JPH0210841B2 - - Google Patents

Info

Publication number
JPH0210841B2
JPH0210841B2 JP60126870A JP12687085A JPH0210841B2 JP H0210841 B2 JPH0210841 B2 JP H0210841B2 JP 60126870 A JP60126870 A JP 60126870A JP 12687085 A JP12687085 A JP 12687085A JP H0210841 B2 JPH0210841 B2 JP H0210841B2
Authority
JP
Japan
Prior art keywords
metal powder
weight
parts
metal
nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60126870A
Other languages
Japanese (ja)
Other versions
JPS61284503A (en
Inventor
Yoshiki Kobayashi
Mitsunobu Ryotoku
Kyohiro Kamei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP12687085A priority Critical patent/JPS61284503A/en
Publication of JPS61284503A publication Critical patent/JPS61284503A/en
Publication of JPH0210841B2 publication Critical patent/JPH0210841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は金属粉末とこの粉末の結合剤とで構
成されたシート状物やその他の類似物品からなる
金属粉末成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal powder molded body made of a sheet-like article or other similar article composed of metal powder and a binder for the powder.

〔従来の技術〕[Conventional technology]

従来、金属母材表面に特別な性質たとえば耐摩
耗性あるいは耐腐食性などを付与するために、こ
れらの性質にすぐれた金属被覆層を母材表面に形
成することがよく行われている。
BACKGROUND ART Conventionally, in order to impart special properties such as wear resistance or corrosion resistance to the surface of a metal base material, it has been common practice to form a metal coating layer having excellent properties on the surface of the base material.

金属被覆は、多くの場合、金属粉末と結合剤と
可塑剤と溶剤とからなる柔軟な金属粉末成形体を
金属母材上に貼り付けてから焼結することによつ
て母材上に層状に形成され、この焼結した金属被
覆層は母材上に冶金学的に結合される。希に金属
被覆は上記同様の金属粉末成形体を予め焼結して
なる被覆用金属片を作製し、これをビスまたは接
着剤などの物理的な手段で金属母材上に結合させ
ることによつて形成されることがある。
Metal coatings are often made by pasting a flexible metal powder compact made of metal powder, a binder, a plasticizer, and a solvent onto a metal base material and then sintering it to form a layer on the base material. The sintered metallization layer is formed and metallurgically bonded onto the base material. In rare cases, the metal coating is made by pre-sintering a metal powder compact similar to the above to create a coating metal piece, and bonding this to the metal base material using physical means such as screws or adhesives. may be formed.

この発明は、主として前者すなわち金属母材上
に金属被覆層を冶金学的に結合させるのに有用な
金属粉末成形体を提供しようとするものである
が、後者すなわち金属被覆層を物理的結合手段に
よつて形成する場合の金属粉末成形体をも提供し
ようとするものである。
This invention primarily aims to provide a metal powder compact useful for the former, that is, for metallurgically bonding a metal coating layer onto a metal base material, while the latter, that is, to provide a metal powder compact useful for metallurgically bonding a metal coating layer onto a metal base material. It is also an object of the present invention to provide a metal powder compact formed by the method.

ところで、金属粉末成形体は、金属母材表面に
貼り付けその後焼結して上記母材面に冶金学的に
結合させる場合は、上記母材表面の曲面に対して
もクラツク発生などの実用性を阻害する要因を生
起させることなく追従変形させうる良好な柔軟性
を有していることが必要であり、また予め所定の
形状に焼結した被覆用金属片を得る場合は、焼結
前の金属粉末成形体を上記同様の問題をきたすこ
となく所定形状に加工変形しうる柔軟性が必要で
ある。
By the way, when a metal powder compact is attached to the surface of a metal base material and then sintered to be metallurgically bonded to the surface of the base metal, there may be problems with practicality such as the occurrence of cracks even on the curved surface of the base material. It is necessary to have good flexibility so that it can be deformed without causing any factors that would inhibit the It is necessary to have the flexibility to process and deform a metal powder compact into a predetermined shape without causing problems similar to those described above.

さらに、この種の金属粉末成形体は、上記追従
変形性ないし加工変形性の如き賦形性にすぐれた
良好な柔軟性を有するうえに、当然のことなが
ら、その取り扱い上充分な強度を有し、しかも焼
結にあたつては許容以上の収縮や巣と指称する穴
など生じさせることなく密度の高い被覆層を与え
うるものであることが要求される。
Furthermore, this type of metal powder compact has good flexibility with excellent formability such as the above-mentioned follow-up deformability or processing deformability, and of course has sufficient strength for handling. Moreover, during sintering, it is required that a dense coating layer can be provided without causing excessive shrinkage or holes called cavities.

