JPH02105076A - Fault point locating type traveling wave relay device - Google Patents

Fault point locating type traveling wave relay device

Info

Publication number
JPH02105076A
JPH02105076A JP63259849A JP25984988A JPH02105076A JP H02105076 A JPH02105076 A JP H02105076A JP 63259849 A JP63259849 A JP 63259849A JP 25984988 A JP25984988 A JP 25984988A JP H02105076 A JPH02105076 A JP H02105076A
Authority
JP
Japan
Prior art keywords
fault
section
wave
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63259849A
Other languages
Japanese (ja)
Inventor
Hiroshi Koizumi
廣 小泉
Michio Oki
沖 道雄
Tadashi Asahara
浅原 正
Kazuhiro Higuchi
和弘 樋口
Hiroshi Kumegawa
久米川 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP63259849A priority Critical patent/JPH02105076A/en
Publication of JPH02105076A publication Critical patent/JPH02105076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To execute the decision at a very high speed as to a fault being in a section or a fault being outside of a section by discriminating whether a current arrival time difference of a line wave current and a ground wave current of a traveling wave is within a set time or not. CONSTITUTION:Surge current signals detected by high frequency CTs 2 installed in A, B and C phases are amplified 6, and thereafter, applied to D1-D3 of full- wave rectifiers 7 and each polarity is made uniform, and added by ADD-1 of an adder 8. An output of the ADD-1 is provided to a waveform shaping circuit 9 by which a start signal for knowing an arrival of a line wave component is obtained. On the other hand, in ADD-2 of the adder 8, line wave components of a fault phase A and induction phases B, C are negated, and a start signal for knowing an arrival of a ground component is obtained through SH-2 of the circuit 9. This start signal is applied to GP-3 of a gate pulse generating circuit and AND-1 and AND-2 of AND circuits 11, and signals for showing a fault in a section and a fault outside of a section are obtained, respectively. Also, an output of a distance counting pulse oscillating circuit 12 is provided at AND-3, and a locating distance signal is obtained from an arithmetic circuit 13.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、送電線故障時に発生する電流サージ波(進行
波)の分波現象を利用し、区間内故障ならびに区間外故
障を高速で検出し、故障点までの距離を標定して表示で
きるようにするとともに遮断器にトリップ、または抑制
信号を与える故障点標定方式進行波リレー装置に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention utilizes the splitting phenomenon of current surge waves (traveling waves) that occur when power transmission line faults occur, and detects faults within the section and faults outside the section at high speed. The present invention relates to a fault point locating traveling wave relay device that locates and displays the distance to a fault point and provides a trip or suppression signal to a circuit breaker.

[従来技術] さきに、特願昭61−188289号(特開昭H−44
185号)で、「送電線故障点標定方式」を提案した。
[Prior art] Firstly, Japanese Patent Application No. 188289/1989 (Japanese Patent Application No.
No. 185), we proposed a ``transmission line fault location method''.

この方式は、送電線の一端において進行波検出手段によ
って、故障によって生じた進行波Tti流を検出し、前
記進行波電流に含まれる線間渡分のピークに対する対地
液分のピークの時間遅れを検出し、この遅れ時間に基い
て故障点を標定するものである。
In this method, a traveling wave Tti current caused by a fault is detected by a traveling wave detection means at one end of the transmission line, and the time delay of the peak of the ground liquid component with respect to the peak of the line distribution included in the traveling wave current is detected. The fault point is located based on this delay time.

この方式によれば、進行波電圧を検出する方式と相違し
て、故障が発生したときに生じる進行波電流を捉らえて
標定を行っているので、標定の信頼性を改善することが
できる。
According to this method, unlike the method of detecting traveling wave voltage, since the location is performed by capturing the traveling wave current that occurs when a failure occurs, the reliability of location can be improved.

一方、従来の送電線リレーで、その多くは商用周波の電
圧、電流の関係から線路の故障判定を行っている。この
ため1サイクルで判定したとしても、1/GO〜50=
 17−20 Cms ]の時間を必要とする。
On the other hand, most conventional power transmission line relays determine line failure based on the relationship between commercial frequency voltage and current. Therefore, even if the judgment is made in one cycle, 1/GO ~ 50 =
17-20 Cms].

