JPH02103434A - Method for measuring strain distribution in longitudinal direction of optical fiber cable and apparatus and optical fiber used in said method - Google Patents

Method for measuring strain distribution in longitudinal direction of optical fiber cable and apparatus and optical fiber used in said method

Info

Publication number
JPH02103434A
JPH02103434A JP25766388A JP25766388A JPH02103434A JP H02103434 A JPH02103434 A JP H02103434A JP 25766388 A JP25766388 A JP 25766388A JP 25766388 A JP25766388 A JP 25766388A JP H02103434 A JPH02103434 A JP H02103434A
Authority
JP
Japan
Prior art keywords
optical fiber
strain distribution
longitudinal direction
cable
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25766388A
Other languages
Japanese (ja)
Inventor
Ryozo Yamauchi
良三 山内
Yoshio Kikuchi
菊地 佳夫
Akira Wada
朗 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP25766388A priority Critical patent/JPH02103434A/en
Publication of JPH02103434A publication Critical patent/JPH02103434A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3181Reflectometers dealing with polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To make it possible to detect application of external force on an optical fiber without increase in loss by inputting polarized optical pulses into the optical fiber, and measuring the change in polarizing state of backward scattering light from each part of the optical fiber in the longitudinal direction. CONSTITUTION:An optical fiber 180 whose strain distribution is to be measured is collected together by ordinary optical fibers, and an optical fiber cable 17 is formed. Then, a half mirror 16 is used for a directional coupler. Backward scattering light is split in two directions of (y) and (x) which are crossed at a right angle through a polarizing and splitting prism 26. The light beams are received by photodectors 20y and 20x. Then the ratio between the intensities Iy and Ix of the two polarized light beams from the same point of the fiber 180 is obtained, and theta=tan<-1>(Iy/Ix) is computed. The rotation (direction) of the polarizing plane can be detected from the value of phi. Differentiation is performed with phi as the function of a distance. Thus application of a large external force on the optical fiber at a point where the differential coefficient is drastically high can be detected.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、■光ケーブル内の光ファイバに加わる曲げ
などによる歪の長さ方向分布測定方法と、■その実施に
使用するOTDR装置および■光ファイバに関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to: ■ a method for measuring the longitudinal distribution of strain due to bending applied to an optical fiber in an optical cable, ■ an OTDR device used to carry out the method, and ■ an optical It concerns fiber.

[従来の技術そのl] 【1]その内容; 光フアイバ内の歪は、曲げや引張りや側圧などによって
も生ずる。しかし、撚り合わせられた光ケーブル内の光
ファイバが、曲げや側圧を受けずに単純な引張りを受け
ることはないので、以下的げを主にして説明する。また
、いわゆるマイクロベンドについても同様の考え方がで
きる。
[Prior Art Part 1] [1] Contents; Strain within an optical fiber is also caused by bending, tension, lateral pressure, etc. However, since the optical fibers in the twisted optical cable are not subjected to bending or lateral pressure and are not subjected to simple tension, the following description will focus mainly on the purpose. A similar idea can also be applied to so-called micro bends.

光ファイバに曲がりが生ずると、損失が増大する。その
損失増や光ファイバの破断をWl′lJ4する方法にO
TDRまたは光パルス試験と呼ばれているものがある。
When an optical fiber is bent, losses increase. How to prevent the increase in loss and breakage of the optical fiber
There is something called TDR or optical pulse test.

この方法では、154図に示すように、電気パルスをパ
ルス発生器12からLD14に送りこみ、発生する数1
0nsec〜数JLsecの光パルスを光ファイバ18
に入射、光ファイバ18の各部からの後方散乱光のうち
光ファイバ18にふたたび導波されたものを、ハーフミ
ラ−16および受光器20を通して、波形解析装置22
で観測する。
In this method, as shown in Fig. 154, electric pulses are sent from the pulse generator 12 to the LD 14, and the number 1
A light pulse of 0 nsec to several JLsec is sent to the optical fiber 18.
Of the backscattered light from each part of the optical fiber 18, the backscattered light is guided into the optical fiber 18 again through a half mirror 16 and a light receiver 20, and then passed through a waveform analyzer 22.
Observe with.

