JPH0210772B2 - - Google Patents

Info

Publication number
JPH0210772B2
JPH0210772B2 JP14150285A JP14150285A JPH0210772B2 JP H0210772 B2 JPH0210772 B2 JP H0210772B2 JP 14150285 A JP14150285 A JP 14150285A JP 14150285 A JP14150285 A JP 14150285A JP H0210772 B2 JPH0210772 B2 JP H0210772B2
Authority
JP
Japan
Prior art keywords
glass
phosphoric acid
ultraviolet
sio
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14150285A
Other languages
Japanese (ja)
Other versions
JPS6227346A (en
Inventor
Shigetoshi Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP14150285A priority Critical patent/JPS6227346A/en
Publication of JPS6227346A publication Critical patent/JPS6227346A/en
Publication of JPH0210772B2 publication Critical patent/JPH0210772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、燐酸系紫外線高透過ガラスに関する
ものである。このガラスは光学レンズ、光学フイ
ルターとして、あるいは遠紫外線を透過しなけれ
ばならないEP―ROMの窓材、光フアイバー、
UVリソグラフイーの基板材などとしても用いる
ことが可能である。 〔従来の技術〕 紫外線透過ガラスに関する特許としては特公昭
29−1587(紫外線透過ガラス);特公昭30−3939
(紫外線透過ガラス);特公昭35−10138(紫外線透
過ガラスの製造法);特公昭48−44923(紫外線透
過ガラス)がある。また、実用化されている紫外
線透過ガラスとしては、UV―22(肉厚2.88mmの場
合の透過限界波長:220nm、100〜300℃における
平均熱膨張係数:75×10-7/℃、耐酸性:4等
級、耐水性:4等級)などがある。 〔発明が解決しようとする問題点〕 上記の特許に基づいて製造される紫外線透過ガ
ラスや上記したような既に実用化されている紫外
線透過ガラスは、いずれも遠紫外線透過性、化学
的耐久性及び耐ソーラリゼーシヨン性のいずれか
に難点がある。 本発明はこのような従来技術の問題点を克服
し、EP―ROMの窓材あるいはUVリソグラフイ
ーの基板材としてこれまで用いられてきた極めて
高価な合成石英に代替可能な低膨張で化学的耐久
性及び耐ソーラリゼーシヨン性に優れ、しかも遠
紫外域ばかりでなく近紫外域にも、極めて優れた
透過性を有する燐酸系紫外線高透過ガラスを提供
するものである。 〔問題点を解決するための手段〕 本発明者は所期の目的に適う燐酸系紫外線高透
過ガラスを開発するために、耐失透性及び清澄性
などをも含めた意味での溶解性を考慮しながら、
光透過性、熱膨張係数、化学的耐久性及び耐ソー
ラリゼーシヨン性に影響を及ぼすガラス成分につ
いて詳細に検討した結果、次に述べるような知見
を得た。 a) 光透過性について Fe、Tiなどのように紫外域及び可視域に吸
収ピークを有する不純物が少ないガラス原料を
用いる限り、P2O5、SiO2、Al2O3、B2O3
Ga2O3、Y2O3、La2O3、Gd2O3、アルカリ土類
金属の酸化物、ZnO、アルカリ金属の酸化物及
びZrO2の各成分は、燐酸系ガラスの遠紫外域
における透過性に実用上ほとんど影響を及ぼさ
ない。ガラスの用途によつては、PbO、GeO2
AS2O3,Sb2O3,Ta2O5などの成分を少量添加
することも可能である。 b) 熱膨張係数及び化学的耐久性について 燐酸系ガラスにおいて、P2O5をアルカリ以
外の金属酸化物で置換すれば熱膨張係数は小さ
くなる。特にSiO2、Al2O3は、かなりの量まで
添加でき、しかも化学的耐久性をも改善できる
ことから必須成分である。 P2O5―SiO2―Al2O3の3成分系で、目的とす
る燐酸系紫外線高透過ガラスを製造することは
不可能ではないが、この3成分だけでは、粘性
が極めて高くなるため、B2O3、La2O3などの
3価金属の酸化物あるいは2価金属の酸化物を
添加して、溶解性を改善することが望ましい。
2価金属の酸化物としては、特に熱膨張係数を
小さくする効果のあるMgO、CaOあるいは
ZnOが好ましい。アルカリ金属の酸化物の添加
量も2wt%程度までであれば、さほど問題には
ならない。 ZrO2にもある程度、熱膨張係数を小さくす
る効果があるが、溶解性が余り良くないため、
添加量を多くすることが難しい。 c) 耐ソーラリゼーシヨン性について 本発明の燐酸系紫外線高透過ガラスは、高圧
Hgランプによる紫外線照射に対しても極めて
優れた耐ソーラリゼーシヨン性を示す。 従つて、本発明の燐酸系紫外線高透過ガラス
は、wt%表示で、 35≦P2O5 ≦70 5≦SiO2 ≦40 5≦Al2O3 ≦25 0≦B2O3 ≦20 0≦R2O3 ≦15 0≦RO ≦15 から成り、これらの成分の合計量が、少なくと
も95wt%以上であることが特徴である。但し、
R2O3は、Ga2O3、Y2O3、La2O3及びGd2O3
1種もしくは2種以上を示し、ROはアルカリ
土類金属などの2価金属の酸化物(特にMgO、
CaO、ZnOが好ましい)の内の少なくとも一つ
を示す。 本発明の燐酸系紫外線高透過ガラスは低膨張
で、化学的耐久性及び耐ソーラリゼーシヨン性
にも優れている。 本発明の燐酸系紫外線高透過ガラスを製造す
るには、本発明者によつて得られた次の知見を
利用することが、特に望ましい。 d) 原料について 燐酸系ガラスを製造するに際してSiO2ある
いはAl2O3を多量に添加する場合、1価あるい
は2価金属の酸化物を併せて添加しないと、液
相温度が量産に差し支える程度までに高くなる
原因は、原料として通常用いられるH3PO4
溶液から導入される多量のOH基である。 ガラス成分P2O5の一般的な原料であるH3PO4
水溶液の代わりに、P2O5を用いると、1価及び
2価金属の酸化物を全く含有せず、しかもSiO2
あるいはAl2O3を多量に含有した極めて粘性の高
い組成であつても、液相温度が低くなるため、量
産も充分可能となる。 ガラス成分P2O5の原料としてAlPO4あるいは
Al(PO33を用いることも可能であるが、使える
組成が限定されるほか、原料コストが極めて高く
なるという問題がある。 また、原料としてH3PO4水溶性を用いた場合
でも、塩化ホスホリル(POCl3)あるいは塩化チ
オニル(SOCl2)などのガスを、ガラス融液中を
通すことによつて、OH基を抜くことも可能であ
るが、ガラスの製造原価を大幅に上げてしまう。 ガラス成分SiO2の原料としては、通常用いる
珪砂あるいは珪石粉を本発明の組成で用いると、
1500℃以上に昇温してもその一部が未溶解物とし
て残る危険性がある。しかし、合成シリカ微粉を
用いると、1400℃以下の温度であつても完全に溶
解する。しかも、珪砂あるいは珪石粉では考えら
れなかつた程度までSiO2の添加量を増やすこと
ができる。 そしてもう一つの特長として、ガラス原料
P2O5にこの合成シリカ微粉を混合すると、P2O5
の吸湿性を抑えることができ、本発明に基づくガ
ラスの製造において、原料の調合から投入までの
作業が非常に容易になるということがある。 また、ガラス成分Al2O3の原料としては、溶解
性という点から粒度の細かいAl2O3あるいはAl
(OH)3が好ましい。 上述した燐酸系紫外線高透過ガラスは可視光を
も透過するものであるが、これを基礎ガラスとし
て、これにNiOまたはCoOを添加することによつ
て、可視域の透過性を抑えた黒色の燐酸系紫外線
高透過ガラスを製造することも可能である。
NiO、CoOの原料としては、純度の高いものを用
いる必要がある。 次に、本発明における各成分の含有量を、特許
請求の範囲に示したように限定した理由について
説明する。 まず、P2O5の含有率を35wt%未満にすると、
安定なガラスを得ることが難しく、70wt%超に