[発明の目的、構成コ すでに若干触れたが、故障点より線路上のある一点に達
する線間波電流と対地波電流には伝搬時間差があり、線
間波の1に■当りの伝播時間は3.3[μs/kmコ、
対地波のそれは3.3/α[μs/ks](但し、αは
0.8程度)であって、数10に++の送電線でも数1
00μsを越えることなく故障点の検出が可能で、これ
を前述の商用周波1サイクル、つまり17〜2G [:
 ms ]で判定するリレ一方式のものよりはるかに高
速で検出ができることになる。
[Purpose of the invention and configuration As already mentioned, there is a propagation time difference between the line wave current and the ground wave current that reach a certain point on the line from the fault point, and the propagation time per line wave is 3.3 [μs/km,
That of ground waves is 3.3/α [μs/ks] (however, α is about 0.8), and even for power transmission lines of several 10 to ++, it is several 1
It is possible to detect the failure point without exceeding 00 μs, and this can be done at one cycle of the commercial frequency mentioned above, that is, 17 to 2G [:
This means that detection can be performed much faster than the one-relay type, which makes judgments based on [ms].

本発明はこのような観点から、上記提案の標定方式に則
り、故障時、故障が区間内で生じたものか、区間外で生
じたものか判別し、遮断器にトリップ、または抑制信号
を与えるとともに故障点までの距離を表示する故障点標
定式進行波リレー装置を提供するものである。
From this point of view, the present invention is based on the above-proposed location method, and when a failure occurs, it is determined whether the failure occurred within the section or outside the section, and a trip or suppression signal is given to the circuit breaker. The present invention also provides a fault point locating type traveling wave relay device that displays the distance to the fault point.

以下、第1図に示す実施例および第2図(イ)、(すに
示す各部動作波形図により本発明を説明する。
The present invention will be explained below with reference to the embodiment shown in FIG. 1 and the operation waveform diagrams of each part shown in FIGS.

第1図において示すように、本装置はサージ電流検出部
と光信号伝送部、事故区間判定及び故障点標定部からな
っている。
As shown in FIG. 1, this device consists of a surge current detection section, an optical signal transmission section, and a fault section determination and failure point locating section.

サージ電流検出部は線路1に結合された高周波CT2 
、電気−光変換器3で構成し、光ファイバ4による光信
号伝送部を具え、事故区間判定及び故障点標定部は光−
電気変換器5.増幅回路6、受信した信号の極性を揃え
る全波整回路7、加算回路8.波形整形回路9.ゲート
パルス発生回路10゜アンド回路11.さらに距離計数
パルス発生回路12と演算回路により構成している。な
お、本構成は1回線送電a装置の構成を示している。
The surge current detection section is a high frequency CT2 coupled to the line 1.
, an electric-to-optical converter 3, an optical signal transmission section using an optical fiber 4, and an optical
Electrical converter5. An amplifier circuit 6, a full-wave rectifying circuit 7 for aligning the polarity of received signals, and an adder circuit 8. Waveform shaping circuit 9. Gate pulse generation circuit 10° AND circuit 11. Furthermore, it is composed of a distance counting pulse generation circuit 12 and an arithmetic circuit. Note that this configuration shows the configuration of a single-line power transmission device a.

送電線1のA 、B 、C相において、故障相Aの進行
波7ri流をIA 、M導相B、CのそれをIn、Ic
とすると、−船釣に、平衡線路において次の関係が成立
つ。
In the A, B, and C phases of the transmission line 1, the traveling wave 7ri current of the faulty phase A is IA, and that of the M conducting phases B and C is In and Ic.
Then, for - boat fishing, the following relationship holds true on the balanced line.

但し、Ieは対地波成分N Itは線間波成分である。However, Ie is the ground wave component N, and It is the line wave component.

第2Na)に示すようにs  IA、In+Icが高周
波CT2に到達したとき、実測でも、例えばマイナスの
IAの線間波成分ILに対して、In、IcのILはほ
ぼプラス172の値を示し、遅れて到達するマイナスの
IAの対地波成分のマイナスのIeに対してIn、+I
cのIeはほぼ同様にマイナスIeを示す。
As shown in 2nd Na), when s IA, In + Ic reaches the high frequency CT2, the IL of In, Ic shows a value of approximately plus 172, for example, compared to the line wave component IL of negative IA, even in actual measurements. In, +I for the negative Ie of the ground wave component of the negative IA that arrives late.
Ie of c shows minus Ie in almost the same way.

A 、B 、C相に設置した高周波CT2により検出さ
れたサージ電流を電気−光変換器3で光信号に変損し、
光ファイバ4により伝送し、光−電気変換1i5により
電気信号に変換する。この信号を増幅器のAl−A3を
介して全波整流回路7のD1〜D3に加え極性を揃えた
のち、加算器8のADD−1に入力する。ここではサー
ジt421tの線間波の極性が揃えられているため、打
消されることなく加算?れ、(!)式より2It + 
31eの大きな出方が得られ、波形整形回路9の5H−
1により線間波成分It、の到着を知る起動信号が得ら
れる。
The surge current detected by the high frequency CT 2 installed in the A, B, and C phases is converted into an optical signal by the electro-optic converter 3,
The signal is transmitted through the optical fiber 4 and converted into an electrical signal by the optical-to-electrical converter 1i5. This signal is applied to D1 to D3 of the full-wave rectifier circuit 7 via the amplifier Al-A3 to make the polarities uniform, and then input to ADD-1 of the adder 8. Here, the polarities of the line waves of the surge t421t are aligned, so it is not canceled but added? From the formula (!), 2It +
A large output of 31e is obtained, and the waveform shaping circuit 9's 5H-
1 provides a starting signal that indicates the arrival of the line wave component It.

一方、加算器8のADD−2では逆極性関係にある故障
相Aと誂導相B、Cの線間波成分が打消され、同一極性
の関係にある対地波成分−3Ieのみが(1)式よりj
Oられ、全波整流回路7のD4と波形整形回路9の5H
−2を介して対地波成分の到着を知る起動信号を得る。
On the other hand, in ADD-2 of the adder 8, the line wave components of the faulty phase A and the guided phases B and C, which have an opposite polarity relationship, are canceled, and only the ground wave component -3Ie, which has the same polarity relationship, becomes (1). From the formula j
D4 of the full-wave rectifier circuit 7 and 5H of the waveform shaping circuit 9
-2, an activation signal is obtained that indicates the arrival of the ground wave component.

前記SH−1よりの起動信号はゲートパルス発生回路1
0GP−1とGP−3に入力し、GP−1の出力側はG
P−2の入力側と接続され、GP−1と5H−2との出
力側はアンド回路HのAnd−1の入力側と接続され、
GP−2と5H−2の出力側はAnd−2の入力側と接
続され、GP−3,距離計数パルス発振回路I2の出力
側はAnd−3の入力側に接続され、その出力側は演算
回路■3に接続される。
The activation signal from the SH-1 is sent to the gate pulse generation circuit 1.
Input to 0GP-1 and GP-3, output side of GP-1 is G
It is connected to the input side of P-2, and the output sides of GP-1 and 5H-2 are connected to the input side of And-1 of AND circuit H.
The output sides of GP-2 and 5H-2 are connected to the input side of And-2, and the output side of GP-3 and distance counting pulse oscillation circuit I2 is connected to the input side of And-3. Connected to circuit ■3.

ここで、 5H−1より線間波成分の到着を知る起動信
号が発生すると第2図(イ)のGP−1、GP−3の波
形で示すようにそれぞれ、区間内故障判定基準信号、故
障点距離計数器動作信号を発生し、GP−2の波形で示
すように、 GP−2では、GP−1の区間内故障判定
基準信号の消滅とともに区間外故障判定基準信号を発生
する。
Here, when a start signal indicating the arrival of the line wave component is generated from 5H-1, as shown by the waveforms of GP-1 and GP-3 in Fig. 2 (a), the intra-section fault judgment reference signal and the fault As shown by the waveform of GP-2, GP-2 generates an out-of-section failure determination reference signal when the within-section failure determination reference signal of GP-1 disappears.

