JPH02102489A - Boiling water reactor - Google Patents

Boiling water reactor

Info

Publication number
JPH02102489A
JPH02102489A JP63253877A JP25387788A JPH02102489A JP H02102489 A JPH02102489 A JP H02102489A JP 63253877 A JP63253877 A JP 63253877A JP 25387788 A JP25387788 A JP 25387788A JP H02102489 A JPH02102489 A JP H02102489A
Authority
JP
Japan
Prior art keywords
steam
liquid
liquid drops
reactor
dryer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63253877A
Other languages
Japanese (ja)
Inventor
Seiichi Yokobori
誠一 横堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63253877A priority Critical patent/JPH02102489A/en
Publication of JPH02102489A publication Critical patent/JPH02102489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To allow the admission of dry steam into a steam dryer by opening the bottom end of a steam separator near the steam-liquid two-phase boundary where a coolant boils in the reactor core and suspending the top end directly to a steam dryer. CONSTITUTION:The liquid drops from the two-phase boundary 12 which receives heat in a reactor core 2 and is made into the steam-liquid mixed two-phase flow are entrained in steam flow and are directed in a perpendicular direction. The liquid drops have a distribution in its diameter and fall by gravity successively in order of the larger liquid drops. The liquid drops in the steam flow colliding against perpendicular members flow down in the form of liquid films. The fine liquid drops are brought into collision against the perpendicular members in the space up to the steam dryer 9, by which the liquid drops are fluidized in the form of the liquid films. The steam-liquid sepn. is thereby executed in addition to the dropping of the liquid drops by gravity. The dry steam subjected to the steam-liquid sepn. flows directly into the dryer 9. The liquid drops are thus separated to the liquid drops which are forcibly dropped by collision against the inside and outside surfaces of the perpendicular members and the liquid drops which fall by gravity. The suspending of the liquid drops upward is suppressed in either case. The steam-liquid separator 22 which is low in loss and has the equiv. gas-liquid separability is obtd. in this way.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は軽水冷却材を自然循環によって駆動する型式の
沸騰水型原子炉(以下、BWRと記す)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a type of boiling water nuclear reactor (hereinafter referred to as BWR) in which a light water coolant is driven by natural circulation.

(従来の技術) BWRは炉心で軽水冷却材を沸騰させ、その発生蒸気を
炉外のタービンに送って発電を行うものである。従来、
商用となっている高出力の型式のものはこの軽水冷却材
を原子炉圧力容器内で、少数の循環ポンプを使用して強
制駆動することによって循環させている。
(Prior Art) A BWR boils light water coolant in a reactor core and sends the generated steam to a turbine outside the reactor to generate electricity. Conventionally,
Commercially available high-power versions circulate this light water coolant within the reactor pressure vessel by force-driving a small number of circulation pumps.

最近、発電量が比較的小ざい、いわゆる中小型BWRが
注目されるようになってきている。また、この中小型B
WRの属性には固有の安全性を有することが期待されて
いる。その際、動的機器である循還ポンプなどを使用し
ないで、沸騰現象で発生する気泡の浮力だけによって炉
心内に冷却材を自然循環させることが考えられている。
Recently, so-called small and medium-sized BWRs, which generate relatively small amounts of power, have been attracting attention. Also, this medium and small B
The attributes of WR are expected to have inherent security. At that time, it is being considered that the coolant can be naturally circulated within the reactor core using only the buoyancy of the bubbles generated by the boiling phenomenon, without using dynamic equipment such as circulation pumps.

第8図は従来の自然循環型BWRを概略的に断面図で示
したものであり、この第8図を参照しながら従来例を説
明する。第8図申付号1は原子炉圧力容器であり、この
原子炉圧力容器1内に炉心2が配設されている。炉心2
を取り囲んで長尺のライザ(シュラウドともいう)3が
設けられ、このライザ3と原子炉圧力容器1との間に円
環状ダウンカマ4が形成されている。炉心2の上方には
上部プレナム5が形成され、この上部プレナム5に位置
してシュラウドヘッド6が設けられている。
FIG. 8 is a schematic cross-sectional view of a conventional natural circulation type BWR, and the conventional example will be explained with reference to FIG. Reference number 1 in FIG. 8 is a nuclear reactor pressure vessel, and a reactor core 2 is disposed within this reactor pressure vessel 1. reactor core 2
An elongated riser (also referred to as a shroud) 3 is provided surrounding the reactor pressure vessel 1, and an annular downcomer 4 is formed between the riser 3 and the reactor pressure vessel 1. An upper plenum 5 is formed above the core 2, and a shroud head 6 is provided in the upper plenum 5.