すると、ガラスの化学耐久性が悪くなるばかりで
なく、熱膨張係数も大きくなつてしまう。P2O5
の最も好ましい含有率の範囲は40〜60wt%であ
る。 SiO2の含有率を5wt%末満にすると、ガラスの
化学的耐久性が悪くなるだけでなく、熱膨張係数
も大きくなつてしまい、40wt%超にするとガラ
スの安定性が損われる。SiO2の最も好ましい含
有率の範囲は10〜30wt%である。 Al2O3の含有率を5wt%未満にすると、ガラス
の化学的耐久性が悪くなるだけでなく、熱膨張係
数も大きくなつてしまい、25wt%超にするとガ
ラス化しない。 次に、B2O3、R2O3及びROについて言えば、
これらの成分を全く含有しない組成であつても、
本発明が企図するガラスを量産することは可能で
あるが、これらの成分を含有させることによつ
て、ガラスの用途に応じた諸特性に支障を来たさ
ない程度まで溶融温度を下げることができ、ガラ
スの安定性を一段と向上させることができる。し
かし、B2O3の含有率、R2O3の含有率及びROの
含有率が夫々20wt%、15wt%及び15wt%を越す
と、本発明の目的とする低膨張で化学的耐久性及
び耐ソーラリゼーシヨン性の優れた燐酸系紫外線
高透過ガラスを得ることは困難になる。 NiO、CoOの含有量を夫々基礎ガラスの外割り
で15wt%以下としたのは、15wt%超ではガラス
の安定性が損われるからである。 〔実施例〕 充分混合された原料を1450℃で溶解した後、徐
冷したガラスの熱的特性など調べた結果について
説明する。 次表に、本発明に基づいて製造された燐酸系紫
外線高透過ガラスの組成、熱的特性及び化学耐久
性を示した。Tgは転移点;Tsは屈伏点;αは
100〜300℃の平均熱膨張係数である。化学耐久性
(耐酸性―Da;耐水性―Dw)は日本光学硝子工
業会規格に基づく等級で示した。 耐ソーラリゼーシヨン性を示す一例として、No.
1のガラス(肉厚:1.5mm)の高圧Hgラ
[Industrial Field of Application] The present invention relates to a phosphoric acid-based glass with high ultraviolet transmittance. This glass can be used as an optical lens, optical filter, window material for EP-ROM that must transmit far ultraviolet rays, optical fiber, etc.
It can also be used as a substrate material for UV lithography. [Prior art] A patent related to ultraviolet transmitting glass is
29-1587 (ultraviolet-transmitting glass); Special Publication Showa 30-3939
(Ultraviolet transmitting glass); Japanese Patent Publication No. 35-10138 (Production method of ultraviolet transmitting glass); Japanese Patent Publication No. 48-44923 (Ultraviolet transmitting glass). In addition, UV-transparent glass that has been put into practical use includes UV-22 (transmission limit wavelength when wall thickness is 2.88 mm: 220 nm, average coefficient of thermal expansion at 100 to 300°C: 75 × 10 -7 /°C, acid resistance) : 4th grade, water resistance: 4th grade), etc. [Problems to be solved by the invention] The ultraviolet transmitting glass manufactured based on the above patent and the ultraviolet transmitting glass already in practical use as described above all have deep ultraviolet transmittance, chemical durability, and There are some drawbacks in solarization resistance. The present invention overcomes the problems of the conventional technology and provides a low-expansion, chemically durable material that can replace the extremely expensive synthetic quartz that has been used as a window material for EP-ROM or as a substrate material for UV lithography. The purpose of the present invention is to provide a phosphoric acid-based ultraviolet light transmitting glass having excellent properties and solarization resistance, and having extremely excellent transmittance not only in the far ultraviolet region but also in the near ultraviolet region. [Means for Solving the Problems] In order to develop a phosphoric acid-based ultraviolet ray transmittance glass that meets the intended purpose, the present inventors have improved solubility in the sense of devitrification resistance and clarity. While considering
As a result of a detailed study of glass components that affect light transmittance, thermal expansion coefficient, chemical durability, and solarization resistance, the following knowledge was obtained. a) Regarding optical transparency As long as glass raw materials containing few impurities such as Fe and Ti that have absorption peaks in the ultraviolet and visible regions are used, P 2 O 5 , SiO 2 , Al 2 O 3 , B 2 O 3 ,
Each component of Ga 2 O 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , alkaline earth metal oxide, ZnO, alkali metal oxide and ZrO 2 is in the deep ultraviolet region of phosphoric acid glass. It has virtually no practical effect on the permeability of the film. Depending on the use of glass, PbO, GeO 2 ,