従来、この種の成形体として、たとえば特開昭
49−91910号公報、同56−35703号公報、特公昭45
−21167号公報などに代表されるように、ポリビ
ニルエーテル、メチル繊維素系樹脂の如き樹脂類
を主剤としてこれにジブチルフタレート、グリセ
リン、ワツクス類などの揮散性の可塑剤を成形体
の柔軟性向上剤として配合したものが知られてい
る。
Conventionally, as this type of molded body, for example,
Publication No. 49-91910, Publication No. 56-35703, Special Publication No. 1973
As typified by Publication No. 21167, etc., resins such as polyvinyl ether and methyl cellulose resin are used as main ingredients, and volatile plasticizers such as dibutyl phthalate, glycerin, and waxes are added to improve the flexibility of molded products. It is known that it is formulated as an agent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記の可塑剤は、一般に上記主剤に
比して低沸点であるため焼結過程における揮散が
速く、このため焼結過程の早期においてガス化
し、焼結後の被覆層に無数の穴を生じさせるおそ
れがあり、したがつて焼結時の昇温速度をできる
だけ遅くする必要があつた。しかも、可塑剤の使
用は成形体の強度を低下させ、その取り扱いにあ
たつてクラツクを発生させ易いという問題がある
ほか、焼結後の被覆層を高密度化させにくいとい
う問題をも有していた。
However, the above-mentioned plasticizer generally has a lower boiling point than the above-mentioned main agent, so it volatilizes quickly during the sintering process, and therefore gasifies in the early stage of the sintering process, leaving countless holes in the coating layer after sintering. Therefore, it was necessary to make the temperature increase rate during sintering as slow as possible. Moreover, the use of plasticizers reduces the strength of the molded product, making it more likely to cause cracks when handled, and also makes it difficult to increase the density of the coating layer after sintering. was.

一方、このような可塑性の使用に起因した問題
点を解消するために、金属粉末の結合剤として特
定のアクリル系ポリマーを用いることが提案され
ている。ところが、このアクリル系ポリマーは金
属粉末との相互作用によつて粉末成形体を硬化さ
せる性質があり、このために金属粉末成形体の柔
軟性が経時的に損なわれてくるという問題点があ
つた。
On the other hand, in order to solve the problems caused by the use of such plasticity, it has been proposed to use a specific acrylic polymer as a binder for metal powder. However, this acrylic polymer has the property of hardening the powder compact through interaction with the metal powder, which poses a problem in that the flexibility of the metal powder compact deteriorates over time. .

この発明は、以上の観点から、可塑剤を実質的
に使用することなく、したがつて可塑剤に起因し
た前述の問題を一切きたすことなく、良好な柔軟
性とさらに良好な強度や伸びを示すとともに、こ
れらの特性を長期にわたつて維持でき、しかも焼
結後には密度の高い金属層となりうる金属粉末成
形体を提供することを目的とする。
From the above points of view, the present invention exhibits good flexibility and even better strength and elongation without substantially using a plasticizer and therefore without causing any of the above-mentioned problems caused by plasticizers. Another object of the present invention is to provide a metal powder compact that can maintain these properties for a long period of time and can form a metal layer with high density after sintering.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者は、上記目的を達成するために鋭意
検討した結果、金属粉末の結合剤として、従来全
く用いられたことのないニトリル系高分子物質を
使用したときには、前記問題点を悉く解消できる
こと、および上記のニトリル系高分子物質ととも
にさらに接着性付与樹脂を併用したときにも上記
同様の結果が得られることを知り、この発明を完
成するに至つた。
As a result of intensive studies to achieve the above object, the inventor discovered that all of the above problems can be solved when a nitrile polymer substance, which has never been used in the past, is used as a binder for metal powder. They also found that the same results as described above can be obtained when an adhesion-imparting resin is used in combination with the above-mentioned nitrile polymer material, leading to the completion of this invention.

すなわち、この発明は、金属粉末100重量部に
対し、結合剤として、アクリロニトリル成分の含
有量が10〜60重量%、ガラス転移温度が−70〜0
℃、25℃での弾性率が0.2〜20Kg/cm2であるニト
リル系高分子物質が多くても8重量部を超えない
割合で含まれてなり、密度が4.0〜5.5g/cm3であ
つて、曲率半径(アール)が15mmまでの賦形に耐
えうる柔軟性を備えてなる金属粉末成形体に係る
第1の発明と、金属粉末100重量部に対して結合
剤として上記同様のニトリル系高分子物質および
接着性付与樹脂がその合計量で多くても8重量部
を超えない割合で含まれてなる上記同様の密度お
よび柔軟性を有する金属粉末成形体に係る第2の
発明とからなるものである。
That is, in this invention, the content of the acrylonitrile component as a binder is 10 to 60% by weight with respect to 100 parts by weight of the metal powder, and the glass transition temperature is -70 to 0.
℃, contains a nitrile polymer substance with an elastic modulus of 0.2 to 20 Kg/cm 2 at 25℃ in a proportion not exceeding 8 parts by weight at most, and has a density of 4.0 to 5.5 g/cm 3 The first invention relates to a metal powder molded body having flexibility capable of withstanding shaping with a radius of curvature (R) of up to 15 mm, and a nitrile-based body similar to the above as a binder for 100 parts by weight of metal powder. A second invention relating to a metal powder molded body having the same density and flexibility as described above, comprising a polymeric substance and an adhesion-imparting resin in a proportion that does not exceed 8 parts by weight in total. It is something.

