JPH0211084B2 - - Google Patents

Info

Publication number
JPH0211084B2
JPH0211084B2 JP21275683A JP21275683A JPH0211084B2 JP H0211084 B2 JPH0211084 B2 JP H0211084B2 JP 21275683 A JP21275683 A JP 21275683A JP 21275683 A JP21275683 A JP 21275683A JP H0211084 B2 JPH0211084 B2 JP H0211084B2
Authority
JP
Japan
Prior art keywords
light
measured
objective lens
optical
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21275683A
Other languages
Japanese (ja)
Other versions
JPS60104206A (en
Inventor
Keiichi Yoshizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21275683A priority Critical patent/JPS60104206A/en
Publication of JPS60104206A publication Critical patent/JPS60104206A/en
Publication of JPH0211084B2 publication Critical patent/JPH0211084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2416Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of gears

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ほぼ回転対称な形状を持つ自由曲
面、又は非球面のレンズやミラーの表面形状を、
高精度に、光学的に非接触で測定する3次元測定
器に関するもので、特にレーザ光を対物レンズ
で、被測定物体面上に集光し、その反射光の周波
数の被測定物体面の移動によつて生ずるドプラー
シフトを検出して、面形状を測定する光学測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the surface shape of a free-form surface or an aspheric lens or mirror having an approximately rotationally symmetrical shape.
It is related to a three-dimensional measuring device that performs optical non-contact measurement with high precision, and in particular focuses laser light onto the surface of the object to be measured using an objective lens, and moves the surface of the object to be measured at the frequency of the reflected light. This invention relates to an optical measurement device that measures surface shape by detecting Doppler shift caused by .

従来例の構成とその問題点 光ヘテロダイン法を利用したレーザ測長器とし
ては、ヒユーレツトパツカード社の製品がある
(例えば、HP5526A)。これは、現在、簡使かつ、
最も精度の高い測長器として知られている。ま
た、これを3次元移動台に取付けて、3次元測定
器や、精密旋盤として使用できることが知られて
いる。
Conventional configurations and their problems As a laser length measuring device using the optical heterodyne method, there is a product manufactured by Heuretsu Patscard Co., Ltd. (for example, HP5526A). This is currently simple and
It is known as the most accurate length measuring device. It is also known that this can be attached to a three-dimensional moving table and used as a three-dimensional measuring device or a precision lathe.

ところで、従来装置では、移動台にコーナーキ
ユーブやミラーを取付け、移動台の動きのみをレ
ーザ測長器で測定したに溜まり、3次元測定器の
場合は、何らかの測定プローグによつて被測定物
の面形状に沿つて、移動台を移動させる。ところ
が、測定プローグは接触型と非接触型があるが、
いずれも測定精度が、レーザ測長器の精度に比べ
一桁程度落ちる。
By the way, with conventional devices, a corner cube or mirror is attached to the moving table, and only the movement of the moving table is measured with a laser length measuring device. The moving table is moved along the surface shape. However, there are contact and non-contact types of measurement probes.
In either case, the measurement accuracy is about an order of magnitude lower than that of a laser length measuring device.

一方、上記の欠点を解消する為、被測定物体面
の形状を、レーザ測長法で直接測定することを可
能とした装置として、特願昭57−189761号や、特
願昭58−62444号に記載の装置がある。しかしこ
れらの装置では、最大、30゜程度の傾きを持つ面
までしか測定できない。
On the other hand, in order to eliminate the above-mentioned drawbacks, Japanese Patent Application No. 57-189761 and Japanese Patent Application No. 58-62444 have proposed a device that can directly measure the shape of the surface of an object to be measured using the laser length measurement method. There is a device described in . However, these devices can only measure surfaces with a maximum inclination of about 30 degrees.

又、非球面レンズ面のような回転対称な面を、
従来法によつて、X−Y−Z座標を測定した場
合、測定データを円筒座標系に変換する必要があ
る。
Also, rotationally symmetrical surfaces such as aspherical lens surfaces,
When measuring X-Y-Z coordinates using conventional methods, it is necessary to convert the measurement data into a cylindrical coordinate system.