It is also possible to add small amounts of components such as AS 2 O 3 , Sb 2 O 3 and Ta 2 O 5 . b) Regarding thermal expansion coefficient and chemical durability In phosphoric acid glass, if P 2 O 5 is replaced with a metal oxide other than alkali, the thermal expansion coefficient becomes smaller. In particular, SiO 2 and Al 2 O 3 are essential components because they can be added in considerable amounts and can also improve chemical durability. Although it is not impossible to manufacture the desired phosphoric acid-based ultraviolet-ray transparent glass using the three-component system of P 2 O 5 -SiO 2 -Al 2 O 3 , the viscosity would be extremely high if only these three components were used. It is desirable to improve the solubility by adding an oxide of a trivalent metal or an oxide of a divalent metal such as , B 2 O 3 , La 2 O 3 .
As divalent metal oxides, MgO, CaO, or
ZnO is preferred. If the amount of alkali metal oxide added is up to about 2 wt%, it will not be much of a problem. ZrO 2 also has the effect of reducing the coefficient of thermal expansion to some extent, but its solubility is not very good, so
It is difficult to increase the amount added. c) Regarding solarization resistance The phosphoric acid-based ultraviolet ray highly transparent glass of the present invention
It also exhibits excellent solarization resistance against ultraviolet irradiation from Hg lamps. Therefore, the phosphoric acid-based ultraviolet high transmittance glass of the present invention, expressed as wt%, 35≦P 2 O 5 ≦70 5≦SiO 2 ≦40 5≦Al 2 O 3 ≦25 0≦B 2 O 3 ≦20 0 ≦R 2 O 3 ≦15 and 0≦RO ≦15, and the total amount of these components is at least 95 wt% or more. however,
R 2 O 3 represents one or more of Ga 2 O 3 , Y 2 O 3 , La 2 O 3 and Gd 2 O 3 , and RO represents an oxide of a divalent metal such as an alkaline earth metal ( Especially MgO,
CaO, ZnO are preferred). The phosphoric acid-based high UV transmittance glass of the present invention has low expansion and excellent chemical durability and solarization resistance. In order to manufacture the phosphoric acid-based high ultraviolet transmittance glass of the present invention, it is particularly desirable to utilize the following knowledge obtained by the present inventor. d) Regarding raw materials When producing phosphoric acid glass, if a large amount of SiO 2 or Al 2 O 3 is added, unless oxides of monovalent or divalent metals are also added, the liquidus temperature will be such that it will interfere with mass production. The reason why it becomes so high is the large amount of OH groups introduced from the aqueous H 3 PO 4 solution normally used as a raw material. H3PO4 , a common raw material for glass component P2O5
If P 2 O 5 is used instead of an aqueous solution, it will not contain any monovalent or divalent metal oxides and will not contain SiO 2
Alternatively, even if the composition is extremely viscous and contains a large amount of Al 2 O 3 , the liquidus temperature will be low, making mass production possible. AlPO4 or as raw material for glass component P2O5
Although it is possible to use Al(PO 3 ) 3 , there are problems in that the usable composition is limited and the raw material cost is extremely high. Furthermore, even when water-soluble H 3 PO 4 is used as a raw material, the OH group can be removed by passing a gas such as phosphoryl chloride (POCl 3 ) or thionyl chloride (SOCl 2 ) through the glass melt. Although this is possible, it would significantly increase the manufacturing cost of glass. When the commonly used silica sand or silica stone powder is used as a raw material for the glass component SiO 2 in the composition of the present invention,