このとき得られる波形は、第5図のようなものとなる。The waveform obtained at this time is as shown in FIG.

ここで、大きな反射ピークCは、そこで光ファイバが断
線していることを示している。
Here, the large reflection peak C indicates that the optical fiber is broken at that point.

また段差Bは、その地点で光ファイバに何か局部的な損
失原因が存在していることを示している0局部的な損失
原因としては、■曲がり、■コア中の気泡、■光ファイ
バ間の接続点などがある。
In addition, the step B indicates that there is some local loss cause in the optical fiber at that point.Local loss causes include: - bending, - air bubbles in the core, and - between the optical fibers. There are connection points, etc.

[2]発明の解決すべき課題: (1)予兆現象について: 布設後の光ファイバケーブルが、異常な曲げ応力を受け
たとき、初めは小さい曲率の曲がりであったのが、やが
て大きな曲率になり、遂に破断(通信途絶)に至ること
が考えられる。
[2] Problems to be solved by the invention: (1) Predictive phenomena: When an optical fiber cable after installation is subjected to abnormal bending stress, the bend initially has a small curvature, but eventually becomes a large curvature. It is conceivable that this will eventually lead to a breakdown (communication interruption).

そのような場合、小さい曲率の曲がりが、破断前の「予
兆」 (前兆、きざし)現象として現れる。
In such cases, a bend with a small curvature appears as a ``foreshadow'' phenomenon before failure.

したがって、その予兆を検知することができれば、破断
を回避でき、光ファイバケーブル布設後の、予防保全的
な保守管理上、非常に望ましい。
Therefore, if the signs of such occurrence can be detected, breakage can be avoided, which is highly desirable for preventive maintenance management after optical fiber cable installation.

しかし、その予兆のようなものをつかむことは容易でな
い。
However, it is not easy to grasp such signs.

(2)光ファイバの曲げ損失について:元来、光ファイ
バは光を安定に伝搬できるようにその構造を設計されて
いる。たとえば、波長1.3沖腸を伝送できるように設
計された単一モード光ファイバでは、第6図に示すよう
に、あるきわどい曲げ半径になるまで損失を示さず、そ
の点を越えると急激に曲げ損失が増大する。
(2) Regarding bending loss of optical fibers: Originally, the structure of optical fibers was designed so that light could be stably propagated. For example, a single-mode optical fiber designed to transmit a wavelength of 1.3 mm does not exhibit any loss until a certain critical bend radius is reached, as shown in Figure 6, and beyond that point the loss suddenly increases. Bending loss increases.

なぜこのような曲げ損失特性になるかというと、伝搬し
ている基本モードの曲げによる損失は、光ファイバ軸を
曲げたときの一種の放射モードへの結合とみなし得るの
であるが、基本モードの位相定数と放射モード位相定数
との間には大きな差があり、少々の曲がりでは簡単に結
合しないようになっているからである。
The reason for this bending loss characteristic is that the loss due to bending of the propagating fundamental mode can be considered as a type of coupling to the radiation mode when the optical fiber axis is bent. This is because there is a large difference between the phase constant and the radiation mode phase constant, and a slight bend will prevent them from coupling easily.

なお、逆にこのような予兆を示しやすい光ファイバでは
、ケーブル作製そのものの工程で生ずる曲がりでも、S
川な損失増を示してしまうことになる。
On the other hand, optical fibers that tend to show such signs may suffer from S
This would result in a significant increase in losses.