発明の目的 本発明は、上記の従来法の欠点を解消するもの
で、被測定物体面の形状を、レーザ測長法で直接
測定することによつて高精度測定を可能とすると
共に、非球面レンズ面等の、ほぼ回転対称な被測
定物を、傾いた軸を中心に回転させることによ
り、従来法の2倍、即ち、最大±60゜の傾きを持
つ面の測定まで可能とし、さらに、直接円筒座標
系による測定データを出すことができる光学測定
装置を得ることを目的とする。
Purpose of the Invention The present invention eliminates the drawbacks of the conventional methods described above, and enables high-precision measurement by directly measuring the shape of the object surface to be measured using the laser length measurement method. By rotating a nearly rotationally symmetrical object to be measured, such as a lens surface, around an inclined axis, it is possible to measure surfaces with an inclination of up to ±60°, which is twice as much as conventional methods. The object of the present invention is to obtain an optical measurement device that can directly output measurement data using a cylindrical coordinate system.

発明の構成 上記目的を達する為、本発明の光学測定装置
は、測定光(周波数f1)と、参照光(周波数f2
の2つの周波数が安定化された放射光を発生する
放射光源と、この放射光源からの放射光を一定の
スポツトサイズと広がり角を持つ放射光に変換す
る光学系と、この放射光を測定光f1と参照光f2
光路を分離する光分離手段と、測定光を被測定物
体面上に集光する対物レンズと、測定光の光軸方
向をZ軸方向とし、Z軸からの距離をRとした円
筒座標系R−θ−Zにおいて、被測定物をR方向
(半径方向)の移動と、θ方向(回転角)の回転
を可能とした移動手段と、被測定物体面からの反
射光の一部を受光して、焦点が被測定物体面から
ずれた場合の焦点誤差信号を検出する第二の光検
出器群、及び、焦点誤差信号を発生するように、
反射光の光路内に設置された光学系と、この焦点
誤差信号に応じて対物レンズと被測定物体面との
距離が一定となるよう対物レンズを移動させる移
動台を有し、被測定物体面から反射した測定光
と、参照光とを干渉させ、これらのビート周波数
の変動から被測定物体面の形状を高精度に測定で
きる構成としたものである。
Structure of the Invention In order to achieve the above object, the optical measurement device of the present invention uses a measurement light (frequency f 1 ) and a reference light (frequency f 2 ).
A synchrotron radiation source that generates synchrotron radiation whose two frequencies are stabilized; an optical system that converts the synchrotron radiation from this synchrotron radiation source into synchrotron radiation with a fixed spot size and spread angle; A light separation means that separates the optical path into f 1 and reference light f 2 , an objective lens that focuses the measurement light onto the surface of the object to be measured, and a distance from the Z axis where the optical axis direction of the measurement light is the Z axis direction. In the cylindrical coordinate system R-θ-Z where a second photodetector group for receiving a portion of the reflected light and detecting a focus error signal when the focus is shifted from the surface of the object to be measured; and a second photodetector group for generating the focus error signal.
It has an optical system installed in the optical path of the reflected light, and a moving stage that moves the objective lens so that the distance between the objective lens and the object surface to be measured is constant according to the focus error signal. The measuring beam reflected from the measuring beam and the reference beam are made to interfere with each other, and the shape of the surface of the object to be measured can be measured with high precision from the fluctuations in their beat frequencies.