ここで、ゲートパルス発生回路GP−1による区間内故
障判定基準信号幅Tcは線路亘長L [km ]の場合
、線間波と対地波のずれ時間、K == 0.83 [
μS/に膿]とすると、 Tc=KXL=0.83L[μSコでなければならない
Here, the intra-section failure determination reference signal width Tc generated by the gate pulse generation circuit GP-1 is the deviation time between the line wave and the ground wave, K == 0.83 [when the line spanning length is L [km]].
μS/μS], then Tc=KXL=0.83L[μS].

さらに、故障点標定を行うために、 GP−3よりの故
障点距離計数器動作信号によりAnd−3において距離
計数パルス発振回路12よりの計数パルスを演算回路1
3に送り込む。
Furthermore, in order to locate the fault point, the counting pulse from the distance counting pulse oscillation circuit 12 is sent to the calculation circuit 1 in And-3 by the fault point distance counter operation signal from GP-3.
Send it to 3.

ゲートパルス発生回路IOのGP−1に接続されたAn
d−1には、上述のように基準信号幅Tcのパルスが入
力されるが、この基準信号幅Tcのパルスが消滅しない
ように、遅れて到達する対地波到達の信号が入力すれば
、 And−1は出力する。つまりこの場合、基準信号
幅Tcにより亘長Lk■の送電線において、前記サージ
電流検出部が区間の一端に配設されると、この区間内の
どの点に故障点があってもこれを区間内にあるものと確
実に判別するものである。故障点が区間内の他端にある
場合でも、これを区間内にあるものと確実に判別する。
An connected to GP-1 of gate pulse generation circuit IO
As described above, a pulse with the reference signal width Tc is input to d-1, but if a signal arriving at the ground wave that arrives late is input so that the pulse with the reference signal width Tc does not disappear, then -1 is output. In other words, in this case, if the surge current detection section is installed at one end of a section of a power transmission line with a length Lk due to the reference signal width Tc, no matter where there is a fault point within this section, it will be detected as a section. It is something that can be reliably identified as being inside. To reliably determine that a failure point is within an interval even if it is at the other end of the interval.

GP−2は前記GP−1のパルスが消滅と同時に出力す
る。このGP−2によるパルスはAnd−2に入力し、
第2図(ロ)に示すように、 5H−2よりの対地波到
達の信号を待ち、その到達によりAnd−2より信号を
出力する。この出力信号は故障が区間外であることを判
別するものである。
GP-2 is output at the same time as the pulse of GP-1 disappears. This pulse from GP-2 is input to And-2,
As shown in FIG. 2 (b), it waits for the arrival of the ground wave signal from 5H-2, and upon its arrival, outputs the signal from And-2. This output signal is used to determine that the failure is outside the section.

前述のように、線間波の到着により発生したGP−3の
計数回路動作信号によりゲートを開き、距離計数パルス
発生回路12の出力を演算中に対地波が到達したときは
5H−2の出力でGP−3の計数回路動作信号を停止し
N And−3を閉じて計数を停止する。このとき演算
回路13の指示値より故障点距離を対地波の1に1当り
に要する伝搬時間により演算処理し、標定を行い距離表
示をする。
As mentioned above, the gate is opened by the counting circuit operation signal of GP-3 generated by the arrival of the line wave, and when the ground wave arrives while calculating the output of the distance counting pulse generation circuit 12, the output of 5H-2 is opened. At this point, the GP-3 counting circuit operation signal is stopped, N And-3 is closed, and counting is stopped. At this time, the distance to the fault point is calculated based on the instruction value of the calculation circuit 13 based on the propagation time required for every 1 part of the ground wave, and the position is determined and the distance is displayed.

第3図は、送電線における本装置の配置を概略的に示す
。電源Gに接続される送電線1に対して遮断A CB+
 、CB2によって分岐部が形成され、更に遮断器CB
3 、CB4によって分岐部が形成され、更にCBs 
、CBeによって分岐部が順に形成され、この分岐部よ
りそれぞれ送電線、配電線が接続される。
FIG. 3 schematically shows the arrangement of the device on a power transmission line. Cutoff A CB+ for power transmission line 1 connected to power supply G
, CB2 form a branch, and further a circuit breaker CB
3, a branch is formed by CB4, and further CBs
, CBe sequentially form branch parts, and power transmission lines and distribution lines are connected to these branch parts, respectively.

図において、例えばCB2とCB3.CB4とCB5は
それぞれ、一つの送電線区間である。
In the figure, for example, CB2 and CB3. CB4 and CB5 are each one power transmission line section.

例えばCB2とCB3による区間において、その−端に
本発明の故障点標定式進行法リレー装置R1を設置した
場合、本装置は、線路上において発生するサージ電流発
生位置を知ることができるが、この装置部ではその故障
発生位置が上流側、あるいは下流側で生じたものか、区
間が多段にわたる場合、−船釣にはその方向まで識別で
きない場合を生じるから、図示のように区間の両端に木
製f2ZR+、R2を設置し、サージ電流の到達時間差
(プラス、又はマイナス)を検出すれば、上流側、下流
側そのいずれかに故障点のあることを判別することがで
きる。
For example, in the section between CB2 and CB3, if the failure point locating progress method relay device R1 of the present invention is installed at the negative end of the section, this device can know the position of surge current occurring on the track. In the equipment section, if the failure occurs on the upstream or downstream side, or if the section spans multiple stages, it may not be possible to identify the direction in boat fishing. By installing f2ZR+ and R2 and detecting the arrival time difference (positive or negative) of the surge current, it is possible to determine that there is a failure point on either the upstream side or the downstream side.

[発明の効果] (1)本発明によれば、区間内故障か、区間外故障かの
判定が超高速でできる。
[Effects of the Invention] (1) According to the present invention, it is possible to determine whether a fault is within a section or a fault outside of a section at an extremely high speed.

現状で一番動作速度の早い継電器に用いる故障ilIl
装定、例えば500 kV系の距離継電器によるもので
1.5サイクル(50サイクルベースで30[ms])
で、これに比べ本発明の装置によれば、通常は数10[
μS]で判定できる。
Failures used in relays with the fastest operating speed currently available
For example, 1.5 cycles (30 [ms] based on 50 cycles) using a 500 kV distance relay.
In contrast, according to the device of the present invention, the number of
μS].

(2)上記に従って遮断器の超高速遮断が可能となる。(2) According to the above, ultra-high-speed breaking of the circuit breaker is possible.

(3)故障点の標定は電流標定によっており、電圧標定
方式によるもののように、誘導型によって誤標定を避け
ることができ、極めて正確な標定を行うことができる。
(3) The fault point is located by current location, and the induction method, like the voltage location method, can avoid erroneous location and provide extremely accurate location.

(4)従来は、継電器と故障点標定装置は別々に構成さ
れていたが、本発明では正確な故障点標定と超高速遮断
の信号を、殆んど装置の構成大部分を共用して構成する
ことができる、等の効果がある。
(4) Conventionally, relays and fault point locating devices were configured separately, but in the present invention, accurate fault point locating and ultra-high-speed shutoff signals are achieved by sharing most of the device components. There are effects such as being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例をブロック図で示す。 第2図は、第1図実施例の各部動作波形図で、(イ)は
区間内故障波形図、(→は区間外故障波形図を示す。 第3図は、送電線における本発明装置の設置図である。 1・・・線路、2・・・高周波CT、3・・・電気−光
変換器、4・・・光ファイバ、5・・・光−電気変換器
、6・・・増幅回路、7・・・全波整流回路、8・・・
加算回路、9・・・波形整形回路、IO・・・ゲートパ
ルス発生回路、■・・・アンド回路、 12・・・距離
計数パルス発振回路、13・・・演算回路。
FIG. 1 shows in block diagram form an embodiment of the invention. FIG. 2 is a waveform diagram showing the operation of each part of the embodiment shown in FIG. It is an installation diagram. 1... Line, 2... High frequency CT, 3... Electrical-optical converter, 4... Optical fiber, 5... Optical-electrical converter, 6... Amplification Circuit, 7...Full wave rectifier circuit, 8...
Addition circuit, 9... Waveform shaping circuit, IO... Gate pulse generation circuit, ■... AND circuit, 12... Distance counting pulse oscillation circuit, 13... Arithmetic circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)進行波の線間波電流と対地波電流の電流到達時間
差が設定時間内にあるか、否かにより区間内故障か、区
間外故障かを判定させることを特徴とする故障判定装置
(1) A failure determination device that determines whether a fault is within a section or a fault outside a section, depending on whether or not a current arrival time difference between a line wave current of a traveling wave and a ground wave current is within a set time.
(2)請求項(1)を用いて区間内故障の場合に遮断器
をトリップさせることを特徴とする進行波リレー装置。
(2) A traveling wave relay device according to claim (1), wherein a circuit breaker is tripped in the event of an intra-section fault.
(3)請求項(1)を用いて線間波電流と対地波電流の
到達時間差を距離に変換し、前記線間波電流、対地波電
流検出点から故障点までの距離を標定することを特徴と
する故障点標定装置。
(3) Using claim (1), the difference in arrival time between the line wave current and ground wave current is converted into a distance, and the distance from the line wave current and ground wave current detection point to the fault point is located. Characteristic failure point locating device.
(4)請求項(1)と(3)とよりなることを特徴とす
る故障点進行波リレー装置。
(4) A fault point traveling wave relay device characterized by comprising claims (1) and (3).
JP63259849A 1988-10-14 1988-10-14 Fault point locating type traveling wave relay device Pending JPH02105076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63259849A JPH02105076A (en) 1988-10-14 1988-10-14 Fault point locating type traveling wave relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63259849A JPH02105076A (en) 1988-10-14 1988-10-14 Fault point locating type traveling wave relay device

Publications (1)

Publication Number Publication Date
JPH02105076A true JPH02105076A (en) 1990-04-17

Family

ID=17339832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63259849A Pending JPH02105076A (en) 1988-10-14 1988-10-14 Fault point locating type traveling wave relay device

Country Status (1)

Country Link
JP (1) JPH02105076A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116112A (en) * 2013-01-06 2013-05-22 广东电网公司电力科学研究院 Double-circuit on same tower double-circuit line fault distance measurement method
CN105116294A (en) * 2015-09-18 2015-12-02 国家电网公司 Traveling wave polarity measure based power distribution network cable fault monitoring method
CN105158637A (en) * 2015-08-18 2015-12-16 广东电网有限责任公司电力科学研究院 Fault traveling wave location method of multiple branch lines of power distribution network
CN105301441A (en) * 2015-10-12 2016-02-03 深圳供电局有限公司 Method and system for positioning tower fault in time-frequency domain combination
CN105445614A (en) * 2015-11-06 2016-03-30 深圳供电局有限公司 Double-end traveling wave fault positioning method and system based on wavelet analysis
CN105929307A (en) * 2016-07-05 2016-09-07 哈尔滨工业大学 Current gatherer adaptive to traveling wave range finding demands
CN110161377A (en) * 2019-06-26 2019-08-23 武汉三相电力科技有限公司 A kind of cable fault independent positioning method and equipment
CN111880045A (en) * 2020-07-21 2020-11-03 长沙理工大学 High-resistance grounding fault detection method based on traveling wave full waveform
CN112505472A (en) * 2020-10-19 2021-03-16 国网辽宁省电力有限公司电力科学研究院 Three-phase hybrid power supply network fault location method based on traveling wave
CN112649700A (en) * 2020-12-09 2021-04-13 长沙理工大学 Traveling wave network positioning method based on dynamic virtual fault