(3)従来のOTDRについて: 以上のことは、従来のOTDRで布設後の光ファイバケ
ーブルの後方散乱波形の経時変化を観測していても、上
記の「予兆」をつかむことは難しいことを示している。
(3) Regarding conventional OTDR: The above shows that even if conventional OTDR is used to observe changes over time in the backscattered waveform of optical fiber cables after installation, it is difficult to grasp the above-mentioned "signs." ing.

[従来技術その21 [1]その内容: 第7図のように、偏光分離プリズム24からなる方向性
結合器を通して、光パルスを光ファイバ18に入射し、
かつ後方散乱光を波形解析装置22に送るOTDR回路
も、知られている。
[Prior Art No. 21 [1] Contents: As shown in FIG.
Also known is an OTDR circuit that sends backscattered light to the waveform analyzer 22.

[2]発明の解決すべき課題: この場合、光ファイバ18に入射した光は直線偏光にな
っている。しかし光フアイバ18内で一度後方散乱した
光の偏光状態は、はとんど無偏光に近くなっている。
[2] Problem to be solved by the invention: In this case, the light incident on the optical fiber 18 is linearly polarized light. However, the polarization state of the light once backscattered within the optical fiber 18 is almost unpolarized.

ところで、通常の光ファイバのコアの断面はほぼ円形を
している。そして、厳密には、単一モード光ファイバを
伝搬する基本モードには2つの厳密解が含まれており(
HE+tモード)、2つのモードは互いに直交する偏光
を有する。また理想的には、円形コアの光ファイバの2
つの直交モードは完全に縮退していて、その伝搬定数(
位相定数)の差はゼロである。
By the way, the cross section of the core of a typical optical fiber is approximately circular. Strictly speaking, the fundamental mode propagating in a single mode optical fiber contains two exact solutions (
HE+t mode), the two modes have mutually orthogonal polarizations. Ideally, two of the circular core optical fibers are
The two orthogonal modes are completely degenerate and their propagation constant (
phase constant) is zero.

ただし、通常の光ファイバにおいては、わずかにコアの
偏平などがあるが、この異方性にともなう縮退からのず
れは、ごく小さい。
However, although a normal optical fiber has a slightly flattened core, the deviation from degeneracy due to this anisotropy is extremely small.

このため、通常の光ファイバに曲げなどの外力を加える
と、非常にわずかな力で2つの直交モード間に結合が起
こり、エネルギーの交換が生じる。
Therefore, when an external force such as bending is applied to a normal optical fiber, coupling occurs between the two orthogonal modes with a very small force, resulting in energy exchange.

すなわち、第7図の測定系においては、後方散乱光の受
信が偏光分離プリズム24を介して行われるため、上記
のわずかな力(製造や布設時に受ける通常の)で結合し
た光ファイバのモードの偏光状態の一方だけを、常に受
信していることになる。
In other words, in the measurement system shown in FIG. 7, since the backscattered light is received through the polarization separation prism 24, the mode of the coupled optical fiber is This means that only one polarization state is always received.

その結果、このような測定系の測定波形は第5図の場合
と異なり、第8図のように、非常に激しいゆらいだ状態
になる。
As a result, the measurement waveform of such a measurement system is different from that shown in FIG. 5, and as shown in FIG. 8, it is in a state of extremely severe fluctuation.

したがってはこれを防ぐため、今までは偏光分離プリズ
ム24の使用を避けるのが普通であった。
Therefore, in order to prevent this, it has been common practice until now to avoid using the polarization separation prism 24.