Even if the temperature is raised to 1500°C or higher, there is a risk that some of it will remain undissolved. However, when synthetic silica powder is used, it completely dissolves even at temperatures below 1400°C. Furthermore, the amount of SiO 2 added can be increased to an extent that would be unimaginable with silica sand or silica stone powder. Another feature is that glass raw materials
When this synthetic silica fine powder is mixed with P 2 O 5 , P 2 O 5
The hygroscopicity of glass can be suppressed, and in the production of glass based on the present invention, the work from preparing raw materials to adding them becomes extremely easy. In addition, from the viewpoint of solubility, fine-grained Al 2 O 3 or Al is used as a raw material for the glass component Al 2 O 3 .
(OH) 3 is preferred. The above-mentioned phosphoric acid-based high UV transmittance glass also transmits visible light, but by using this as a base glass and adding NiO or CoO to it, we have created a black phosphoric acid glass that suppresses the transparency in the visible range. It is also possible to produce glasses with high UV transmission.
It is necessary to use highly pure raw materials for NiO and CoO. Next, the reason why the content of each component in the present invention is limited as shown in the claims will be explained. First, when the content of P 2 O 5 is less than 35 wt%,
It is difficult to obtain stable glass, and if the content exceeds 70 wt%, not only the chemical durability of the glass will deteriorate, but also the coefficient of thermal expansion will increase. P2O5 _
The most preferable content range is 40 to 60 wt%. When the content of SiO 2 is less than 5wt%, not only the chemical durability of the glass deteriorates, but also the coefficient of thermal expansion increases, and when it exceeds 40wt%, the stability of the glass is impaired. The most preferred content range of SiO2 is 10-30wt%. When the content of Al 2 O 3 is less than 5 wt%, not only the chemical durability of the glass deteriorates, but also the coefficient of thermal expansion increases, and when it exceeds 25 wt%, vitrification does not occur. Next, regarding B 2 O 3 , R 2 O 3 and RO,
Even if the composition does not contain any of these ingredients,
Although it is possible to mass-produce the glass contemplated by the present invention, by incorporating these components, it is possible to lower the melting temperature to a level that does not interfere with the various properties of the glass depending on its intended use. This can further improve the stability of the glass. However, if the B 2 O 3 content, R 2 O 3 content, and RO content exceed 20 wt%, 15 wt%, and 15 wt%, respectively, the low expansion, chemical durability, and It becomes difficult to obtain a phosphoric acid-based glass that is highly transparent to ultraviolet light and has excellent solarization resistance. The reason why the content of NiO and CoO is set to be less than 15 wt% of the base glass is that if it exceeds 15 wt%, the stability of the glass will be impaired. [Example] The results of investigating the thermal properties of glass that was slowly cooled after melting sufficiently mixed raw materials at 1450°C will be explained. The following table shows the composition, thermal properties, and chemical durability of the phosphoric acid-based high ultraviolet transmittance glass manufactured according to the present invention. Tg is the transition point; Ts is the yield point; α is the
It has an average coefficient of thermal expansion of 100-300℃. Chemical durability (acid resistance - Da; water resistance - Dw) was expressed as a grade based on the standards of the Japan Optical Glass Industry Association. As an example of solarization resistance, No.
High pressure Hg glass (thickness: 1.5mm)

