JPH02111665A - Production of dissolution loss-resistant bn ceramics - Google Patents

Production of dissolution loss-resistant bn ceramics

Info

Publication number
JPH02111665A
JPH02111665A JP63264967A JP26496788A JPH02111665A JP H02111665 A JPH02111665 A JP H02111665A JP 63264967 A JP63264967 A JP 63264967A JP 26496788 A JP26496788 A JP 26496788A JP H02111665 A JPH02111665 A JP H02111665A
Authority
JP
Japan
Prior art keywords
powder
oxygen
water
ceramics
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63264967A
Other languages
Japanese (ja)
Other versions
JP2742801B2 (en
Inventor
Masumi Nakajima
真澄 中島
Sumihiko Kurita
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP63264967A priority Critical patent/JP2742801B2/en
Publication of JPH02111665A publication Critical patent/JPH02111665A/en
Application granted granted Critical
Publication of JP2742801B2 publication Critical patent/JP2742801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride

Abstract

PURPOSE:To provide a BN ceramics having excellent dissolution loss resistance against solvents comprising melted metals or inorganic materials by using a water-insoluble oxygen-containing BN powder as a raw material for the BN component and calcining a mixture of the BN powder with an oxygen-reducing component. CONSTITUTION:A water-insoluble oxygen-containing BN powder is used as a raw material powder for the BN component and a mixture of the BN powder with the above-mentioned oxygen-reducing component such as a metal or ceramics is calcined. The amount of the water-insoluble oxygen in the BN powder is preferably 1-15%. The reducing component is preferably a metal such as Al, Si, Ca, Mg, Ti, Zr, Cr, W or Mo or a compound thereof (e.g., nitride, carbide, boride or silicide).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、金属あるいは無機材料の溶融体に対する耐溶
損性に優れたBN系セラミツクの製造方法に係わるもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for manufacturing BN-based ceramics having excellent corrosion resistance against melts of metals or inorganic materials.

〈従来の技術〉 BN系セラミック焼結体は、その原料粉末として微粉砕
されたBN粉末が用いられる。
<Prior Art> A BN-based ceramic sintered body uses finely ground BN powder as its raw material powder.

8N粉末は、その粉砕工程で特別な場合を除いて、工業
的な方法では不可避的に酸化され、粉末中に酸素が混入
される。
8N powder is inevitably oxidized in industrial methods, except in special cases during the grinding process, and oxygen is mixed into the powder.

これらの酸素で、水溶解性の化合物、例えば8203等
の酸化物の形で存在するものは、水洗あるいはアルコー
ルで洗うことにより除去することができるが、水あるい
はアルコールで洗っても除去できない酸素弁も存在する
Among these oxygen compounds, water-soluble compounds, such as those present in the form of oxides such as 8203, can be removed by washing with water or alcohol, but oxygen valves that cannot be removed by washing with water or alcohol. also exists.

これらの酸素は粉末中で、どの様な形態で存在するかは
不明であるが、少くとも、これらは焼成過程で一部B2
03あるいはB2O3化合物に変化する。
It is unknown in what form these oxygens exist in the powder, but at least some of them are converted into B2 during the firing process.
03 or B2O3 compound.

焼成組織中に8203 、あるいはこれらの化合物が存
在すると、金属やガラス溶融体に激しく浸蝕される。
If 8203 or any of these compounds is present in the fired structure, it will severely corrode the metal or glass melt.

金属やガラスの溶融体に対して耐蝕性を良くするために
は組織中に8203 、あるいはこれらの化合物が現出
するのを防ぐ必要がある。
In order to improve corrosion resistance against molten metals and glass, it is necessary to prevent 8203 or these compounds from appearing in the tissue.

〈発明が解決する問題点〉 本発明は、かかる問題点に鑑みてなされたもので、その
目的とする所は、酸素の残る粉末を使用しながら、なお
かつ焼成1]織中にB2O3あるいは、B203系化合
物が発生するのを防止することができるBN系セラミツ
クの新しい製造法を提供するにある。
<Problems to be Solved by the Invention> The present invention has been made in view of the above-mentioned problems, and its purpose is to use a powder that retains oxygen, and to reduce the amount of B2O3 or B203 during weaving. The object of the present invention is to provide a new method for producing BN ceramics that can prevent the generation of BN-based ceramics.

く問題点を解決するための手段〉 本発明者は、上記問題点に関して鋭意研究を行った結果
、次の様な知見を得るに到った。
Means for Solving the Problems> As a result of intensive research into the above problems, the inventors have come to the following knowledge.