[課題を解決するための手段] 上記の従来技術の欠点を積極的に利用して、これまでの
OTDRとは異なり、上記の「予兆」、すなわち、より
僅かな曲がり(必ずしも損失を伴わない程度の小応力に
よる)などを検出して、通信途絶にいたる前に予防処置
をとれるようにしたもので、 第1(特定)発明においては、偏光した光パルスを光フ
ァイバに入射し、前記光ファイバの各部から後方に散乱
する光の偏光状態の長さ方向の変化’e 11定し、そ
れによって光ファイバケーブルの長さ方向歪分布を測定
する。
[Means for solving the problem] By actively utilizing the shortcomings of the above-mentioned conventional technology, unlike conventional OTDRs, the above-mentioned "premonition", i.e., a slight bending (not necessarily accompanied by loss) can be achieved. In the first (specific) invention, a polarized light pulse is input into an optical fiber, and the optical fiber is The longitudinal change in the polarization state of the light scattered backward from each part of the optical fiber cable is determined, thereby measuring the longitudinal strain distribution of the optical fiber cable.

第2発明は、第1発明の実施に直接使用する歪分布測定
用光ファイバで、単一モード光ファイバからなり、かつ
その直交する2モードが、製造および布設時に受ける通
常の応力では結合しないが、前記通常の応力を越える応
力を受けたとき結合する程度のビート長を持つ。
The second invention is an optical fiber for strain distribution measurement that is directly used in carrying out the first invention, and is made of a single mode optical fiber, and its two orthogonal modes are not combined by the normal stress received during manufacturing and installation. , has a beat length that is long enough to bond when subjected to stress exceeding the normal stress.

ffG3発明は、第1発明の実施に直接使用するOTD
R装置で、偏光した光パルスを光ファイバに入射し、前
記光ファイバの各部から後方に散乱される光を偏光子を
通して光受信する。
The ffG3 invention is an OTD that is directly used to implement the first invention.
In the R device, a polarized light pulse is input into an optical fiber, and the light scattered backward from each part of the optical fiber is received through a polarizer.

[その説明] [1]歪分布測定用光ファイバについてニ一般に光ファ
イバは、ケーブル化や布設に伴ってさまざまな外力を受
ける。上記のように、この外力によって、伝送損失の増
加はないが、2つの直交偏光モードの結合が生じるよう
な状態になっている。
[Description] [1] Optical fiber for strain distribution measurement Generally, optical fibers are subjected to various external forces when they are made into cables or installed. As described above, this external force causes no increase in transmission loss, but creates a state in which coupling of two orthogonal polarization modes occurs.

これに対して、本発明で使用する歪分布測定用光ファイ
バは、直交する2モードが、製造および布設時に受ける
通常の応力では結合しないが、前記通常の応力を越える
応力(以下、異常応力という)を受けたとき結合する程
度の異方性を有する。
On the other hand, in the optical fiber for strain distribution measurement used in the present invention, the two orthogonal modes do not combine under the normal stress received during manufacturing and installation, but the stress exceeding the normal stress (hereinafter referred to as abnormal stress) ) has such anisotropy that it bonds when subjected to

それをより具体的に示すと、次のとおりである。More specifically, it is as follows.

第1a図は、長さ10mにわたって曲げを受けたときの
、曲げ直径と2つのモード間のクロストロークを示して
いる。
Figure 1a shows the bending diameter and crossstroke between the two modes when subjected to bending over a length of 10 m.

ここでパラメータLbはビート長で、 /j!  −/N β冨 、βyは光ファイバを伝搬する2つの直交偏光基
本モードの位相定数である。
Here, the parameter Lb is the beat length, /j! −/N β-value and βy are the phase constants of two orthogonally polarized fundamental modes propagating in the optical fiber.

そこで、歪分布測定用光ファイバとして、Lbが300
鵬騰あるいはそれよりも若干短い(定偏光光ファイバよ
りもはるかに大きく1通常の光ファイバよりはるかに小
さい)程度のものを用いるのが良いが、これは光ファイ
バケーブルの布設環境で決定される。
Therefore, as an optical fiber for strain distribution measurement, Lb is 300
It is better to use Pengteng or something slightly shorter (much larger than fixed polarization optical fiber and much smaller than normal optical fiber), but this will be determined by the installation environment of the optical fiber cable. .