このように、この発明においては、結合剤とし
てニトリル系高分子物質またはこれと接着性付与
樹脂とを使用したことにより、この結合剤の使用
量が金属粉末100重量部に対して前記8重量部以
下という少量であつても従来の如き可塑性を実質
的に使用しないで、たとえば曲率半径が15mmまで
の曲率面を有する金属母材表面に対してもクラツ
ク発生の問題などをきたすことなく良好に追従変
形させうる、また上記母材とは別体に上記同様の
曲率面を有する任意の曲面形状に良好に加工変形
させうる、柔軟性にすぐれた金属粉末成形体を得
ることができる。しかも、この金属粉末成形体
は、強度および伸び特性にもすぐれているという
特徴を有している。
As described above, in the present invention, by using a nitrile-based polymer material or the adhesion-imparting resin as a binder, the amount of the binder used is 8 parts by weight per 100 parts by weight of metal powder. Even if the amount is as small as 15 mm, it can effectively follow the surface of a metal base material with a curvature radius of up to 15 mm without causing any problems such as cracks, without substantially using conventional plasticity. It is possible to obtain a metal powder compact with excellent flexibility, which can be deformed, and which can be processed and deformed into any desired curved shape having a curvature surface similar to that described above separately from the base material. Moreover, this metal powder compact has excellent strength and elongation properties.

さらに、上記この発明のニトリル系高分子物質
またはこれと接着性付与樹脂とからなる結合剤
は、アクリル系ポリマーに比し金属粉末との相互
作用が低いため、成形体を経時的に硬化させると
いう弊害がほとんど認められず、したがつて前記
良好な柔軟性、強度および伸び特性を長期にわた
つて維持しうる金属粉末成形体を提供できる。ま
た焼結後には結合剤の使用量が少なくてかつ可塑
性を用いていないこともあつて密度の高い金属層
を与え、金属母材表面の被覆層としてすぐれた性
能を発揮させることができる。
Furthermore, the nitrile polymer material of the present invention or the binder made of the same and an adhesion-imparting resin has a lower interaction with metal powder than an acrylic polymer, so it is said that the molded product hardens over time. It is possible to provide a metal powder compact in which almost no adverse effects are observed and the above-mentioned good flexibility, strength and elongation properties can be maintained over a long period of time. Furthermore, since the amount of binder used is small and no plasticity is used after sintering, a metal layer with high density can be provided and exhibit excellent performance as a coating layer on the surface of the metal base material.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明において使用するニトリル系高分子物
質とは、アクリロニトリル成分の含有量が10〜60
重量%であるアクリロニトリルと他のモノマーと
の共重合樹脂ないしゴム状物質であり、その分子
量としては一般に重量平均で1000以上、好適には
3000〜400000程度のものである。上記分子量が低
すぎると金属粉末に対する結合力に欠け成形体の
強度の低下や焼結後の高密度化を困難とするた
め、好ましくない。
The nitrile polymer substance used in this invention has an acrylonitrile component content of 10 to 60%.
It is a copolymer resin or rubber-like substance of acrylonitrile and other monomers, and its molecular weight is generally 1000 or more on the weight average, preferably
It is about 3,000 to 400,000. If the molecular weight is too low, it is not preferable because it lacks bonding strength to the metal powder, reduces the strength of the molded product, and makes it difficult to increase the density after sintering.

このニトリル系高分子物質を構成するアクリロ
ニトリル成分の割合は、10重量%より少なくなる
と高温加熱処理の際高分子物質の熱分解温度から
金属粉末の焼結温度に至るまでの間の成形体の保
形性に劣り、クラツク、割れなどの原因となる。
また、60重量%より多くなると成形体の粘着結合
性や柔軟性の低下が認められる。
If the proportion of acrylonitrile component constituting this nitrile-based polymer substance is less than 10% by weight, the molded body will not be able to maintain its temperature during high-temperature heat treatment from the thermal decomposition temperature of the polymer substance to the sintering temperature of the metal powder. It has poor shape and may cause cracks and splits.
Moreover, when the amount exceeds 60% by weight, a decrease in adhesive bonding properties and flexibility of the molded product is observed.

このようなニトリル系高分子物質としては、ア
クリロニトリルと酢酸ビニル、塩化ビニル、塩化
ビニリデン、2−ビニルピリジン、スチレン、ア
クリル酸メチル、ブタジエン、クロロプレンなど
の他のモノマーの一種もしくは二種以上との共重
合樹脂ないしゴムが挙げられる。これらの中でも
特に好ましいものは、アクリロニトリル−ブタジ
エン共重合ゴムを代表例とするジエン系ゴム状物
質であり、この発明の効果が最も大きいものであ
る。
Examples of such nitrile-based polymers include acrylonitrile and one or more other monomers such as vinyl acetate, vinyl chloride, vinylidene chloride, 2-vinylpyridine, styrene, methyl acrylate, butadiene, and chloroprene. Examples include polymer resins and rubbers. Particularly preferred among these are diene-based rubbery substances, of which acrylonitrile-butadiene copolymer rubber is a typical example, and are the ones that provide the greatest effect of the present invention.

また、上記ニトリル系高分子物質のガラス転移
温度としては0℃以下であるのが望ましい。これ
より高くなるとたとえば曲率半径が15mmまでの賦
形に耐えうる柔軟な成形体を得ることが難しくな
る。一方、ガラス転移温度が−70℃より低い高分
子物質は経済的に得にくいばかりか、柔らかすぎ
て成形体として充分な強度を得にくい。したがつ
て、上記ニトリル系高分子物質の好適なガラス転
移温度は0℃以下で−70℃以上、特に−65〜−10
℃の範囲である。
Further, it is desirable that the glass transition temperature of the nitrile polymer material is 0° C. or lower. If it is higher than this, it becomes difficult to obtain a flexible molded body that can withstand shaping with a radius of curvature of up to 15 mm, for example. On the other hand, polymeric substances with a glass transition temperature lower than -70°C are not only economically difficult to obtain, but are also too soft and difficult to obtain sufficient strength as molded articles. Therefore, the preferable glass transition temperature of the nitrile polymer material is 0°C or lower and -70°C or higher, particularly -65 to -10°C.
℃ range.