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によれば、近紫外域
のみならず遠紫外域においても極めて優れた透過
性を有し、低膨張で化学的耐久性及び耐ソーラリ
ゼーシヨン性にも優れた燐酸系紫外線高透過ガラ
スを得ることができる。このような優れた特長を
有する本発明の燐酸系紫外線高透過ガラスは、遠
紫外線を用いるEP―ROMの窓材あるいはUVリ
ソグラフイーの基板材として、現在のところ用い
ることのできる唯一の極めて高価な合成石英の代
替品としての適性を備えている。
As explained above, according to the present invention, phosphoric acid has extremely excellent permeability not only in the near-ultraviolet region but also in the far-ultraviolet region, has low expansion, and has excellent chemical durability and solarization resistance. It is possible to obtain a glass with high ultraviolet transmittance. The phosphoric acid-based high UV transmittance glass of the present invention, which has such excellent features, is currently the only extremely expensive glass that can be used as a window material for EP-ROM that uses deep ultraviolet rays or as a substrate material for UV lithography. It is suitable as a substitute for synthetic quartz.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例No.1のガラス(肉厚:1.5mm)
を150mm離れた位置から、400wの高圧Hgランプ
で照射する前と、100時間照射した後における透
過スペクトルであり、第2図は実施例No.12のガラ
ス(肉厚:1.0mm)の透過スペクトルである。
Figure 1 shows the glass of Example No. 1 (thickness: 1.5 mm)
Figure 2 shows the transmission spectrum of the glass of Example No. 12 (thickness: 1.0 mm) before and after irradiation with a 400 W high-pressure Hg lamp from a position 150 mm away. It is.