このような光ファイバに、通常受ける以上の異常応力が
加わると、その部分での偏光状態が変化する。
When such an optical fiber is subjected to an abnormal stress greater than that normally experienced, the polarization state at that portion changes.

なお、通常の光ファイバケーブル中では、直径100論
−程度の曲がりが、ケーブル化に伴う撚り合わせなどで
生じているので、 Lb = 30軸腸では少し結合し
過ぎるように思われる。
In addition, in a normal optical fiber cable, bends with a diameter of about 100 decimal degrees occur due to twisting and the like during cable formation, so it seems that Lb = 30 axes would cause a little too much coupling.

しかし、もしケーブル中の光ファイバがあまり曲がりを
受けないような状態で挿入されているのであれば、Lb
は大きい程ケーブルに加わる外力の検出感度が高くなる
However, if the optical fiber in the cable is inserted in such a way that it is not subjected to much bending, then Lb
The larger the value, the higher the detection sensitivity of the external force applied to the cable.

以上の歪分布測定用光ファイバ180を、第1b図のよ
うに、通常の光ファイバ18といっしょに集合して光フ
ァイバケーブル17を構成する。
The above strain distribution measuring optical fibers 180 are assembled together with the normal optical fibers 18 to form the optical fiber cable 17, as shown in FIG. 1b.

[2] OTDR装置について: [1Fその構成: 第1c図の構成にするのが望ましい。[2] About the OTDR device: [1F composition: The configuration shown in Figure 1c is preferred.

すなわち、方向性結合器にハーフミラ−16を用い、後
方散乱光を偏光分離プリズム26により直交するy、x
の2方向に分け、それぞれ受光器20テ、20xで受光
する。
That is, a half mirror 16 is used as a directional coupler, and the backscattered light is divided into orthogonal y and x by a polarization separation prism 26.
The light is divided into two directions, and the light is received by receivers 20 and 20x, respectively.

そして、歪分布測定用光ファイバ180の同一地点から
の2つの偏光の強度I!、I!の比をとることにより、 −+    Iy φ=jan() x を計算し、φの値から、偏光面の回転(向き)を知るこ
とができる。
Then, the intensity I of the two polarized lights from the same point on the strain distribution measuring optical fiber 180! ,I! By taking the ratio, −+ Iy φ=jan() x can be calculated, and from the value of φ, the rotation (orientation) of the plane of polarization can be known.

なお、実際には、偏光状態の長さ方向変化が重要な量で
あるので、φを距離の関数とみなして微分することによ
り、微係数の激しい地点で光ファイバに大きな外力が加
わっていることが分る。
Note that in reality, the change in the polarization state in the longitudinal direction is an important quantity, so by differentiating φ as a function of distance, it can be determined that a large external force is applied to the optical fiber at a point where the differential coefficient is large. I understand.

[2]その作用: (1)異常応力を受けないとき: 歪分布測定用光フアイバ180内において、直交する2
つのモード間に結合は生じない。
[2] The effect: (1) When not receiving abnormal stress: In the strain distribution measurement optical fiber 180, two orthogonal
No coupling occurs between the two modes.

したがって、φのケーブル長さ方向の変化は、第2図の
(a)のように、非常にゆるやかな変化しか示さない。
Therefore, the change in φ in the cable length direction shows only a very gradual change, as shown in FIG. 2(a).

(2)異常応力を受けたとき: 歪分布測定用光フアイバ180内の異常応力を受けた地
点において、直交する2つのモード間に結合が生じる。
(2) When receiving abnormal stress: At a point in the optical fiber 180 for strain distribution measurement that receives abnormal stress, coupling occurs between two orthogonal modes.

したがって、φのケーブル長さ方向の変化は、第2図の
(b)のように、急激な変化を示すようになる。
Therefore, the change in φ in the cable length direction shows a rapid change as shown in FIG. 2(b).