さらに、このようなニトリル系高分子物質はそ
の弾性率が適度な範囲にあることが望ましい。ま
ず、弾性率の下限としては、25℃での弾性率が
0.22Kg/cm2以上、特に0.5Kg/cm2以上であるのが
よい。これより低い弾性率となると強度や伸びの
不足により取り扱い時ないし賦形時に成形体にク
ラツクなどの欠陥部を生じやすく、またそのため
に成形にあたつて組成物の使用量を多くしなけれ
ばならないため焼結後の金属層の高密度化を図り
えなくなる。つぎに、上限としては、25℃での弾
性率が20Kg/cm2以下、特に10Kg/cm2以下であるの
がよく、これより大きくなりすぎると曲率半径が
15mmまでの賦形に耐えうる柔軟な成形体を得るこ
とが難しくなる。
Furthermore, it is desirable that the elastic modulus of such a nitrile-based polymer substance be within a suitable range. First, the lower limit of the elastic modulus is the elastic modulus at 25℃.
It is preferably 0.22 Kg/cm 2 or more, particularly 0.5 Kg/cm 2 or more. If the elastic modulus is lower than this, defects such as cracks are likely to occur in the molded product during handling or shaping due to lack of strength and elongation, and for this reason, it is necessary to use a large amount of the composition during molding. Therefore, it becomes impossible to increase the density of the metal layer after sintering. Next, as an upper limit, the elastic modulus at 25℃ should be 20Kg/cm 2 or less, especially 10Kg/cm 2 or less; if it becomes too large, the radius of curvature will decrease.
It becomes difficult to obtain a flexible molded body that can withstand shaping up to 15 mm.

なお、上記弾性率とは、測定温度25℃におい
て、試料をチヤツク間距離50mmで300mm/分の速
度で引き伸ばしたときの接線モジユラスの値を意
味する。その計算式は下記の通りである。
The above elastic modulus means the value of the tangent modulus when the sample is stretched at a speed of 300 mm/min with a distance between chucks of 50 mm at a measurement temperature of 25°C. The calculation formula is as follows.

<計算式>弾性率=F/S 但し F:試料を100%伸ばした点上と接線との交点の
力(Kg/cm2) S:試料の断面積 この発明においては、上記のニトリル系高分子
物質を結合剤として単独で使用できるし、またこ
の高分子物質とともに接着性付与樹脂を併用する
ことができる。この接着性付与樹脂は主に成形体
の常温での接着力の向上に寄与する。併用割合
は、ニトリル系高分子物質50〜99.8重量%に対し
て接着性付与樹脂が50〜0.2重量%とするのがよ
く、接着性付与樹脂の使用量が少ないと上記の効
果が得られず、また多くなりすぎるとニトリル系
高分子物質の前記特性が損なわれるため好ましく
ない。
<Calculation formula> Elastic modulus = F/S Where F: Force at the intersection of the point where the sample is stretched 100% and the tangent line (Kg/cm 2 ) S: Cross-sectional area of the sample In this invention, the above-mentioned nitrile-based high The molecular substance can be used alone as a binder, or an adhesion-imparting resin can be used in combination with the polymer substance. This adhesion-imparting resin mainly contributes to improving the adhesive strength of the molded article at room temperature. The combined ratio is preferably 50 to 0.2% by weight of the adhesion imparting resin to 50 to 99.8% by weight of the nitrile polymer; if the amount of adhesion imparting resin used is small, the above effects cannot be obtained. If the amount is too large, the properties of the nitrile polymer substance will be impaired, which is not preferable.

このような接着性付与樹脂の具体例としては、
アルキルフエノール系樹脂、クマロンインデン系
樹脂、ポリテルペン系樹脂、ロジン系樹脂、石油
系樹脂、ポリビニルエーテル系樹脂などを挙げる
ことができる。
Specific examples of such adhesion-imparting resins include:
Examples include alkylphenol resins, coumaron indene resins, polyterpene resins, rosin resins, petroleum resins, and polyvinyl ether resins.

つぎに、上記のニトリル系高分子物質またはこ
れと接着性付与樹脂とを結合剤としたこの発明の
シート状物その他の類似物品からなる金属粉末成
形体を得る方法につき説明する。
Next, a method for obtaining a metal powder molded body made of the sheet-like article of the present invention or other similar article using the above-mentioned nitrile polymer substance or the same and an adhesion-imparting resin as a binder will be explained.

この方法としては、たとえば上記の結合剤をア
セトン、トルエン、メチルエチルケトンなどの適
宜の有機溶剤に溶解し、これを金属粉末を加えて
混練したのち、一般に離型紙を被せた型枠上に流
し込み、溶剤を蒸発させたのち、圧延ロールに通
すなどしてシート状その他の形状に成形する方法
が好ましい。また、溶剤を用いることなく必要な
ら加熱下または加熱真空下で混合して加圧成形す
るようにしてもよい。
In this method, for example, the above-mentioned binder is dissolved in an appropriate organic solvent such as acetone, toluene, methyl ethyl ketone, etc., metal powder is added and kneaded, and then the solvent is poured onto a mold covered with release paper. A preferred method is to evaporate the mixture and then pass it through a rolling roll to form it into a sheet or other shape. Further, if necessary, the mixture may be mixed under heating or under heating vacuum and then pressure molded without using a solvent.