Claims (1)

【特許請求の範囲】 1 wt%表示で、 35≦P2O5 ≦70 5≦SiO2 ≦40 5≦Al2O3 ≦25 0≦B2O3 ≦20 0≦R2O3 ≦15 0≦RO ≦15 から成り、これら成分の合計量が少なくとも
95wt%以上であることを特徴とする燐酸系紫外
線高透過ガラス(但し、R2O3はGa2O3,Y2O3
La2O3およびGd2O3からなる群から選ばれる1種
又は2種以上を示し、ROはアルカリ土類金属な
ど2価金属の酸化物の内の少なくとも一つを示
す)。 2 P2O5,SiO2,Al2O3,B2O3,R2O3および
ROからなる各成分の合計量が100wt%であるこ
とを特徴とする特許請求の範囲第1項記載の燐酸
系紫外線高透過ガラス。 3 ROがMgO,CaOおよびZnOからなる群から
選ばれる1種又は2種以上であることを特徴とす
る特許請求の範囲第1項または第2項記載の燐酸
系紫外線高透過ガラス。 4 外割りで15wt%以下のNiO又はCoOを着色
成分として含有することを特徴とする特許請求の
範囲第1項、第2項または第3項記載の燐酸系紫
外線高透過ガラス。
[Claims] 1 In wt%, 35≦P 2 O 5 ≦70 5≦SiO 2 ≦40 5≦Al 2 O 3 ≦25 0≦B 2 O 3 ≦20 0≦R 2 O 3 ≦15 0≦RO≦15, and the total amount of these components is at least
Phosphoric acid-based ultraviolet high transmittance glass characterized by having a content of 95wt% or more (However, R 2 O 3 is Ga 2 O 3 , Y 2 O 3 ,
RO represents at least one oxide of divalent metals such as alkaline earth metals. 2 P 2 O 5 , SiO 2 , Al 2 O 3 , B 2 O 3 , R 2 O 3 and
The phosphoric acid-based ultraviolet-high transmittance glass according to claim 1, wherein the total amount of each component consisting of RO is 100 wt%. 3. The phosphoric acid-based ultraviolet high transmittance glass according to claim 1 or 2, wherein RO is one or more selected from the group consisting of MgO, CaO, and ZnO. 4. The phosphoric acid-based ultraviolet-high transmittance glass according to claim 1, 2, or 3, which contains 15 wt% or less of NiO or CoO as a coloring component.
JP14150285A 1985-06-29 1985-06-29 Phosphoric acid glass having high transmittability of ultraviolet ray Granted JPS6227346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14150285A JPS6227346A (en) 1985-06-29 1985-06-29 Phosphoric acid glass having high transmittability of ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14150285A JPS6227346A (en) 1985-06-29 1985-06-29 Phosphoric acid glass having high transmittability of ultraviolet ray

Publications (2)

Publication Number Publication Date
JPS6227346A JPS6227346A (en) 1987-02-05
JPH0210772B2 true JPH0210772B2 (en) 1990-03-09

Family

ID=15293439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14150285A Granted JPS6227346A (en) 1985-06-29 1985-06-29 Phosphoric acid glass having high transmittability of ultraviolet ray

Country Status (1)

Country Link
JP (1) JPS6227346A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10057285B4 (en) * 2000-11-17 2004-07-08 Schott Glas Melting device and method for producing highly UV-transmissive glasses
CN102211868B (en) * 2011-03-14 2012-11-14 中南大学 Borosiliphosphate glass with high ultraviolet light transmissivity and preparation method thereof
TWI692459B (en) 2015-05-29 2020-05-01 日商Agc股份有限公司 UV transmission glass

Also Published As

Publication number Publication date
JPS6227346A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
CN101190827B (en) Glass article and method for making thereof
JPH0676226B2 (en) UV transparent glass
KR20030021144A (en) High transmission glass plates and method for manufacturing the same
JP2023542723A (en) optical glass
JP2007051055A (en) Optical glass
JPH04310539A (en) Infrared and ultraviolet absorbing glass
JP2008239478A (en) Lead-free and arsenic-free special short flint glass
JP5349721B2 (en) Optical glass with small refractive index change by light irradiation
GB2134100A (en) Glass for a photomask
JPH02133334A (en) Alkali-free glass
CN1092613C (en) Brown glass which absorbs ultraviolet radiation
JPH0393644A (en) Ultraviolet ray transmitting glass
WO2002061475A1 (en) Optical waveguide element and method for preparation thereof
GB2345284A (en) Silicate glass compositions containing metal silicides
US20080096754A1 (en) UV transmissive soda-lime-silica glass
JPH0210772B2 (en)
US20030166447A1 (en) Essentially lead free glass and a glass tube made therefrom
CN101549955A (en) Bifocal lens spectralite
JP2021050125A (en) Optical glass and optical element
JP2619345B2 (en) Germicidal lamp glass
JP2003026439A (en) Optical glass for forming mold
EP3740457B1 (en) Optical boroaluminate glasses
JP4442900B2 (en) Hard infrared cut glass
WO2021106457A1 (en) Multicomponent oxide glass, optical element, optical fiber, and multicomponent oxide glass manufacturing method
JPS594389B2 (en) Method of manufacturing colored glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees