このような本発明の一実施例に係るチューブ束の製造方
法によれば、複数の非多孔質チューブ10の端部1.O
a外周に、当該チューブ1oを構成する材質の融点より
低い融点を有する材質により(1■成されたフッ素樹脂
製スリーブ20をそれぞれ外嵌し、これらチューブ10
の端部10aを束ねることにより、各チューブ端部10
a間にスリーブ20を介(Eさせ、その後、束ねられた
チューブ10の端部10aの最外周に前記チュブ10を
構成する材質の融点と同等以上の融点を有しかつ少なく
とも前記チューブ10の融点温度において収縮する延伸
部キイ11を巻回し、この延伸部材コ1か巻回された前
記チューブ10の端部1、Oaを、金型12により加熱
するようにしたため、この加熱融着の際にチューブ10
の端部10aが屈曲することなく、延伸部材1]の収縮
力によってPTFE製チューブ20がスリーブ20を介
して互いに圧接されて融着することになる。
The tube bundle 10 that has undergone the outer frame sleeve fusion step 6 in this manner is taken out from the mold 12, and its heated ends 1.0a are cooled. Similar to the heating and fusing step 4, this cooling may be performed by natural cooling or forced cooling until the temperature drops below the melting point of the materials constituting the tube 1o, the sleeve 20, and the outer frame sleeve 14. According to the tube bundle manufacturing method according to the embodiment of the present invention, the ends 1. of the plurality of non-porous tubes 10 are cooled. O
A fluororesin sleeve 20 made of a material having a melting point lower than that of the material constituting the tube 1o (1
By bundling the ends 10a of each tube end 10
A sleeve 20 is interposed between the ends 10a of the bundled tubes 10, and then a material having a melting point equal to or higher than the melting point of the material constituting the tube 10 and at least the melting point of the tube 10 is placed on the outermost periphery of the end 10a of the bundled tubes 10. The stretched part key 11, which contracts at high temperatures, is wound around the stretched part key 11, and the end 1, Oa, of the tube 10, which is wound around the stretched part key 1, is heated by the mold 12. tube 10
The PTFE tubes 20 are pressed together and fused to each other via the sleeve 20 by the contraction force of the elongated member 1 without bending the end portion 10a of the elongated member 1.

さらに、本実施例にあっては、前記延伸部材11を除去
すると共に、さらにこの後に、前記延伸部材11の収縮
力によって一体化された前記チューブ束10の端部1.
Oaに夕1枠スリーブ14を外嵌し、金型12によって
加熱融着するようにしたため、6チユーブ10が圧接状
態で外枠スリーブ14と融着することになる。
Furthermore, in this embodiment, the stretching member 11 is removed and, after this, the end portion 1.
Since the outer frame sleeve 14 is fitted onto the outer frame Oa and heat-fused by the mold 12, the six tubes 10 are fused to the outer frame sleeve 14 in a press-contact state.

したかって、本実施例によれば、各チューブの端部外周
を、接着剤を使用することなく確実に、しかも最少の工
程にて一体化することができ、耐薬品性および耐熱性に
優れた熱交換器に好適に用いられる非多孔質チューブ束
をi)ることかできる。
Therefore, according to this embodiment, the outer periphery of the end of each tube can be reliably integrated without using adhesives and with a minimum number of steps, and the tube has excellent chemical resistance and heat resistance. i) A non-porous tube bundle suitable for use in a heat exchanger can be obtained.

なお、本発明は、上述した一実施例に限定されるもので
はなく、種々に改変することが可能である。
Note that the present invention is not limited to the one embodiment described above, and can be modified in various ways.