これら方法において、この発明の結合剤の使用
量としては、金属粉末100重量部に対して8重量
部を超えない割合、好ましくは1.0〜5.5重量部の
割合とすべきである。8重量部を超えてしまうよ
うな多量とすると、焼結後に密度の高い金属層を
得ることが難しくなり、また焼結処理中にガス化
する樹脂成分によつて焼結炉内の汚染をきたす結
果となる。
In these methods, the amount of the binder of the invention used should not exceed 8 parts by weight, preferably 1.0 to 5.5 parts by weight, per 100 parts by weight of metal powder. If the amount exceeds 8 parts by weight, it will be difficult to obtain a dense metal layer after sintering, and the resin components that gasify during the sintering process will contaminate the inside of the sintering furnace. result.

上記に用いる金属粉末としては、自溶性合金粉
末や耐摩耗性合金粉末など金属母材表面に付与す
るべき性質に応じて各種の金属粉末が使用可能で
ある。代表的な金属粉末として耐摩耗性合金粉末
であるFe−M−C系の多元共晶合金粉末を挙げ
ることができる。上記のMはMo,BおよびPの
うちいずれか少なくとも一種を主成分とし、副次
的な元素としてCr、V、W、Nb、Ta、Tiを含
むことがあり、また他の元素としてSi、Ni、Mn
などを含むことができる。かかる多元共晶合金粉
末は焼結温度が比較的低く、一般に1000〜1150℃
の温度範囲で液相が10〜50容量%となり、しかも
この液相は母材に対して濡れ性が優れているとい
う特徴を有している。
As the metal powder used above, various metal powders can be used depending on the properties to be imparted to the surface of the metal base material, such as self-fusing alloy powder and wear-resistant alloy powder. As a representative metal powder, Fe-MC multi-component eutectic alloy powder, which is a wear-resistant alloy powder, can be mentioned. The above M has at least one of Mo, B, and P as a main component, and may contain Cr, V, W, Nb, Ta, and Ti as secondary elements, and other elements include Si, Ni, Mn
etc. can be included. Such multi-component eutectic alloy powders have a relatively low sintering temperature, generally between 1000 and 1150°C.
The liquid phase is 10 to 50% by volume in the temperature range of , and this liquid phase is characterized by excellent wettability to the base material.

なお、これらの合金粉末の粉末粒度としては、
これが焼結後の気孔率に影響するため、一般に
150メツシユ以下であるのが好ましい。これより
大きくなると密度の高い合金層を形成しにくくな
る。
The particle size of these alloy powders is as follows:
This affects the porosity after sintering, so it is generally
Preferably, it is 150 meshes or less. If it is larger than this, it becomes difficult to form a dense alloy layer.

上記の方法にて形成される金属粉末成形体は、
シート状物では通常0.3〜5mm程度の厚みとされ、
この厚みで曲率半径(アール)が15mmまでの賦形
に耐えうる良好な柔軟性を示し、またすぐれた強
度および伸びを有するものとなり、さらにこれら
の特性が長期にわたつて維持されるという特微を
有している。なお、この成形体の密度としては一
般に4.0〜5.5g/cm3程度である。
The metal powder compact formed by the above method is
Sheet-like materials are usually about 0.3 to 5 mm thick,
At this thickness, it exhibits good flexibility that can withstand shaping with a radius of curvature (R) of up to 15 mm, and has excellent strength and elongation, and furthermore, these properties are maintained over a long period of time. have. The density of this molded body is generally about 4.0 to 5.5 g/cm 3 .

この成形体を使用するにあたつては、金属母材
表面に適宜の接着剤層を介しもしくは介さずして
上記表面に追従変形させる如く貼りつけたのち、
金属粉末の種類に応じた適宜の温度条件で焼結処
理を施せばよい。また上記成形体単独を適宜加工
変形したのち上記同様の焼結処理を施し、この焼
結体を金属母材表面に機械的な手段で結合すれば
よい。上記焼結処理は、金属粉末の酸化劣化を防
ぐために通常は非酸化性雰囲気下で加熱して行わ
れる。
When using this molded product, it is attached to the surface of a metal base material with or without an appropriate adhesive layer so that it deforms to follow the surface, and then
The sintering treatment may be performed under appropriate temperature conditions depending on the type of metal powder. Alternatively, the molded body alone may be suitably processed and deformed, then subjected to the same sintering treatment as described above, and the sintered body may be bonded to the surface of the metal base material by mechanical means. The above sintering process is usually performed by heating in a non-oxidizing atmosphere to prevent oxidative deterioration of the metal powder.