■ 水不溶性の酸素を含むBN粉末を使用して耐溶損性
BN系セラミックを’l造するに際し、該粉末と共に金
属あるいはセラミックから成る該酸素の還元成分を混合
、焼成すると、溶湯に対する耐蝕性が著しく向上するこ
と。
■ When manufacturing a corrosion-resistant BN-based ceramic using water-insoluble oxygen-containing BN powder, if a metal or ceramic reducing component of the oxygen is mixed with the powder and fired, the corrosion resistance against molten metal increases. to improve significantly.

■ 酸素の存在は、本来耐蝕性に対してはマイナスの方
向に作用するものであるが、還元成分と共に焼成すると
、これがプラスの方向に転化され、むしろ酸素の存在は
、存在しない場合よりも、耐溶損性に関しては有利に作
用すること。
■ The presence of oxygen originally has a negative effect on corrosion resistance, but when fired with a reducing component, this is converted into a positive direction, and in fact, the presence of oxygen has a negative effect on corrosion resistance. It has an advantageous effect on corrosion resistance.

■ 水不溶性酸素と還元成分の共存下では、本来焼結性
の悪いBN粉末も、焼結性が向上し、常圧焼結でも強度
が著しく高くなること。
■ In the coexistence of water-insoluble oxygen and reducing components, even BN powder, which originally has poor sintering properties, improves its sinterability and its strength becomes significantly higher even when sintered under normal pressure.

■ BN粉末中の水不溶性酸素の母は、1〜15%が好
しいこと。
(2) The water-insoluble oxygen content in the BN powder is preferably 1 to 15%.

■ 還元成分としては、Ae、Si、ca、Mg、Ti
■ Reducing components include Ae, Si, ca, Mg, and Ti.
.

Zr、Cr、W、MO等の金属あるいは、これらの化合
物から成るセラミックが好しいこと。
Ceramics made of metals such as Zr, Cr, W, MO, or compounds of these are preferred.

以上の知見を得た。The above findings were obtained.

本発明は、以上の知見を基になされたものである。The present invention has been made based on the above findings.

く作 用〉 8N粉末中に存在する酸素は、通常焼成過程で8203
、あるいは8203化合物に転化して焼成組織中に表わ
れる。
Effect〉 Oxygen present in 8N powder usually becomes
, or converted into 8203 compound and appears in the fired structure.

一方還元成分が共存する状態では、酸素はこれらの成分
を優先的に結合し、B2O3に比して高融点、高耐蝕性
化合物に転化される。
On the other hand, in the presence of reducing components, oxygen preferentially binds these components and is converted into a compound with a higher melting point and higher corrosion resistance than B2O3.

酸素が存在するにもかかわらず、むしろ本発明では、耐
溶損性が向上するのは、以上の様な理由によるものと思
われる。
It is thought that the reason why the melting resistance is improved in the present invention despite the presence of oxygen is due to the reasons mentioned above.

本発明の水不溶性酸素とは、水あるいは水と相溶性のあ
る液体で、洗浄しても除去できない酸素成分のことを意
味し、これらがBN粉末中でどの様な形態で存在するか
は不明であるが、少くともB2O3系の水溶性化合物で
ないことだけは確かである。
The water-insoluble oxygen of the present invention refers to an oxygen component that cannot be removed even by washing in water or a liquid compatible with water, and it is unknown in what form these exist in the BN powder. However, at least it is certain that it is not a B2O3-based water-soluble compound.

B203あるいはこれらの化合物は、水洗によって確実
に除去できるからである。
This is because B203 or these compounds can be reliably removed by washing with water.

8N粉末中の好しい酸素量は 1%〜15%。The preferred amount of oxygen in the 8N powder is 1% to 15%.

下限未満では、十分な耐溶損性が得られず、また上限を
越えると8203還元効率が低くなるので好しくない。
If it is less than the lower limit, sufficient erosion resistance cannot be obtained, and if it exceeds the upper limit, the 8203 reduction efficiency will be lowered, which is not preferable.

また、酸素は還元成分と共存すると、BNの焼結性が著
しく促進されるが、下限値未満では、十分な焼結強度が
jqら礼ない。
Further, when oxygen coexists with a reducing component, the sinterability of BN is significantly promoted, but if it is less than the lower limit, sufficient sintering strength is not achieved.