例えば、第6図に示すように、複数のPTFE製非多孔
質チューブ10の端部10a外周に、当該チューブ10
を構成する材質の融点より低い融点をHする材質によっ
て構成されたフッ素樹脂製スリーブ20をそれぞれ外嵌
しくフッ素樹脂製スリーブ介在工程) これらチューブ
10の端部10aを揃えるように集束する(集束工程)
と共に、その集束した端部10a外周に外枠スリーブ1
4を外嵌した後に、この外枠スリーブ14のにから延伸
部材11を巻回し、このチューブ】Oの端部10aを加
熱して融着させる(加熱融着工程)ようにしても良い。
For example, as shown in FIG. 6, a tube 10
A fluororesin sleeve 20 made of a material having a melting point H lower than that of the material constituting the tubes is fitted over each tube (fluororesin sleeve interposition step).The tubes 10 are bundled so that their ends 10a are aligned (collection step) )
At the same time, an outer frame sleeve 1 is attached to the outer periphery of the converged end 10a.
4 may be wound around the outer frame sleeve 14, and the end portion 10a of the tube 10 may be heated and fused (heat fusion process).

外枠スリーブとしては、シートを巻回してスリーブ状と
したものを用いてもよい。このとき、前記外枠スリーブ
】4、チューブ10及び延伸部材11、フッ素樹脂製ス
リーブ20は、前記第一実施例と同様な材質により構成
することが可能であり、また、当該実施例における加熱
工程の加熱手段及び加熱条件も前記第一実施例と同様の
条件にて実施することができる。
As the outer frame sleeve, a sleeve formed by winding a sheet may be used. At this time, the outer frame sleeve 4, the tube 10, the elongated member 11, and the fluororesin sleeve 20 can be made of the same materials as in the first embodiment, and the heating process in this embodiment can be The heating means and heating conditions can also be carried out under the same conditions as in the first embodiment.

このように構成した場合にあっても、加熱融着工程にお
いてチューブ10の端部]、Oaが加熱されると、この
チューブ10の端部10aの最外周に巻回した延伸部材
11の収、縮力によって、チューブ10の端部10a及
びその外周に外嵌された外枠スリーブ14が同時に圧接
された状態で縮径して、溶融状轡となったスリーブ20
を介して、互いに融着することになる。したがって、本
実施例にあっては、前記第一実施例の場合に比して、ス
リーブ融着工程6を省略し11#るという長所がある。
Even in the case of such a configuration, when the end portion of the tube 10], Oa is heated in the heat fusion step, the stretching member 11 wound around the outermost circumference of the end portion 10a of the tube 10 is retracted; Due to the compression force, the end 10a of the tube 10 and the outer frame sleeve 14 fitted around the outer periphery of the tube 10 are simultaneously pressed together and contracted in diameter, resulting in a molten sleeve 20.
They will be fused together through this. Therefore, this embodiment has an advantage over the first embodiment in that the sleeve fusing step 6 is omitted and the process 11 is performed.

また、本発明によれば、第7図に示すように、谷チュー
ブ10の6端部にスリーブ20を介rにさせることなく
、複数本集束されたチューブ10の外周にスリーブ20
aを介在させ、最終的に集束されたチューブ10束の最
外周に(図示しない)延伸部材を蓚回するようにしても
良い。その場合、スリーブ20aの厚さは、加熱した際
に溶徹されたスリーブ20aがチューブ10間の隙間に
密に充填される程度であれは良い。スリーブ20aの4
4質は、前述したスリーブ20と同様であり、その形状
は、予めスリーブ状に成形されたしのでも、複数のチュ
ーブ10の外周にフィルムを巻回することにより+1.
z成したものであっても良い。このような実施例によれ
ば各チューブ10の端部にスリーブを装着する必要かな
いにもかかわらず、前述した実施例と同様な作用を存す
るため製造工程上大変都合が良い。
Further, according to the present invention, as shown in FIG.
A may be interposed, and a stretching member (not shown) may be wound around the outermost periphery of the 10 bundles of tubes that are finally bundled. In this case, the thickness of the sleeve 20a may be such that the sleeve 20a melted during heating can densely fill the gap between the tubes 10. Sleeve 20a-4
The four qualities are the same as the sleeve 20 described above, and although the shape is previously formed into a sleeve shape, by winding a film around the outer periphery of the plurality of tubes 10, +1.
It may also be a z-formed one. According to this embodiment, although it is not necessary to attach a sleeve to the end of each tube 10, it has the same effect as the embodiment described above, and is very convenient in terms of manufacturing process.