かくして形成される焼結後の金属層は、成形体
の結合剤として用いた前記ニトリル系高分子物質
またはこれと接着性付与樹脂に起因して密度の高
いものとなり、金属母材表面の摩耗や腐食を防止
するなどの本来の性能をよりよく発揮させること
ができる。
The sintered metal layer thus formed has a high density due to the nitrile polymer used as a binder for the molded body or the adhesion-imparting resin, which prevents wear and tear on the surface of the metal base material. It is possible to better demonstrate its original performance, such as preventing corrosion.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明においては、金属粉末
の結合剤としてニトリル系高分子物質またはこれ
と接着性付与樹脂を特定割合で用いたことによ
り、可塑剤を実質的に使用することなく、したが
つて可塑剤に起因した従来の如き問題を一切きた
すことなく、良好な柔軟性とさらに良好な強度や
伸びを示すとともに、これらの特性を長期にわた
つて維持でき、しかも焼結後には密度の高い金属
層となりうる金属粉末成形体を提供できる。
As described above, in this invention, by using a nitrile-based polymer material or a specific ratio of nitrile-based polymer material and adhesion-imparting resin as a binder for metal powder, it is possible to eliminate the need for substantially using a plasticizer. It exhibits good flexibility and even better strength and elongation without any of the conventional problems caused by plasticizers, and can maintain these properties over a long period of time, and has a high density after sintering. A metal powder compact that can be used as a metal layer can be provided.

したがつて、この発明の金属粉末成形体は、上
述の特徴を活かして、工具、機械、電気、自動車
の母材の表面改質層として応用でき、また目的と
する形状の棒管、シート片や異形物の素材として
も応用できる。また、未焼結のままその引張強
度、伸び、柔軟性などの特性を活かした電磁波シ
ールド材の如き障壁材料としても利用することが
できる。
Therefore, by taking advantage of the above-mentioned characteristics, the metal powder compact of the present invention can be applied as a surface modification layer for base materials of tools, machines, electricity, and automobiles, and can also be applied to rod pipes and sheet pieces of the desired shape. It can also be used as a material for irregularly shaped objects. In addition, it can be used as a barrier material such as an electromagnetic wave shielding material by taking advantage of its properties such as tensile strength, elongation, and flexibility in its unsintered state.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体
的に説明する。なお、以下において部および%と
あるはそれぞれ重量部および重量%を意味するも
のとする。
EXAMPLES Below, examples of the present invention will be described in more detail. Note that in the following, parts and % mean parts by weight and % by weight, respectively.

実施例 1 アクリロニトリル−ブタジエン共重合ゴム(日本
合成ゴム社製の商品名N−230S;アクリロニト
リル含量35%) 70部 アクリロニトリル−ブタジエン共重合ゴム(日本
合成ゴム社製の商品名N−280:アクリロニトリ
ル含量32%) 30部 トルエン 400部 上記成分をフラスコに仕込み、1日放置して膨
潤させたのち撹拌して、上記混合ゴムの溶液を得
た。なお、上記混合ゴムのガラス転移温度は−35
℃、弾性率は25℃で3.5Kg/cm2であつた。
Example 1 Acrylonitrile-butadiene copolymer rubber (trade name N-230S manufactured by Nippon Gosei Rubber Co., Ltd.; acrylonitrile content 35%) 70 parts Acrylonitrile-butadiene copolymer rubber (trade name N-280 manufactured by Nippon Gosei Rubber Co., Ltd.: Acrylonitrile content 32%) 30 parts toluene 400 parts The above components were placed in a flask, left to swell for one day, and then stirred to obtain a solution of the above mixed rubber. The glass transition temperature of the above mixed rubber is -35
The elastic modulus was 3.5 Kg/cm 2 at 25°C.

つぎに、この溶液を200メツシユパスの鉄系合
金粉末100部に対して3部添加し、溶剤としてア
セトンを用いて湿式混練したのちロール圧延し
て、厚さ1.7mm、密度4.7g/cm3の柔軟で引張強度
が1500g/20mmの合金粉末シートを作製した。
Next, 3 parts of this solution was added to 100 parts of iron-based alloy powder of 200 mesh passes, wet-kneaded using acetone as a solvent, and then rolled to a thickness of 1.7 mm and a density of 4.7 g/ cm3 . A flexible alloy powder sheet with a tensile strength of 1500 g/20 mm was produced.

実施例 2 アクリロニトリル−ブタジエン共重合ゴム(日本
合成ゴム社製の商品名N−222L;アクリロニト
リル含量43%) 80部 アクリロニトリル−ブタジエン共重合ゴム(日本
合成ゴム社製の商品名N−280) 20部 トルエン 400部 上記成分をフラスコに仕込み、1日放置して膨
潤させたのち撹拌して、上記混合ゴムの溶液とな
し、これにさらに上記混合ゴム100部に対して20
部のポリテルペン系接着性付与樹脂を加えて、撹
拌混合した。なお、上記混合ゴムのガラス転移温
度は−30℃、弾性率は25℃で7.8Kg/cm2であつた。
Example 2 Acrylonitrile-butadiene copolymer rubber (trade name N-222L manufactured by Japan Synthetic Rubber Co., Ltd.; acrylonitrile content 43%) 80 parts Acrylonitrile-butadiene copolymer rubber (trade name N-280 manufactured by Nippon Synthetic Rubber Co., Ltd.) 20 parts Toluene 400 parts The above ingredients were placed in a flask, left to swell for one day, and then stirred to form a solution of the above mixed rubber.
A polyterpene-based adhesion-imparting resin was added and mixed by stirring. The glass transition temperature of the mixed rubber was -30°C, and the elastic modulus was 7.8 Kg/cm 2 at 25°C.

つぎに、この溶液を300メツシユパスの鉄系合
金粉末100部に対して5部混合し、以下実施例1
と同様にして厚さ1.5mm、密度4.9g/cm3の柔軟で
引張強度が1000g/20mmの合金粉末シートを作製
した。
Next, 5 parts of this solution was mixed with 100 parts of iron-based alloy powder of 300 mesh passes, and the following Example 1
In the same manner as above, a flexible alloy powder sheet having a thickness of 1.5 mm, a density of 4.9 g/cm 3 and a tensile strength of 1000 g/20 mm was prepared.