このシュラウドヘッド6にはスタンドパイプ7が接続さ
れ、このスタンドパイプ7に第9図に示した気水分離器
8が接続されている。気水分離器8の上方には空間を有
して蒸気乾燥器(ドライヤ9)が設Cプられている。蒸
気乾燥器9が位置する原子炉圧力容器1の側面には主蒸
気管10が接続されてあり、またスタンドパイプ7が位
置する側面に冷却材を流入する吸水管11が接続されて
いる。なお、炉心2の下方には図示してないが制御棒と
制御棒駆動機構が配設されている。また図中符号12は
炉心2で沸騰した気液二相界面、13は液体中の気泡つ
まりボイドを小している。
A stand pipe 7 is connected to this shroud head 6, and a steam separator 8 shown in FIG. 9 is connected to this stand pipe 7. A steam dryer (dryer 9) is installed in a space above the steam separator 8. A main steam pipe 10 is connected to the side surface of the reactor pressure vessel 1 where the steam dryer 9 is located, and a water suction pipe 11 through which coolant flows is connected to the side surface where the stand pipe 7 is located. Although not shown, control rods and a control rod drive mechanism are provided below the core 2. Further, in the figure, reference numeral 12 indicates a gas-liquid two-phase interface boiled in the core 2, and 13 indicates a small bubble or void in the liquid.

ここで、冷却材を炉心2で沸騰させ、シュラウドヘッド
6、スタンドパイプ7で気液二相流をより多く集め、円
筒状ライザ3で包囲することによって上方に気液二相流
が導かれ、気液分離器8の所定の位置で二相界面12を
形成する。その二相界面12より上方に蒸気流の領域が
発生することになるが、液面内の上端に位置する気液分
離器8で気液を分離したのら、蒸気9乞燥器9で蒸気を
さらに乾燥させる。このようにして乾燥した高乾き度の
蒸気を主蒸気管10を通してタービン系に導き、発電さ
せたのち、復水器で凝縮させて復水し、この復水を吸水
管11から原子炉圧力容器1内へ戻す。
Here, the coolant is boiled in the core 2, more of the gas-liquid two-phase flow is collected in the shroud head 6 and the stand pipe 7, and the gas-liquid two-phase flow is guided upward by surrounding it with the cylindrical riser 3. A two-phase interface 12 is formed at a predetermined position of the gas-liquid separator 8. A region of vapor flow will be generated above the two-phase interface 12, but after separating the gas and liquid in the gas-liquid separator 8 located at the upper end of the liquid surface, further dry. The highly dry steam thus dried is led to the turbine system through the main steam pipe 10 to generate electricity, and then condensed in the condenser, and this condensate is sent from the water intake pipe 11 to the reactor pressure vessel. Return to within 1.