(3)上記の使い方とは別に、第1c図の波形解析袋r
122において、 IX +I7 =Itotal を表示させるようにすれば1通常のOTDRとして使用
することができる。
(3) Apart from the above usage, the waveform analysis bag r in Figure 1c
122, if IX + I7 = Itotal is displayed, it can be used as a normal OTDR.

[3]従来の例として、第7図に示したOTDRも、本
発明に使用することができる。
[3] As a conventional example, the OTDR shown in FIG. 7 can also be used in the present invention.

ただしこの場合は、後方散乱光をx、yの2方向に分け
て測定することができない。
However, in this case, it is not possible to measure the backscattered light separately in two directions, x and y.

[実施例] 光ファイバケーブル17内に、Lb = 50龍の歪分
布測定用光ファイバ180を配置、wSle図のOTD
Rで測定した。
[Example] An optical fiber 180 for strain distribution measurement with Lb = 50 is placed inside the optical fiber cable 17, and the OTD in the wSle diagram is
Measured at R.

この光ファイバケーブル17に外力を加えないときのφ
(2)の結果はt第2図(a)に示すように、非常にゆ
るやかな変化しか示していない。
φ when no external force is applied to this optical fiber cable 17
The result of (2) shows only a very gradual change, as shown in Figure 2(a).

しかしながら、この長さ約1に■の光ファイバケーブル
17の途中の600mの地点にケーブル座屈を生じさせ
ると、そこでは第2図の(b)のように、非常に急激な
偏光面の回転が観測され、大きな曲がりが生じているこ
とが分る。
However, if cable buckling occurs at a point 600 m in the middle of the optical fiber cable 17 with a length of approximately 1, there will be a very rapid rotation of the plane of polarization, as shown in (b) in Figure 2. is observed, indicating that a large bend has occurred.

しかし、この座屈状態の光ファイバケーブル17を19
通常のOTDRで観測したところ、第3図の(b)のよ
うに、外力無しの(a)に対して波形の変化は非常に僅
かであって、損失はせいぜい0.05dB I、か増加
しなかった。
However, when the buckled optical fiber cable 17
When observed with a normal OTDR, as shown in Figure 3 (b), there was a very slight change in the waveform compared to (a) with no external force, and the loss increased by at most 0.05 dB I. There wasn't.

[発明の効果] (1)偏光した光パルスを光ファイバに入射し、前記光
ファイバの各部から後方に散乱する光の偏光状態の長さ
方向の変化を測定するので、必ずしも損失増加を伴なわ
ないような光ファイバへの外力の印加を検出することが
できるようになった。
[Effects of the Invention] (1) Since a polarized light pulse is input into an optical fiber and changes in the polarization state of the light scattered backward from each part of the optical fiber are measured in the longitudinal direction, an increase in loss does not necessarily occur. It is now possible to detect external force applied to an optical fiber.

これにより、光ファイバケーブルが通信途絶などの事態
を招く前に、予防保全処置がとれる。
This allows preventive maintenance measures to be taken before the fiber optic cable causes a situation such as a loss of communication.