還元成分としては、金属としては、AQ、Ca、Mg、
Ti、Zr、Cr、W、Mo等、セラミックとシテハ、
ARN、Si3 N4 、TiN、ZrN等の窒化物、
B4 C1SiC,TiC,zrc等の炭化物、ZrB
2 、T+ B2、AlB2 、CaB6等の硼化物、
MoSi、WSi2、CrSi2、[343i等の硅化
物が使用できる。
As reducing components, metals include AQ, Ca, Mg,
Ti, Zr, Cr, W, Mo, etc., ceramic and shiteha,
Nitride such as ARN, Si3 N4, TiN, ZrN,
B4 C1SiC, TiC, carbide such as zrc, ZrB
2, T+ B2, AlB2, CaB6 and other borides,
Silicides such as MoSi, WSi2, CrSi2, [343i, etc. can be used.

これらの成分は、対象となる溶融体の種類とBN系セラ
ミック焼結体の適応箇所に応じて適宜変えられる。
These components can be changed as appropriate depending on the type of molten body and the location to which the BN ceramic sintered body is applied.

溶融体が溶鋼の場合、BNrA末の量10〜95%、B
N扮末中の水不溶性酸素量1〜15%、還元成分5〜9
0%、その他の成分O〜85%、適応箇所がT、D、 
、1〜リベ等の溶鋼ナベ壁を通しての横からの連続測温
用保護管(厚み7mm)として用いる場合、測温時間が
〜12hr未満では、BN粉末の量50〜95%、水不
溶性r!i素吊1〜10%、還元成分5〜50%、その
他の成分O〜45%で十分てあり、36hr未満ては、
BN粉末の呈10〜95%、水不溶性酸素量1〜15%
、還元成分5〜90%、その他の成分O〜85%が好し
い。
When the melt is molten steel, the amount of BNrA powder is 10 to 95%, B
Amount of water-insoluble oxygen in N dressing powder 1-15%, reducing component 5-9
0%, other components O to 85%, applicable locations are T, D,
When used as a protection tube (thickness 7 mm) for continuous temperature measurement from the side through the wall of a molten steel pan such as 1~Ribe, if the temperature measurement time is less than ~12 hr, the amount of BN powder is 50~95%, water-insoluble r! It is sufficient to use 1 to 10% of the basic component, 5 to 50% of the reducing component, and 0 to 45% of the other components, and for less than 36 hours,
BN powder appearance: 10-95%, water-insoluble oxygen content: 1-15%
, the reducing component is preferably 5 to 90%, and the other components are preferably 0 to 85%.

溶鋼種がリムド鋼の場合、還元成分としては、A1、A
fLN、Aj!82 、Si、Si3 N4 、B4 
C,5iC1ZrB2 、Ti82 、CaB6が好し
く、その他の成分として、Y203 、Mg0XCab
、5i02 、Ae203、TiO2か好しい。
When the molten steel type is rimmed steel, the reducing components are A1, A
fLN,Aj! 82, Si, Si3 N4, B4
C,5iC1ZrB2, Ti82, CaB6 are preferred, and other components include Y203, Mg0XCab
, 5i02, Ae203, and TiO2 are preferred.

溶鋼種がキルト鋼、特にAf−Kill!=ed!fl
liの場合、還元成分としてAfLN、B4 C,Si
3 N4 、ZrN、その他の成分として5i02 、
Af203 、Y203 、fVIQo、TiO2、Z
rO2−8i02が好り、イ。
The type of molten steel is quilt steel, especially Af-Kill! =ed! fl
In the case of li, AfLN, B4 C, Si as reducing components
3N4, ZrN, 5i02 as other components,
Af203, Y203, fVIQo, TiO2, Z
I like rO2-8i02.

溶融体が凝固を開始し、少くとも凝固部を有する箇所、
例えば横連続用のブレークリングやセラミックモールド
、ガラス溶融体用ノズルの様に、耐溶損性と共に耐熱衝
撃性が要求されるものには、BNの粉末のff170〜
97%、BN粉末中の水不溶性酸素の♀1〜10%、還
元成分3〜30%、その他の成分O〜27%、還元成分
としては、AuN、Si3 N4 、B4 C5ZrB
2 、TiB2が好しく、その他の成分としては、Y2
03.5i02、八ρ203が好しい。
a point where the molten body starts to solidify and has at least a solidified part;
For example, for items that require not only melting damage resistance but also thermal shock resistance, such as break rings for horizontal continuity, ceramic molds, and nozzles for glass melt, BN powder with f170~
97%, ♀1-10% of water-insoluble oxygen in BN powder, reducing component 3-30%, other components O-27%, reducing components include AuN, Si3 N4, B4 C5ZrB
2, TiB2 is preferable, and other components include Y2
03.5i02, 8ρ203 are preferred.