実施例の説明 以下、本発明の実施例について、図面に基づい
て説明する。発振周波数f1,f2のゼーマンレーザ
1から出た光は、λ/4板2で、2つの偏光方
向、つまり、電場が紙面に垂直な方向に偏波した
f2の光と、紙面に平行な方向に偏波したf1の光に
分けられる。そして、ビームスプリツタ3で一部
の光が分離され、ビート周波数(f1−f2)が光検
出器4により検出される。ビームスプリツタ3を
通過した光のうちf2の光は偏光プリズム5によつ
て上方に反射し、固定ミラー7で反射して光検出
器8上に達する。一方、f1の光は被測定物9の表
面で反射するが、被測定物9が移動すると、移動
速度のZ成分vzによつて、反射光の周波数はドプ
ラーシフトし、f1からf1(1−2vz/c)となる。反射 光は一部が偏光プリズム10によつて分けられ、
位置サーボとフオーカスサーボの誤差信号を発生
させる為、光検出器11,12に達する。前記偏
光プリズム10はP偏波が全透過し、S偏波が一
部反射し、残りが透過する性質を持つ。偏光プリ
ズム10を透過した反射光は、偏光プリズム5で
全反射し、光検出器8上に達する。光検出器8上
でf2とf1+Δfとのビート周波数f1+Δf−f2が得ら
れ、光検出器4上で得られたビート周波数f1−f2
との差からΔfが求まり、これを積分して変位Z
が求まる。こうして求めたZの測定精度は、0.1
〜0.01μm程度である。位置サーボ及びフオーカ
スサーボについては、特願昭57−189761号に記載
されているが、再掲すると以下のとおりとなる。
位置サーボについては、第2図において、被照射
面9がa傾くと、反射光は2a傾き、対物レンズ
13透過後の反射光の中心位置はF2sin2aだけ変
化する。なおF2は対物レンズ13の焦点距離で
ある。ところが、対物レンズ13か、あるいは入
射光の中心をF2sinαだけ平行移動させれば、反射
光は入射光と同一の光路を戻る。すなわち第2図
のように、反射光の位置ずれがあれば、例えば反
射光の一部を、二分割されている光検出器11で
受け、位置ずれに応じて発生する誤差信号によつ
て、対物レンズ13を光軸に対して垂直な方向に
動かし、第3図のように、反射光位置が一定にな
るようサーボをかける。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings. The light emitted from the Zeeman laser 1 with oscillation frequencies f 1 and f 2 is polarized by the λ/4 plate 2 in two polarization directions, that is, in the direction in which the electric field is perpendicular to the plane of the paper.
It is divided into f 2 light and f 1 light polarized in a direction parallel to the plane of the paper. Then, a part of the light is separated by the beam splitter 3, and the beat frequency ( f1 - f2 ) is detected by the photodetector 4. Among the lights that have passed through the beam splitter 3, the f 2 light is reflected upward by the polarizing prism 5, reflected by the fixed mirror 7, and reaches the photodetector 8. On the other hand, the light of f 1 is reflected by the surface of the object to be measured 9, but when the object to be measured 9 moves, the frequency of the reflected light undergoes a Doppler shift depending on the Z component vz of the moving speed, and the frequency of the reflected light changes from f 1 to f. 1 (1-2v z /c). Part of the reflected light is separated by a polarizing prism 10,
It reaches the photodetectors 11 and 12 to generate error signals for the position servo and focus servo. The polarizing prism 10 has the property of completely transmitting P polarized waves, partially reflecting S polarized waves, and transmitting the rest. The reflected light that has passed through the polarizing prism 10 is totally reflected by the polarizing prism 5 and reaches the photodetector 8 . The beat frequency f 1 +Δf−f 2 of f 2 and f 1 +Δf is obtained on the photodetector 8 , and the beat frequency f 1 −f 2 obtained on the photodetector 4
Δf is found from the difference between
is found. The measurement accuracy of Z obtained in this way is 0.1
~0.01 μm. The position servo and focus servo are described in Japanese Patent Application No. 189761/1982, and are reproduced as follows.
Regarding position servo, in FIG. 2, when the irradiated surface 9 is tilted a, the reflected light is tilted 2a, and the center position of the reflected light after passing through the objective lens 13 changes by F 2 sin 2a. Note that F 2 is the focal length of the objective lens 13. However, if the objective lens 13 or the center of the incident light is moved in parallel by F 2 sin α, the reflected light returns along the same optical path as the incident light. That is, as shown in FIG. 2, if there is a positional shift in the reflected light, for example, a part of the reflected light is received by the photodetector 11 which is divided into two parts, and an error signal generated in accordance with the positional shift is used to detect a part of the reflected light. The objective lens 13 is moved in a direction perpendicular to the optical axis, and servo is applied so that the position of the reflected light is constant, as shown in FIG.

被照射面9が焦点位置からずれた場合、反射光
の光路は一定でなくなるので良くない。そこで例
えば、反射光をレンズ16と円柱レンズ17とで
絞り込み、生じた非点収差から誤差信号を取り出
し、対物レンズ13、或いは、被測定物体を光軸
方向に動かし、フオーカスサーボをかける。
If the irradiated surface 9 deviates from the focal position, the optical path of the reflected light will no longer be constant, which is not good. Therefore, for example, the reflected light is narrowed down by the lens 16 and the cylindrical lens 17, an error signal is extracted from the generated astigmatism, and the objective lens 13 or the object to be measured is moved in the optical axis direction to apply focus servo.