実施例 3 アクリロニトリル 30部 アクリル酸ブチル 70部 水 200部 ポリオキシエチレンアルキルフエニルエーテル
5部 亜硫酸水素ナトリウム 0.1部 上記の各成分を反応容器に仕込み、重合開始剤
として過硫酸カリウム0.2部を加え、30℃で20時
間乳化重合させた。重合後、塩析処理して、重量
平均分子量が75万のアクリロニトリル−アクリル
酸ブチル共重合体を得た。この共重合体のガラス
転移温度は−5℃、弾性率は25℃で10.2Kg/cm2
あつた。
Example 3 Acrylonitrile 30 parts Butyl acrylate 70 parts Water 200 parts Polyoxyethylene alkyl phenyl ether
5 parts Sodium hydrogen sulfite 0.1 part The above components were placed in a reaction vessel, 0.2 parts of potassium persulfate was added as a polymerization initiator, and emulsion polymerization was carried out at 30°C for 20 hours. After the polymerization, a salting-out treatment was performed to obtain an acrylonitrile-butyl acrylate copolymer having a weight average molecular weight of 750,000. This copolymer had a glass transition temperature of -5°C and an elastic modulus of 10.2 kg/cm 2 at 25°C.

つぎに、上記共重合体をメチルエチルケトンに
溶解して30重量%の共重合体溶液とし、これにさ
らに共重合体100部に対して40部のフエノール系
接着性付与樹脂を加え、よく撹拌混合した。つい
で、この溶液を200メツシユパスの鉄系合金粉末
100部に対し5部混合し、以下実施例1と同様に
して厚さ1.5mm、密度4.8g/cm3の柔軟性で引張強
度が1800g/20mmの合金粉末シートを得た。
Next, the above copolymer was dissolved in methyl ethyl ketone to obtain a 30% by weight copolymer solution, and to this was further added 40 parts of phenolic adhesion-imparting resin to 100 parts of the copolymer, and the mixture was thoroughly stirred. . Next, add this solution to 200 mesh passes of iron-based alloy powder.
5 parts to 100 parts were mixed, and the same procedure as in Example 1 was carried out to obtain an alloy powder sheet having a thickness of 1.5 mm, a density of 4.8 g/cm 3 , flexibility, and a tensile strength of 1800 g/20 mm.

上記実施例1〜3の合金粉末シートの性能を調
べるために、各シートを1cm×5cmに切断し、下
記(1)〜(3)の試験を行つた。
In order to investigate the performance of the alloy powder sheets of Examples 1 to 3 above, each sheet was cut into 1 cm x 5 cm and the following tests (1) to (3) were conducted.

(1) 切断シートを半径が20mmの鋼管に巻きつけ、
このときの表面変化の有無を観察した。
(1) Wrap the cut sheet around a steel pipe with a radius of 20 mm,
At this time, the presence or absence of surface changes was observed.

(2) 切断シートを35℃×80%の条件下で10日間保
存したのち、上記(1)と同様の試験を行つた。
(2) After storing the cut sheet under conditions of 35°C x 80% for 10 days, the same test as in (1) above was conducted.

(3) 切断シートを上記(1)と同様の鋼管に巻きつけ
たのち、非酸化雰囲気中で焼結処理を施し、こ
の処理後の表面状態と密度を調べた。
(3) After wrapping the cut sheet around the same steel pipe as in (1) above, it was sintered in a non-oxidizing atmosphere, and the surface condition and density after this treatment were investigated.

上記試験結果は、実施例1〜3の各シート共に
試験(1)〜(3)のいずれの場合もクラツク、ふくれな
どの発生はみられなかつた。また、試験(3)の焼結
処理により、実施例1〜3の各シート共に密度が
7.2g/cm3以上の高密度の合金層を形成できるも
のであることがわかつた。
The above test results show that no cracks or blisters were observed in any of the sheets of Examples 1 to 3 and tests (1) to (3). In addition, due to the sintering treatment in test (3), the density of each sheet of Examples 1 to 3 decreased.
It was found that a high-density alloy layer of 7.2 g/cm 3 or more could be formed.

Claims (1)