還元成分のωは、少くとちBN粉末中の酸素を化合物と
して固定する口は必要であり、反応に関与した量の残り
は、BNと複合セラミックを形成することになる。
The reducing component ω is necessary to fix the oxygen in the BN powder as a compound, and the remaining amount involved in the reaction forms a composite ceramic with BN.

例えば、還元成分としてAffiNを加えた場合、AI
Nが過剰な場合、焼成組織中には、BNとAQ203、
又は、Aj2o3とAi>Nの複合酸化物、AJ2Nの
複合セラミック相が形成されることになる。
For example, when AffiN is added as a reducing component, AI
When N is excessive, BN and AQ203,
Alternatively, a composite oxide of Aj2o3 and Ai>N, or a composite ceramic phase of AJ2N is formed.

〈実施例〉 実施例1(還元成分として窒化アルミを用いた場合)酸
素含有量6.5%のBN (h−BN)粉末に窒化アル
ミニウムを4.9wt%、8.2wt%、16.4wt
%を添加し、プレス成形によって、30mX30mX5
mの試片を得た。
<Example> Example 1 (when aluminum nitride is used as the reducing component) Aluminum nitride was added to BN (h-BN) powder with an oxygen content of 6.5% at 4.9 wt%, 8.2 wt%, and 16.4 wt%.
% and press molding to make 30mX30mX5
A sample of m was obtained.

これをN2雰囲気で1800℃で焼結した。This was sintered at 1800°C in a N2 atmosphere.

それぞれの焼結体のX線回折パターンを第1図、第2図
、第3図に示す。
The X-ray diffraction patterns of each sintered body are shown in FIGS. 1, 2, and 3.

第1図はAIN4.9%、第2図はAIN8.2%、第
3図はAfiN16.4%のものである。
Figure 1 is for AIN of 4.9%, Figure 2 for AIN of 8.2%, and Figure 3 for AfiN of 16.4%.

第1〜3図のX線回折結果より4.9%、8.2%/V
Nでは、共にAF203の存在が認められ、AβN存在
しなかった。
4.9%, 8.2%/V from the X-ray diffraction results in Figures 1 to 3
In both cases, the presence of AF203 was observed, but no AβN was present.

一方、AINが過剰な16.4%では、AIN、A17
ONの存在が認められ、これにはAl203は認められ
なかった。
On the other hand, at 16.4% where AIN is excessive, AIN, A17
The presence of ON was observed, and no Al203 was observed in this.

4.9%、8.2%AβNでは、AINはBN中の酸素
との反応に消費され、次の反応が起ったものと推測され
る。
At 4.9% and 8.2% AβN, it is presumed that AIN was consumed in the reaction with oxygen in BN, and the next reaction occurred.

A17N+[0]→A1203 一方A17Nが過剰な16.4%のものでは、AfN+
O→AN203、Al203 +AfN→AゑONの反
応でAFONが生成したものと思われる。
A17N+[0]→A1203 On the other hand, in the case where A17N is excessive at 16.4%, AfN+
It is thought that AFON was generated by the reaction of O→AN203, Al203 +AfN→AeON.

上表から明らかな様に、AINが増加すると強度、密度
共に高くなっている。
As is clear from the above table, as AIN increases, both strength and density increase.

これは、酸素と還元成分の共存下では、BNの焼結性が
促進されることを示している。
This indicates that the sinterability of BN is promoted in the coexistence of oxygen and reducing components.

因みに、BN粉末中に酸素(水不溶性)がほとんど存在
しない0.03%[01のBN粉末について同じテスト
を行った所、4.9%、8.2%、16.4%AβNの
いずれにもAl203 、Al0Nの存在は確認されな
かった。
By the way, when we conducted the same test on BN powder of 0.03% [01], which has almost no oxygen (water-insoluble) in BN powder, it was found that 4.9%, 8.2%, and 16.4% AβN However, the presence of Al203 and Al0N was not confirmed.

1550’Cの溶1ll(0,2%のキルト鋼)への浸
漬テストでは、第4図の様な結果になった。
In the immersion test in 1 liter of 1550'C melt (0.2% quilt steel), the results were as shown in Figure 4.

耐溶損性については、[0]とAj2Nが共存すると顕
箸に効果があることが認められた。
Regarding the erosion resistance, it was found that the coexistence of [0] and Aj2N is effective for making chopsticks.