本発明における光学測定装置は、回転対称な、
非球面レンズ面の測定等に好適なもので、回転対
称な被測定物9は、回転方向(θ)とX方向
(r)の二方向に動かされ、Z方向の厚さ変化が
測定される。前述のように、被測定物9の傾きに
応じて、対物レンズ13をX方向に移動させた
時、集光点の位置は、対物レンズの移動量X1
け移動する。これは、入射光が平行光であれば厳
密に成り立つ。従つて、測定点の位置は、被測定
物の移動量X1から、対物レンズの移動量X2を引
いた、X1−X2となる。回転対称な被測定面9の
中心をゼロとおくと、X1−X2は、円筒座標系で
の半径rとなる。X1−X2は、対物レンズ及び被
測定物の取付け部に取り付けられたミラーを利用
して、Z方向と同様、レーザ測長法で高精度で測
定できる。回転角度θについては、回転部23に
取り付けられたロータリーエンコーダによつて測
定できる。
The optical measuring device in the present invention is rotationally symmetrical,
It is suitable for measuring aspherical lens surfaces, etc., and the rotationally symmetrical object 9 to be measured is moved in two directions, the rotational direction (θ) and the X direction (r), and the thickness change in the Z direction is measured. . As described above, when the objective lens 13 is moved in the X direction according to the inclination of the object 9 to be measured, the position of the condensing point moves by the amount of movement X 1 of the objective lens. This is strictly true if the incident light is parallel light. Therefore, the position of the measurement point is X1 - X2 , which is the amount of movement X1 of the object to be measured minus the amount of movement X2 of the objective lens. If the center of the rotationally symmetric surface to be measured 9 is set to zero, then X 1 -X 2 becomes the radius r in the cylindrical coordinate system. X 1 -X 2 can be measured with high precision by the laser length measurement method using an objective lens and a mirror attached to the attachment part of the object to be measured, similar to the Z direction. The rotation angle θ can be measured by a rotary encoder attached to the rotating part 23.

なお、15はビームスプリツタ、14,18は
λ/4板、17は円柱レンズ、21は測定値表示
部、20は被測定物測定位置表示部、22は対物
レンズ駆動装置、19は被測定物駆動装置であ
る。
In addition, 15 is a beam splitter, 14 and 18 are λ/4 plates, 17 is a cylindrical lens, 21 is a measured value display section, 20 is a measured object measurement position display section, 22 is an objective lens drive device, and 19 is a measured object. It is an object driving device.

対物レンズ13の開口角より、被測定面の傾き
角αが大きい場合は、原理的に測定できない。作
動距離との関係で、対物レンズのNA(開口数)
を0.6より大きくするのはむずかしいので、開口
角は、36゜より大きくとりにくい。(開口角は、
sin-1NAで表わされるが、NA=0.6の時、36゜と
なる。)従つて、上述の方法でも、被測定面の傾
きが、30゜より大の時、測定ができなくなる。そ
こで、本発明の第二実施例においては、第4図の
ように、被測定物の回転方向への駆動部の回転軸
を、角度βだけ傾ける。その後、X方向とθ方向
に被測定物を移動させ測定する。ほぼ回転対称な
面であれば、面の中心から周辺までXを変化さ
せ、θ方向に回転させれば、全面の測定ができ
る。面の傾きが最大α1まで測定できるとし、回転
軸をβ(β≦α1)傾けると、回転中心に対し、最
大α1+βの傾きを持つた被測定物まで測定可能
で、最大では、α1=β=30゜の時、60゜の傾きを持
つ被測定物まで測定可能となる。
If the inclination angle α of the surface to be measured is larger than the aperture angle of the objective lens 13, measurement cannot be performed in principle. In relation to the working distance, the NA (numerical aperture) of the objective lens
Since it is difficult to make the opening angle larger than 0.6, it is difficult to make the aperture angle larger than 36°. (The opening angle is
It is expressed as sin -1 NA, but when NA=0.6, it is 36°. ) Therefore, even with the method described above, if the inclination of the surface to be measured is greater than 30°, measurement cannot be performed. Therefore, in a second embodiment of the present invention, as shown in FIG. 4, the rotation axis of the drive unit in the rotation direction of the object to be measured is tilted by an angle β. Thereafter, the object to be measured is moved in the X direction and the θ direction and measured. If the surface is approximately rotationally symmetrical, the entire surface can be measured by changing X from the center of the surface to the periphery and rotating it in the θ direction. Assuming that the inclination of the surface can be measured up to a maximum of α 1 , and if the axis of rotation is tilted by β (β≦α 1 ), it is possible to measure objects that have a maximum inclination of α 1 + β with respect to the center of rotation, and the maximum is: When α 1 = β = 30°, it is possible to measure objects with an inclination of 60°.