他方、気水分離器8で分離された液体は循環流但として
円環状のダウンカマ4を流下される。炉心2内に二相流
、ライザ3内は単相流で界面12を共有しているため、
このようにすれば炉心2の内外のボイド(気泡)13徂
の違いによってそれだけ駆動力がつき、自然循環によっ
て冷却材を駆動させることができる。気水分離器8は第
9図に示すような構造を有している。すなわち、スタン
ドパイプ7から流入する蒸気と水の混合流は、スタンド
パイプ7と同軸同径で接続するライザ14から旋回羽根
15に至り、この旋回羽根1・5によって旋回力が与え
られ、螺旋状に旋回しながら旋回胴16の内部を上昇し
ていく。この際、比重の大きい液体は遠心力のため、旋
回胴16の内壁に押しつけられ、比重の小さい蒸気は旋
回胴16の中心部(コア)を流れるために気水分離が行
なわれる。旋回胴16の上方には分離した水を排出する
ための排水口17が設けられている。旋回胴16の内壁
を伝って流れてくる液体は排水口17に流入し、旋回胴
16と外筒18との間に形成されている環状流路19の
下方に流れ排水される。
On the other hand, the liquid separated by the steam/water separator 8 is circulated through the annular downcomer 4. Since the core 2 has a two-phase flow and the riser 3 has a single-phase flow, sharing the interface 12,
In this way, the difference between the voids (bubbles) 13 inside and outside the core 2 increases the driving force accordingly, and the coolant can be driven by natural circulation. The steam/water separator 8 has a structure as shown in FIG. That is, the mixed flow of steam and water flowing from the standpipe 7 reaches the swirling vane 15 from the riser 14, which is connected coaxially and with the same diameter as the standpipe 7, and is given a swirling force by the swirling vanes 1 and 5 to form a spiral shape. The robot ascends inside the rotating trunk 16 while rotating. At this time, the liquid with a high specific gravity is pressed against the inner wall of the rotating shell 16 due to centrifugal force, and the steam with a low specific gravity flows through the center (core) of the rotating shell 16, so that steam and water separation is performed. A drain port 17 for discharging separated water is provided above the rotating body 16. The liquid flowing along the inner wall of the rotating barrel 16 flows into the drain port 17, flows below the annular flow path 19 formed between the rotating barrel 16 and the outer cylinder 18, and is drained.

一方、旋回胴16の中心部を流れる蒸気は旋回胴16の
上方の蒸気排出口20に入り、蒸気排出管21を経て蒸
気ドームく図示せず)に流入する。
On the other hand, steam flowing through the center of the revolving shell 16 enters a steam outlet 20 above the revolving shell 16, passes through a steam exhaust pipe 21, and flows into a steam dome (not shown).

(発明が解決しようとする課題) 以上説明した過程において蒸気液体の混合流は大きな流
動抵抗を受ける。従来のポンプを有する型式のBWRに
おいては特に上部プレナム5からスタンドパイプ7に流
入する際の流量配分に起因する圧力損失および縮流に起
因する圧力損失、スタンドパイプ7を通過する際の圧力
損失および旋回羽根15を通過する際の圧力損失が大き
い。圧力損失が大きいとポンプを有する現状BWRでは
再循環ポンプの負荷が大きくなる。また、再循環ポンプ
停止時の自然循環流量が減少するため沸騰水型原子炉の
熱水力学的安定性が悪くなることが考えられる。
(Problems to be Solved by the Invention) In the process described above, the mixed flow of vapor and liquid is subjected to large flow resistance. In BWRs with conventional pumps, there are particularly pressure losses caused by flow distribution when flowing from the upper plenum 5 into the standpipe 7, pressure losses caused by contracted flow, pressure losses when passing through the standpipe 7, and The pressure loss when passing through the swirl vane 15 is large. If the pressure loss is large, the load on the recirculation pump becomes large in the current BWR equipped with a pump. Furthermore, it is conceivable that the thermal-hydraulic stability of the boiling water reactor deteriorates because the natural circulation flow rate decreases when the recirculation pump is stopped.

他方、循環ポンプを原子炉圧力容器内に保有しない型式
の自然循環炉においても第9図に示した気水分離器を設
ける限り旋回羽根を通過する際の圧力損失が依然として
残る。この部分で圧力損失がつけば自然循環流量が減少
し、原子炉の定格運転時の発電量を低いところで設定し
なければならない。これは原子炉の設計上好ましいこと
ではない。したがって、中小型炉の気水分離器の設計に
おいて最も重要な点は気水分離器の性能を損なわずに可
能な限り圧力損失低減を図ることである。
On the other hand, even in a type of natural circulation reactor that does not include a circulation pump in the reactor pressure vessel, as long as the steam separator shown in FIG. 9 is provided, pressure loss when passing through the swirl vanes still remains. If pressure loss occurs in this area, the natural circulation flow rate will decrease, and the amount of power generated during rated operation of the reactor must be set at a low level. This is not desirable in terms of reactor design. Therefore, the most important point in designing a steam separator for small to medium-sized reactors is to reduce pressure loss as much as possible without impairing the performance of the steam separator.