実施例2 MfS含有ff16.2%のBNI末を用い、BN−A
fN−3i02系複合セラミックスを実施例1と同様に
作製した。
Example 2 Using BNI powder containing MfS and ff16.2%, BN-A
An fN-3i02-based composite ceramic was produced in the same manner as in Example 1.

X線回折の結果Af203−8i02又は、3iQ2−
AffN−A9.203その他の同定不明相が出現した
X-ray diffraction results Af203-8i02 or 3iQ2-
AffN-A9.203 Other unidentified phases appeared.

上記サンプルと同様な組成にて、10φX100j!の
棒を作製し、5uS−304約1500’Cx0.5h
r十0.02%AJを浸漬した結果、溶損は全くなかっ
た。
With the same composition as the above sample, 10φX100j! Make a rod of 5uS-304 about 1500'C x 0.5h
As a result of immersing r10.02% AJ, there was no melting loss at all.

因みに、No、3のサンプル【ごてBN粉末中に酸素(
水不溶性)が、はとんど存在しない0.03%[0]の
BN粉末について同じテストを行った所、激しく溶損さ
れた。
By the way, sample No. 3 [oxygen (
When the same test was performed on 0.03% [0] BN powder, which has almost no water insolubility, it was severely eroded away.

8.2%A(N、第3図は、16.4%AINのX線回
折パターンである。
8.2% A(N, Figure 3 is the X-ray diffraction pattern of 16.4% AIN.

第4図は、4.9%、8.2%、16.4%A[Nの溶
鋼浸漬テスj・結果を示したものである。
FIG. 4 shows the results of a molten steel immersion test of 4.9%, 8.2%, and 16.4% A[N.

特許出願人  株式会社 香 蘭 社 又、No、2、No、3は、上記鋼種について全く濡れ
ずブレークリング、モールドに適応したところ、全く問
題なく使用できた。
Patent applicant Koran Co., Ltd. Shamata No. 2, No. 3 did not get wet at all when applied to break rings and molds for the above-mentioned steel types, and could be used without any problems.

〈発明の効果〉 (1)本来、悪影響をもたらす[0]の存在が、還元成
分との共存下で、機械的性質、耐溶損性か共に向上する
<Effects of the Invention> (1) The presence of [0], which originally has an adverse effect, improves both mechanical properties and erosion resistance in the coexistence with a reducing component.

(2)低IT!度粉末によりBN焼結体のコストダウン
がはかれ工業的価値が大きい。
(2) Low IT! The use of hard powder reduces the cost of BN sintered bodies and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、4.9%AINのX線回折パターン、第2図
はも ?4場1Cも−) \   〜   ( ☆ ら ?ζ l 丁続ン市正出 (自発) 昭和63年11月17日 1j1八′[FT艮官 殿 1、i用′1の表示 昭和63年1?i許願第264967弓2、発明の名称 耐ニアfJQ1(L B N系ヒラミックの製造方法3
、ン市j[を刀る者 事1′1との関係 持直出願人 6、補正の内容 明細書箱9頁7行目から14行目 とあるを と訂正する。
Figure 1 shows the X-ray diffraction pattern of 4.9% AIN, and Figure 2 shows the X-ray diffraction pattern of 4.9%AIN. 4 place 1C also -) \ ~ (☆ Ra? ζ l Dingzokuinichi Masade (self-motivated) November 17, 1985 1j18' [FT station official 1, display of '1 for i'1 1988 ?i Patent Application No. 264967 Bow 2, Name of Invention Durable Near fJQ1 (L B N Series Hiramic Manufacturing Method 3
, Nichij [Relationship with person 1'1] Applicant 6 corrects the statement in lines 7 to 14 on page 9 of the amended statement of contents.

Claims (3)