発明の効果 非球面レンズの場合、大きな傾き面を持つた形
状が必要な場合も多いが、本発明によればほとん
どの非球面レンズの形状を、非接触で、きわめて
高精度の測定が可能となる。又、上述のr、θ移
動台は、このまま、超精密旋盤や、研磨機に取り
つけることができ、中心出し等の手間を省くこと
ができる等の点で、この工業的利用価値は極めて
大である。
Effects of the Invention In the case of an aspherical lens, a shape with a large inclined surface is often required, but according to the present invention, it is possible to measure the shape of most aspherical lenses with extremely high precision without contact. Become. In addition, the above-mentioned r, θ moving table can be attached to an ultra-precision lathe or polishing machine as it is, and the labor of centering etc. can be saved, so it has extremely high industrial utility value. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学測定装置の第1実施例の
構成図、第2図及び第3図は本発明の実施例の原
理説明図、第4図は本発明の第2の実施例におけ
る部分的な構成図である。 4,8,11,12……光検出器、1……ゼー
マンレーザ、14,18……λ/4板、3,15
……ビームスプリツタ、5,10……偏光プリズ
ム、7……ミラー、9……被測定物、13……対
物レンズ、6,16……レンズ、17……円柱レ
ンズ、21……測定値表示部、20……被測定物
位置表示部、22……対物レンズ駆動装置、19
……被測定物駆動装置。
FIG. 1 is a block diagram of the first embodiment of the optical measuring device of the present invention, FIGS. 2 and 3 are diagrams explaining the principle of the embodiment of the present invention, and FIG. 4 is a diagram of the second embodiment of the present invention. It is a partial block diagram. 4, 8, 11, 12... Photodetector, 1... Zeeman laser, 14, 18... λ/4 plate, 3, 15
... Beam splitter, 5, 10 ... Polarizing prism, 7 ... Mirror, 9 ... Measured object, 13 ... Objective lens, 6, 16 ... Lens, 17 ... Cylindrical lens, 21 ... Measured value Display unit, 20...Measurement object position display unit, 22...Objective lens drive device, 19
...Measurement object drive device.

Claims (1)