(2)単一モード光ファイバからなりかつその直交する
2モードが、製造および布設時に受ける通常の応力では
結合しないが、前記通常の応力を越える応力を受けたと
き結合する程度のビート長を持つ、歪分21fI測定用
光ファイバを用いるので、これと、偏光した光パルスを
光ファイバに入射し、前記光ファイバの各部から後方に
散乱される光を偏光子を通して光受信するOTDRとを
組合わせることにより、後方散乱光の偏光状態の長さ方
向の変化を測定することが可能になる。
(2) Consisting of a single mode optical fiber, the two orthogonal modes do not combine under the normal stress received during manufacturing and installation, but have a beat length that is sufficient to combine when subjected to stress exceeding the normal stress. , since an optical fiber for strain measurement of 21 fI is used, this is combined with an OTDR that inputs polarized light pulses into the optical fiber and receives the light scattered backward from each part of the optical fiber through a polarizer. This makes it possible to measure changes in the polarization state of backscattered light in the length direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1a〜2図は本発明の実施例にかかるもので、第1a
図はビート長をパラメータとした光ファイバの、曲げ直
径〜クロストーク特性図、第1b図は歪分布測定用光フ
ァイバ180を挿入した光ファイバケーブル17の説明
図、第1c図は0TDHの概略構成図、 第2図は偏光面の回転角φの長さ方向分布図、第3図は
本発明の実施例と同じ実験の、通常のOTDRによる測
定結果の説明図、 f54図は従来の0TDHの概略構成図で、第5図はそ
の後方散乱光強度の分布図、第6図は通常の単一モード
光ファイバの曲げ直径〜曲げ損失特性図、 第7図は従来の別のOTDRの概略構成図で、第8図は
その後方散乱光強度〜時間特性図。 12:パルス発生器 14:LD 16:ハーフミラ−17:光ファイバケーブル18:光
ファイバ  20:受光器 22二波形解析装置 24.26:偏光分離プリズム 180:歪分布測定用光ファイバ
1a to 2 show embodiments of the present invention;
The figure is a bending diameter-crosstalk characteristic diagram of an optical fiber with beat length as a parameter, Figure 1b is an explanatory diagram of the optical fiber cable 17 into which the optical fiber 180 for strain distribution measurement is inserted, and Figure 1c is a schematic configuration of 0TDH. Fig. 2 is a longitudinal distribution diagram of the rotation angle φ of the polarization plane, Fig. 3 is an explanatory diagram of the measurement results by ordinary OTDR in the same experiment as the embodiment of the present invention, and Fig. f54 is the distribution of the conventional 0TDH. Figure 5 is a diagram of the backscattered light intensity distribution, Figure 6 is a diagram of the bending diameter and bending loss characteristics of a normal single mode optical fiber, and Figure 7 is a schematic diagram of another conventional OTDR. In the figure, FIG. 8 is a graph showing the backscattered light intensity vs. time characteristic. 12: Pulse generator 14: LD 16: Half mirror 17: Optical fiber cable 18: Optical fiber 20: Photo receiver 22 dual waveform analyzer 24. 26: Polarization separation prism 180: Optical fiber for strain distribution measurement

Claims (3)

【特許請求の範囲】[Claims] (1)偏光した光パルスを光ファイバに入射し、前記光
ファイバの各部から後方に散乱する光の偏光状態の長さ
方向の変化を測定する、光ファイバケーブルの長さ方向
歪分布測定方法。
(1) A method for measuring strain distribution in the longitudinal direction of an optical fiber cable, in which a polarized light pulse is incident on an optical fiber, and changes in the polarization state of light scattered backward from each part of the optical fiber are measured in the longitudinal direction.
(2)単一モード光ファイバからなり、かつその直交す
る2モードが、製造および布設時に受ける通常の応力で
は結合しないが、前記通常の応力を越える応力を受けた
とき結合する程度のビート長を持つ、光ファイバケーブ
ルの長さ方向歪分布測定用光ファイバ。
(2) Consisting of a single mode optical fiber, the two orthogonal modes do not combine under normal stress during manufacturing and installation, but have a beat length that is such that they will combine when subjected to stress exceeding the normal stress. Optical fiber for measuring longitudinal strain distribution of optical fiber cables.
(3)偏光した光パルスを光ファイバに入射し、前記光
ファイバの各部から後方に散乱される光を偏光子を通し
て光受信する、光ファイバケーブルの長さ方向歪分布測
定用OTDR装置。
(3) An OTDR device for measuring strain distribution in the longitudinal direction of an optical fiber cable, which inputs a polarized light pulse into an optical fiber and receives the light scattered backward from each part of the optical fiber through a polarizer.
JP25766388A 1988-10-13 1988-10-13 Method for measuring strain distribution in longitudinal direction of optical fiber cable and apparatus and optical fiber used in said method Pending JPH02103434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25766388A JPH02103434A (en) 1988-10-13 1988-10-13 Method for measuring strain distribution in longitudinal direction of optical fiber cable and apparatus and optical fiber used in said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25766388A JPH02103434A (en) 1988-10-13 1988-10-13 Method for measuring strain distribution in longitudinal direction of optical fiber cable and apparatus and optical fiber used in said method