【特許請求の範囲】[Claims] (1)耐溶損性BN系セラミックの製造に際し、該BN
成分の原料粉末として水不溶性の酸素を含むBN粉末を
使用すると共に、金属あるいはセラミックから成る該酸
素の還元成分を混合して焼成することを特徴とする耐溶
損性BN系セラミックの製造方法。
(1) When producing melt-resistant BN ceramic, the BN
A method for producing a melt-resistant BN-based ceramic, characterized in that a water-insoluble BN powder containing oxygen is used as a raw material powder, and a metal or ceramic reducing component for the oxygen is mixed and fired.
(2)上記BN粉末中の水不溶性酸素の量が、1〜15
%である請求項(1)に記載の製造方法。
(2) The amount of water-insoluble oxygen in the BN powder is 1 to 15
%. The manufacturing method according to claim (1).
(3)上記還元成分がAl、Si、Ca、Mg、Ti、
Zr、Cr、W、Mo等の金属あるいは、これらの化合
物である請求項(1)に記載の製造方法。
(3) The above reducing component is Al, Si, Ca, Mg, Ti,
The manufacturing method according to claim 1, wherein the material is a metal such as Zr, Cr, W, or Mo, or a compound thereof.
JP63264967A 1988-10-19 1988-10-19 Method for producing erosion resistant BN ceramics Expired - Lifetime JP2742801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63264967A JP2742801B2 (en) 1988-10-19 1988-10-19 Method for producing erosion resistant BN ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63264967A JP2742801B2 (en) 1988-10-19 1988-10-19 Method for producing erosion resistant BN ceramics

Publications (2)

Publication Number Publication Date
JPH02111665A true JPH02111665A (en) 1990-04-24
JP2742801B2 JP2742801B2 (en) 1998-04-22

Family

ID=17410695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63264967A Expired - Lifetime JP2742801B2 (en) 1988-10-19 1988-10-19 Method for producing erosion resistant BN ceramics

Country Status (1)

Country Link
JP (1) JP2742801B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139260A (en) * 1980-03-31 1981-10-30 Shinagawa Refract Co Ltd Nozzle for casting
JPS59169982A (en) * 1983-03-17 1984-09-26 黒崎窒業株式会社 Boron nitride containing refractories
JPS632858A (en) * 1986-06-21 1988-01-07 黒崎窯業株式会社 Manufacture of boron nitride-containing refractories
JPS6374965A (en) * 1986-09-18 1988-04-05 黒崎窯業株式会社 Manufacture of boron nitrid-containing highly resistant refractories

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139260A (en) * 1980-03-31 1981-10-30 Shinagawa Refract Co Ltd Nozzle for casting
JPS59169982A (en) * 1983-03-17 1984-09-26 黒崎窒業株式会社 Boron nitride containing refractories
JPS632858A (en) * 1986-06-21 1988-01-07 黒崎窯業株式会社 Manufacture of boron nitride-containing refractories
JPS6374965A (en) * 1986-09-18 1988-04-05 黒崎窯業株式会社 Manufacture of boron nitrid-containing highly resistant refractories

Also Published As

Publication number Publication date
JP2742801B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US5728638A (en) Metal/ceramic composites containing inert metals
AU602355B2 (en) A method of making ceramic articles
PL158311B1 (en) Method of obtaining a composite material with metallic matrix
PL153691B1 (en) Method of making ceramic composite ware
US4957779A (en) Method for producing a protective layer on a ceramic body
CA1313749C (en) Method for producing self-supporting ceramic bodies with graded properties
JP2829229B2 (en) Silicon nitride ceramic sintered body
JP2821748B2 (en) BN normal pressure sintered ceramics with excellent erosion resistance
CS275884B6 (en) Manufacturing process of self-supporting ceramic composite structure
JPH02111665A (en) Production of dissolution loss-resistant bn ceramics
US5060831A (en) Material for covering a casting shroud
JP2519016B2 (en) Manufacturing method of self-supporting ceramic containing body
JPH08119743A (en) Silicon nitride sintered compact excellent in strength at high temperature and its production and member for metal-melting bath
EP0396779A1 (en) Boron nitride ceramic having excellent resistance against fusing damage
JPS593083A (en) Graphite crucible
JPH05194033A (en) Silicon carbide composite material and method for its production
EP0261054B1 (en) Method for producing self-supporting ceramic bodies with refined microstructures
JPS6397344A (en) Externally inserted refractory for submerged nozzle for continuous casting
JPH073426A (en) Heat resistant flame sprayed material and heat resistant member having flame sprayed coating
JPH05148042A (en) Monolithic refractory for casting
JPS597668B2 (en) High-strength heat-resistant metal boride/zirconium oxide composite ceramics
Jeong et al. Al 2 O 3/Al COMPOSITES FABRICATED BY REACTION BETWEEN SINTERED SiO 2 AND MOLTEN Al
Hankin UNIVERSITY AND FOSECO COMBINE TO PRODUCE A UNIQUE CERAMIC MATERIAL
JPS5857393B2 (en) High-strength titanium nitride/metal boride composite ceramics
JPS6044271B2 (en) Tough ceramic tool material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11