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103116112B (en) * 2013-01-06 2015-06-10 广东电网公司电力科学研究院 Double-circuit on same tower double-circuit line fault distance measurement method
CN103116112A (en) * 2013-01-06 2013-05-22 广东电网公司电力科学研究院 Double-circuit on same tower double-circuit line fault distance measurement method
CN105158637A (en) * 2015-08-18 2015-12-16 广东电网有限责任公司电力科学研究院 Fault traveling wave location method of multiple branch lines of power distribution network
CN105116294A (en) * 2015-09-18 2015-12-02 国家电网公司 Traveling wave polarity measure based power distribution network cable fault monitoring method
CN105301441A (en) * 2015-10-12 2016-02-03 深圳供电局有限公司 Method and system for positioning tower fault in time-frequency domain combination
CN105445614B (en) * 2015-11-06 2018-06-22 深圳供电局有限公司 Double-end traveling wave fault positioning method and system based on wavelet analysis
CN105445614A (en) * 2015-11-06 2016-03-30 深圳供电局有限公司 Double-end traveling wave fault positioning method and system based on wavelet analysis
CN105929307A (en) * 2016-07-05 2016-09-07 哈尔滨工业大学 Current gatherer adaptive to traveling wave range finding demands
CN110161377A (en) * 2019-06-26 2019-08-23 武汉三相电力科技有限公司 A kind of cable fault independent positioning method and equipment
CN111880045A (en) * 2020-07-21 2020-11-03 长沙理工大学 High-resistance grounding fault detection method based on traveling wave full waveform
CN111880045B (en) * 2020-07-21 2022-08-05 长沙理工大学 High-resistance grounding fault detection method based on traveling wave full waveform
CN112505472A (en) * 2020-10-19 2021-03-16 国网辽宁省电力有限公司电力科学研究院 Three-phase hybrid power supply network fault location method based on traveling wave
CN112505472B (en) * 2020-10-19 2023-01-24 国网辽宁省电力有限公司电力科学研究院 Three-phase hybrid power supply network fault location method based on traveling wave
CN112649700A (en) * 2020-12-09 2021-04-13 长沙理工大学 Traveling wave network positioning method based on dynamic virtual fault

Similar Documents

Publication Publication Date Title
US7535233B2 (en) Traveling wave based relay protection
KR900007101B1 (en) Digital calculation type differential relay
WO2017128631A1 (en) Current differential protection method for self-adaptive half-wavelength line based on time-difference method
US4296452A (en) Multiphase fault protection circuitry with variable functional level detection
CN106199145B (en) Ship AC system short circuit current direction determination process based on current changing rate
JPS62239814A (en) Method and apparatus for detecting direction of failure in power system
CN109742727A (en) A kind of judgment method of low pressure 400V leakage current
JPH02105076A (en) Fault point locating type traveling wave relay device
CN102798753B (en) Short-circuit detection method and device
CN109387743A (en) Switch and thus generate the method for single end distance measurement of traveling wave Injection Signal using neutral point
US20080030912A1 (en) Method of detecting fault extinction during a three-phase autoreclosing cycle in an AC transmission line
CN104659764A (en) Earth-free power system self-adaptive current protection method free of load influence
RU2472169C1 (en) Method to detect distance to area of damage on power transmission line
JP2011015583A (en) Leakage detection method, leakage detection device, and earth leakage breaker
CN105375447A (en) A three-phase reclosing time sequence setting method for reducing distance protection misoperation rate in alternating current and direct current systems
US9667131B2 (en) Differential protection method for bridge circuit in current converter control system
CN103715667A (en) Power transmission and distribution system protection method and power transmission and distribution protection device
CN109904830A (en) A kind of circuit protection system
CN104779590B (en) Bus bar protecting method based on the virtual current degree of correlation
RU2685746C1 (en) METHOD OF DETERMINING POINT AND DISTANCE TO SINGLE-PHASE GROUND FAULT IN 6-35 kV ELECTRIC NETWORKS WITH ISOLATED OR COMPENSATED NEUTRAL POINT
JP5198537B2 (en) Ground fault accident phase detection device and ground fault phase detection method
JPH10148654A (en) Lightning-struck point locating method
JP2015116009A (en) Power transmission line protection relay
JP3436775B2 (en) Discharger electrode wear rate measuring device
CN107482594A (en) The three-phase time sequence of coincidence setting method of direction protection malfunction rate in a kind of reduction ac and dc systemses