【特許請求の範囲】 1 周波数f1の測定光と周波数f2の参照光を発生
する光放射手段と、これらの光を別の光路に分離
する第1の光分離手段と、前記測定光を被測定物
体面上に集光させる為の対物レンズと、被測定物
体面から反射して、再び前記対物レンズを通過し
た測定光と、前記参照光を第1の光検出器上で干
渉させる光学系と、光検出器上で発生したビート
周波数の変動を検出し、前記被測定物体面の変位
を測定可能とする為の信号処理手段と、前記測定
光の光軸方向をZ軸とし、Z軸からの距離をRと
した円筒座標系R−θ−Zにおいて、被測定物を
R(半径)方向の移動と、θ(角度)方向への回転
を可能とした移動手段と、前記被測定物体面から
反射した測定光を一部第2の光分離手段によつて
分離した光、又は別の第2の光源からの光を前記
対物レンズを通して前記被測定物体面上に照射さ
せ、反射した光を、測定光の反射光から分離する
第3の光分離手段によつて分離された光を受光す
るフオーカス誤差信号検出用の第2の光検出器群
と、前記第2、又は第3の光分離手段と前記第2
の光検出器群の間に位置し、前記反射光の光路
を、前記第2の光検出器群上で好適な焦点誤差信
号を得ることができる形に変換する為の光学手段
を備え、前記光検出器群から得られた焦点誤差信
号によつて、前記対物レンズと前記被測定物体面
との距離を一定に保つよう、前記対物レンズ、又
は、前記被測定物体をZ軸方向に移動させる手段
を備えた光学測定装置。 2 被測定物を、R及びθ方向に移動させる移動
手段のθ方向の回転の中心軸を、測定光の光軸に
対して傾斜させる手段を備えた特許請求の範囲第
1項記載の光学測定装置。
[Scope of Claims] 1. Light emitting means for generating a measurement light of frequency f 1 and a reference light of frequency f 2 ; a first light separation means for separating these lights into separate optical paths; An objective lens for condensing the light onto the surface of the object to be measured, and an optical system that causes the measurement light reflected from the surface of the object to be measured and passed through the objective lens again to interfere with the reference light on a first photodetector. system, a signal processing means for detecting the fluctuation of the beat frequency generated on the photodetector and making it possible to measure the displacement of the surface of the object to be measured; In a cylindrical coordinate system R-θ-Z where the distance from the axis is R, a moving means capable of moving the measured object in the R (radial) direction and rotating in the θ (angular) direction; Part of the measurement light reflected from the object surface is separated by a second light separation means, or light from another second light source is irradiated onto the object surface to be measured through the objective lens and reflected. a second photodetector group for detecting a focus error signal that receives the light separated by a third light separation means that separates the light from the reflected light of the measurement light; a light separating means and the second
an optical means located between the group of photodetectors for converting the optical path of the reflected light into a form capable of obtaining a suitable focus error signal on the second group of photodetectors; The objective lens or the object to be measured is moved in the Z-axis direction so as to maintain a constant distance between the objective lens and the surface of the object to be measured based on the focus error signal obtained from the photodetector group. Optical measuring device with means. 2. Optical measurement according to claim 1, comprising means for tilting the central axis of rotation in the θ direction of the moving means for moving the object to be measured in the R and θ directions with respect to the optical axis of the measurement light. Device.
JP21275683A 1983-11-11 1983-11-11 Optical measuring device Granted JPS60104206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21275683A JPS60104206A (en) 1983-11-11 1983-11-11 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21275683A JPS60104206A (en) 1983-11-11 1983-11-11 Optical measuring device

Publications (2)

Publication Number Publication Date
JPS60104206A JPS60104206A (en) 1985-06-08
JPH0211084B2 true JPH0211084B2 (en) 1990-03-12

Family

ID=16627889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21275683A Granted JPS60104206A (en) 1983-11-11 1983-11-11 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS60104206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669190U (en) * 1993-03-08 1994-09-27 益弘 光山 Exhibit
JPH0680690U (en) * 1993-04-26 1994-11-15 益弘 光山 Exhibit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252207A (en) * 1987-04-08 1988-10-19 Olympus Optical Co Ltd Stage
JP6413596B2 (en) * 2014-10-10 2018-10-31 横河電機株式会社 Resonance frequency measurement system, resonance frequency measurement method
JP7036375B2 (en) * 2018-03-12 2022-03-15 日本植生株式会社 Filtration method and filtration cloth used for the filtration method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669190U (en) * 1993-03-08 1994-09-27 益弘 光山 Exhibit
JPH0680690U (en) * 1993-04-26 1994-11-15 益弘 光山 Exhibit

Also Published As

Publication number Publication date
JPS60104206A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
JP2913984B2 (en) Tilt angle measuring device
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
US4886362A (en) Appratus for measuring the profile of an aspherical surface
JPH0455243B2 (en)
US4611916A (en) Optical measuring apparatus
JPH0256604B2 (en)
JPH0211084B2 (en)
JP2003329408A (en) Laser length-measurement device
JP2966950B2 (en) Sample displacement measuring device
JPS59211810A (en) Fine angle measuring apparatus by light heterodyne interference method
JP3748479B2 (en) Eccentricity measuring apparatus, eccentricity measuring method, and processing apparatus
JP3495918B2 (en) Optical component eccentricity measuring method and eccentricity measuring device
JPH0255722B2 (en)
JPS635208A (en) Apparatus for measuring surface shape
JPH0326765B2 (en)
JPS63196807A (en) Optical displacement measuring method
JPH0510602B2 (en)
JPH05180643A (en) Surface-shape measuring apparatus
JPS6217607A (en) Optical clinometer
JPH05340726A (en) Noncontact probe for three-dimensional shape measuring instrument
JPH05240610A (en) Noncontact optical measuring instrument
Ophey A Scanning-Spot Interferometer For Measuring Steep Aspherical Surfaces
JPH07332971A (en) Distance measuring instrument
JPH0214642B2 (en)
JPS6332310A (en) Surface shape measuring instrument