さらに、上述した各実施例においては、真直くなチュー
ブの両端部を束ねて加熱融着するように構成したが、本
発明はこれに限定されることなく、屈曲したチューブの
端部を束ねて加熱融着することら本発明の範囲である。
Further, in each of the above-described embodiments, the ends of the straight tubes are bundled and heat-sealed, but the present invention is not limited to this, and the ends of the bent tubes are bundled and heat-sealed. This is within the scope of the present invention since it is heat fused.

また、この場合には、一方のチューブの端部を一束に束
ね、他方の端部を二東以上に束ねることも本発明の範囲
である。
Further, in this case, it is also within the scope of the present invention to bundle one end of the tube into a bundle and bundle the other end into two or more bundles.

このようにして集束された非多孔質チューブ束10は、
第8図に示すようにして熱交換チューブとして用いられ
る。なお、第8図において14は外枠スリーブである。
The non-porous tube bundle 10 collected in this way is
It is used as a heat exchange tube as shown in FIG. In addition, in FIG. 8, 14 is an outer frame sleeve.

発明の詳細 な説明してきたように、本発明によれば、接着剤を使用
することなく、かつチューブ端部が屈曲あるいは潰れる
ことなく、均一に、シール性良く、しかも容易にチュー
ブ束の端部を融着させることができるという優れた効果
を奏する。その結果、このような非多孔質チューブ束を
熱交換器に適用すれば、耐薬品性、耐熱性、耐蝕性、シ
ール性に富んだ熱交換チューブを得ることができる。
As described in detail, according to the present invention, the ends of a tube bundle can be easily sealed uniformly, with good sealing properties, without using an adhesive, and without bending or crushing the ends of the tubes. It has the excellent effect of being able to fuse and bond. As a result, if such a non-porous tube bundle is applied to a heat exchanger, a heat exchange tube with excellent chemical resistance, heat resistance, corrosion resistance, and sealing performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る非多孔質チューブ束の
製造方法を示す工程図、第2図は同非多孔質チューブ束
の製造方法を示す断面図、第3図は同実施例のチューブ
端部を示す要部断面図、第4図は同実施例のチューブ端
面を示す正面図、第5図は同実施例のスリーブ融着工程
を示す要部断面図、第6図は本発明の他の実施例を示す
断面図、第7図は本発明のさらにその他の実施例を示す
チューブ束の横断面図、第8図は一般的な非多孔質チュ
ーブ束を使用した熱交換チューブを示す正面図である。 1・・・フッ素樹脂製スリーブ。フィルム介在工程、2
・・・集束工程、3・・・延伸部材巻回工程、4・加熱
融着工程、5・・・延伸部材除去工程、10・・非多孔
質チューブ、10a・・・端部、11・・・延伸部材、
12・・金型(加熱手段)、20.20a・・・フッ素
樹脂製スリーブ。
FIG. 1 is a process diagram showing a method for manufacturing a non-porous tube bundle according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a method for manufacturing the same non-porous tube bundle, and FIG. 3 is a process diagram showing the same embodiment. 4 is a front view showing the tube end surface of the same embodiment. FIG. 5 is a sectional view of the main part showing the sleeve fusion process of the same embodiment. 7 is a cross-sectional view of a tube bundle showing still another embodiment of the present invention; FIG. 8 is a heat exchange tube using a general non-porous tube bundle. FIG. 1... Fluororesin sleeve. Film intervention process, 2
...Bundling step, 3.Stretched member winding step, 4.Heat fusing step, 5.Stretched member removal step, 10.Non-porous tube, 10a.End portion, 11..・Stretching member,
12... Mold (heating means), 20.20a... Fluororesin sleeve.

Claims (1)

【特許請求の範囲】 1)束ねられた複数のポリテトラフルオロエチレン樹脂
製非多孔質チューブの各端部間の少なくとも一部に、当
該チューブを構成する材質の融点より低い融点を有する
材質により構成されたフッ素樹脂製スリーブもしくはフ
ィルムを介在させ、当該束ねられたチューブの端部最外
周に前記チューブを構成する材質の融点と同等以上の融
点を有しかつ少なくとも前記チューブの融点温度におい
て収縮する延伸部材を巻回し、この延伸部材が巻回され
た前記チューブの端部を加熱手段によりチューブの融点
以上に加熱し、前記各チューブの端部外周を前記スリー
ブを介して圧接状態で相互に融着させることを特徴とす
る非多孔質チューブ束の製造方法。 2)前記延伸部材は、5%以上の延伸率で一軸延伸され
た延伸テープであることを特徴とする請求項第1項に記
載の非多孔質チューブ束の製造方法。
[Claims] 1) At least a portion between each end of a plurality of bundled non-porous polytetrafluoroethylene resin tubes is made of a material having a melting point lower than the melting point of the material constituting the tubes. A stretched fluororesin sleeve or film is interposed on the outermost periphery of the end of the bundled tubes, and the material has a melting point equal to or higher than that of the material constituting the tubes and shrinks at least at the melting point temperature of the tubes. The member is wound, and the end of the tube around which the elongated member is wound is heated to a temperature higher than the melting point of the tube by a heating means, and the outer periphery of the end of each tube is fused to each other in a press-contact state via the sleeve. A method for producing a non-porous tube bundle, characterized by: 2) The method for manufacturing a non-porous tube bundle according to claim 1, wherein the stretching member is a stretched tape uniaxially stretched at a stretching rate of 5% or more.
JP63267684A 1988-10-24 1988-10-24 Production of nonporous tube bundle Pending JPH02113921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63267684A JPH02113921A (en) 1988-10-24 1988-10-24 Production of nonporous tube bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63267684A JPH02113921A (en) 1988-10-24 1988-10-24 Production of nonporous tube bundle

Publications (1)

Publication Number Publication Date
JPH02113921A true JPH02113921A (en) 1990-04-26

Family

ID=17448095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63267684A Pending JPH02113921A (en) 1988-10-24 1988-10-24 Production of nonporous tube bundle

Country Status (1)

Country Link
JP (1) JPH02113921A (en)

Similar Documents

Publication Publication Date Title
US4929293A (en) Welding fluoropolymer pipe and fittings
US4197149A (en) Method for joining together shaped bodies of polytetrafluoroethylene
JP3143754B2 (en) Method for producing deformed tube made of fiber-reinforced thermoplastic resin
JPH02113921A (en) Production of nonporous tube bundle
JPH0292522A (en) Manufacture of nonporous tube bundle
JPS60259898A (en) Heat exchanger made from fluorine resin and manufacture thereof
JPS6259655B2 (en)
JP4650708B2 (en) Tube focusing body
JPH05116233A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH058298A (en) Method and apparatus for fusion-welding thermoplastic resin
JPH01131392A (en) Fluoroplastic tube bundle and manufacture thereof
JPS6221524A (en) Manufacture of synthetic resin tube bundle for heat exchanger
JPH05278110A (en) Joining method for synthetic resin pipe
JPH05318595A (en) Connecting method for synthetic resin tube
JPH011520A (en) Method for manufacturing tube bundles
JPH0252024A (en) Manufacture method for porous hollow yarn membrane bundle
JPH10217321A (en) Molding method of composite material
JPH0315077B2 (en)
JP2566290B2 (en) Fluororesin bonded article
JPS5849382B2 (en) Tube manufacturing method
JPH03136832A (en) Method for thermal welding of plastic pipe
JP4011763B2 (en) Hose flange forming method
JPS6372523A (en) Manufacture of heat shrinkable sheet
JPS6026703B2 (en) Manufacturing method of synthetic resin coated pipe
JPS636396A (en) Repair method for multitube type fluororesin-made heat exchanger