Publications (1)

Publication Number Publication Date
JPH02103434A true JPH02103434A (en) 1990-04-16

Family

ID=17309374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25766388A Pending JPH02103434A (en) 1988-10-13 1988-10-13 Method for measuring strain distribution in longitudinal direction of optical fiber cable and apparatus and optical fiber used in said method

Country Status (1)

Country Link
JP (1) JPH02103434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638795A2 (en) * 1993-08-10 1995-02-15 AT&T Corp. Remote sensing in optical fiber networks
GB2376293A (en) * 2001-06-04 2002-12-11 Bookham Technology Plc Determining polarisation dependent power loss in an optical device
JP2007256978A (en) * 2007-06-04 2007-10-04 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2011158330A (en) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measurement of optical path

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207927A (en) * 1986-03-10 1987-09-12 Yokogawa Electric Corp Optical fiber measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207927A (en) * 1986-03-10 1987-09-12 Yokogawa Electric Corp Optical fiber measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638795A2 (en) * 1993-08-10 1995-02-15 AT&T Corp. Remote sensing in optical fiber networks
EP0638795B1 (en) * 1993-08-10 1998-05-06 AT&T Corp. Remote sensing in optical fiber networks
GB2376293A (en) * 2001-06-04 2002-12-11 Bookham Technology Plc Determining polarisation dependent power loss in an optical device
JP2007256978A (en) * 2007-06-04 2007-10-04 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber
JP2011158330A (en) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measurement of optical path

Similar Documents

Publication Publication Date Title
Noda et al. Polarization-maintaining fibers and their applications
US6621947B1 (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
EP1390707B1 (en) Optical fibre backscatter polarimetry
US6342945B1 (en) System and method for measuring polarization mode dispersion suitable for a production environment
EP0034181B1 (en) Fiber optic strain sensor
US4685799A (en) Integrated optical time domain reflectometer/insertion loss measurement system
JP6132332B2 (en) Mode coupling measuring device for multimode optical fiber
EP0214907B1 (en) Fiber sensor
AU617547B2 (en) Method for manufacturing a fiber type coupler
US11156529B2 (en) Nonlinearity measuring method and nonlinearity measuring device
Guo et al. Polarization-maintaining fiber-optic-grating vector vibroscope
US5432637A (en) Fiber optic depolarizer for optical time domain reflectometer and fiber optical communication systems
CN106568580B (en) Axial strain-double refractive inde measuring system of polarization maintaining optical fibre and measurement and calculation method
US9651380B2 (en) Integrated optical coupler and fibre-optic system having such an integrated optical coupler
JPH02103434A (en) Method for measuring strain distribution in longitudinal direction of optical fiber cable and apparatus and optical fiber used in said method
US6211962B1 (en) Sensor apparatus with polarization maintaining fibers
US6959131B2 (en) Achromatic fiber-optic power splitter and related methods
Veronese et al. Distributed measurement of birefringence in uncoupled multicore fibers
Cortázar et al. A low-cost fiber-optic system for monitoring the state of structural health of a mechanical cable
JPS58220111A (en) Connecting method of optical fiber
US20240230461A1 (en) Optical monitor device
CN218270618U (en) Optical fiber strain sensor and strain measuring device comprising same
EP0548158A1 (en) Optical apparatus
JPS6147513A (en) Optical fiber sensor
Galtarossa et al. Measurement of beat length and perturbation length in long single-mode fibers by backscattered signal analysis