【特許請求の範囲】 1 金属粉末100重量部に対し、結合剤として、
アクリロニトリル成分の含有量が10〜60重量%、
ガラス転移温度が−70〜0℃、25℃での弾性率が
0.2〜20Kg/cm2であるニトリル系高分子物質が多
くても8重量部を超えない割合で含まれてなり、
密度が4.0〜5.5g/cm3であつて、曲率半径(アー
ル)が15mmまでの賦形に耐えうる柔軟性を備えて
なる金属粉末成形体。 2 ニトリル系高分子物質がアクリロニトリル−
ブタジエン共重合ゴムである特許請求の範囲第1
項記載の金属粉末成形体。 3 金属粉末100重量部に対し、結合剤として、
アクリロニトリル成分の含有量が10〜60重量%、
ガラス転移温度が−70〜0℃、25℃での弾性率が
0.2〜20Kg/cm2であるニトリル系高分子物質およ
び接着性付与樹脂がその合計量で多くても8重量
部を超えない割合で含まれてなり、密度が4.0〜
5.5g/cm3であつて、曲率半径(アール)が15mm
までの賦形に耐えうる柔軟性を備えてなる金属粉
末成形体。
[Claims] 1. As a binder for 100 parts by weight of metal powder,
The content of acrylonitrile component is 10-60% by weight,
The glass transition temperature is -70 to 0℃, and the elastic modulus at 25℃ is
Contains a nitrile polymer substance of 0.2 to 20 kg/cm 2 in a proportion not exceeding 8 parts by weight at most,
A metal powder compact having a density of 4.0 to 5.5 g/cm 3 and having flexibility capable of withstanding shaping with a radius of curvature (R) of up to 15 mm. 2 The nitrile polymer substance is acrylonitrile.
Claim 1 which is butadiene copolymer rubber
The metal powder molded article described in . 3. As a binder for 100 parts by weight of metal powder,
The content of acrylonitrile component is 10-60% by weight,
The glass transition temperature is -70 to 0℃, and the elastic modulus at 25℃ is
A nitrile-based polymer material and an adhesion-imparting resin having a total weight of 0.2 to 20 kg/cm 2 are contained in a proportion that does not exceed 8 parts by weight at most, and the density is 4.0 to 4.0.
5.5g/ cm3 and radius of curvature (R) is 15mm
A metal powder molded body with flexibility that can withstand shaping up to.
JP12687085A 1985-06-10 1985-06-10 Molded body of metallic powder Granted JPS61284503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12687085A JPS61284503A (en) 1985-06-10 1985-06-10 Molded body of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12687085A JPS61284503A (en) 1985-06-10 1985-06-10 Molded body of metallic powder

Publications (2)

Publication Number Publication Date
JPS61284503A JPS61284503A (en) 1986-12-15
JPH0210841B2 true JPH0210841B2 (en) 1990-03-09

Family

ID=14945873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12687085A Granted JPS61284503A (en) 1985-06-10 1985-06-10 Molded body of metallic powder

Country Status (1)

Country Link
JP (1) JPS61284503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520738U (en) * 1991-05-22 1993-03-19 西山 朝乃 Eye drop container and cap for eye drop container
JPH0556139U (en) * 1991-09-17 1993-07-27 千津子 橋本 Eye dropper with eye drop aids.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019425A (en) * 2002-08-26 2004-03-06 민병창 Compound iron and mineral material including mineral rock and fragment iron as an essential element and method of manufacturing it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265111A (en) * 1975-11-25 1977-05-30 Inoue Japax Res Inc Production process of wear-resisting material
JPS5521801A (en) * 1978-08-01 1980-02-16 Tokyo Shibaura Electric Co High frequency heater
JPS55113511A (en) * 1979-02-27 1980-09-02 Asahi Glass Co Ltd Method of molding ceramics or metallic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265111A (en) * 1975-11-25 1977-05-30 Inoue Japax Res Inc Production process of wear-resisting material
JPS5521801A (en) * 1978-08-01 1980-02-16 Tokyo Shibaura Electric Co High frequency heater
JPS55113511A (en) * 1979-02-27 1980-09-02 Asahi Glass Co Ltd Method of molding ceramics or metallic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520738U (en) * 1991-05-22 1993-03-19 西山 朝乃 Eye drop container and cap for eye drop container
JPH0556139U (en) * 1991-09-17 1993-07-27 千津子 橋本 Eye dropper with eye drop aids.

Also Published As

Publication number Publication date
JPS61284503A (en) 1986-12-15

Similar Documents

Publication Publication Date Title
EP0478196A1 (en) Vibration damper having extended temperature range
EP0376081B1 (en) A polypropylene-based resin composition
WO2003051983A1 (en) Rubber composition
WO1994015997A1 (en) High-strength films of block copolymer latices
Zhou et al. Cavitation erosion of titanium and Ti-6A1-4V: Effects of nitriding
JPH0210841B2 (en)
Pan et al. Preparation and characterization of composite resin by vinyl chloride grafted onto poly (BA-EHA)/poly (MMA-St)
JPH021204B2 (en)
CA2381731A1 (en) Melt-processable thermoplastic compositions
JP2003507515A5 (en)
EP0465365A1 (en) Thermoplastic composition comprising an ethylene-maleic anhydride copolymer and industrial articles made from said composition
KR910001900B1 (en) Aluminum material coated with fluorine resin
JP2005514469A5 (en)
JPS61221302A (en) Composition for bonding metallic powder
JP2021024885A (en) Foamable Acrylic Resin Particles, Acrylic Resin Foaming Particles and Acrylic Resin Foaming Particle Molds
JPS60230910A (en) Metallic powder molding having low shrinkability and formation of metallic coating layer using said molding
JP3557693B2 (en) Manufacturing method of gasket material
JPH05263103A (en) Noble-metal plastic composition
JP3750009B2 (en) Hydraulic composition molded body
JPH1059776A (en) Ceramic granule
US3887746A (en) Lacquered articles of cold rolled ABS resin
Nakamura et al. Effect of interfacial adhesion on the mechanical properties of poly (vinyl chloride) modified with cross-linked poly (methyl methacrylate) particles prepared by seeded emulsion polymerization
CA1049225A (en) Powdered facing agent
JP2023118127A (en) Pore sealing treatment agent, cured object, spray coated article, and manufacturing method of spray coated article
JPH02273231A (en) Composite damping material for room temperature