本発明は上記課題を解決するためになされたもので、従
来組込まれていた気水分離器の分離性能よりも低圧力損
失でおりながら、より簡単な構成で乾き蒸気を蒸気乾燥
器に流入させることができる気水分離器を組込んだ沸騰
水型原子炉を提供することにある。
The present invention has been made to solve the above problems, and allows dry steam to flow into a steam dryer with a simpler structure while having a lower pressure loss than the separation performance of conventionally incorporated steam and water separators. The object of the present invention is to provide a boiling water nuclear reactor incorporating a steam/water separator that can be used.

[発明の構成] (課題を解決するための手段) 本発明は原子炉圧力容器内に炉心と、この炉心を包囲す
る長尺のライザと、前記炉心の上方に気水分離器および
蒸気乾燥器とを有し、軽水冷五〇材を駆動するポンプを
前記原子炉圧力容器の内部に保有せず、前記炉心で発生
する熱を定常状態で自然循環によって前記冷却材で除去
する型式の沸騰水型原子炉において、前記炉心で前記冷
却材が沸騰した気液二相界面の近傍に下端が開口され、
かつ上端が前記蒸気乾燥器と直結懸架される如く複数の
鉛直状部材が配設された気液分離器を接続してなること
を特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a reactor core in a reactor pressure vessel, a long riser surrounding the core, and a steam separator and a steam dryer above the core. A type of boiling water that does not have a pump driving a light water cooling material inside the reactor pressure vessel, and that the heat generated in the reactor core is removed by the coolant through natural circulation in a steady state. type nuclear reactor, the lower end is opened near the gas-liquid two-phase interface where the coolant boils in the reactor core,
The apparatus is characterized in that it is connected to a gas-liquid separator in which a plurality of vertical members are arranged so that the upper end thereof is directly connected and suspended to the steam dryer.

また、前記鉛直状部材は管状体、中実棒体または管状体
内に中実棒体が挿入された二重管体もしくは該鉛直状部
材の表面に多孔質金属またはメツシュが設けられたもの
から選ばれた少くとも一種からなることを特徴とする。
The vertical member is selected from a tubular body, a solid rod, a double pipe in which a solid rod is inserted into the tubular body, and a porous metal or mesh provided on the surface of the vertical member. It is characterized by consisting of at least one type of

(作 用) 炉心で受熱し、気液混合二相流となった二相界面からの
液滴は蒸気流に同伴されて鉛直方向に向う。液滴はその
直径に分布を有し、大きい(重い)液滴のものから順に
重力により自然落下する。鉛直状部材に衝突した蒸気流
中の液滴は液膜となって流下する。このようにして重力
にょる液滴落下に加えて蒸気乾燥器までの室間で細い液
滴を鉛直状部材に衝突させ、液膜として液滴を流動させ
て気液分離する。気液分離された乾き蒸気は蒸気乾燥器
内へ直接流入する。したがって、液滴は鉛直状部材の内
外面で衝突して強制落下するものと、重力によって自由
落下するものとでいずれにしても上方への浮遊が抑制さ
れる。よって、従来よりも低損失で同等の気液分離性能
を有する気液分離器となる。
(Function) Droplets from the two-phase interface, which have received heat in the core and become a gas-liquid mixed two-phase flow, are entrained by the steam flow and move in the vertical direction. The droplets have a distribution in their diameter, and droplets naturally fall due to gravity in order of size (larger (heavier)). Droplets in the vapor stream that collide with the vertical member form a liquid film and flow down. In this way, in addition to droplets falling due to gravity, thin droplets are made to collide with a vertical member between the chambers up to the steam dryer, causing the droplets to flow as a liquid film to separate gas and liquid. The dry steam separated from the gas and liquid flows directly into the steam dryer. Therefore, in either case, the droplets are suppressed from floating upward, either by colliding with the inner and outer surfaces of the vertical member and falling forcibly, or by falling freely due to gravity. Therefore, the gas-liquid separator has lower loss and the same gas-liquid separation performance as the conventional one.

(実施例) 本発明に係る沸騰水型原子炉の一実施例を第1図から第
5図までを参照しながら説明する。
(Embodiment) An embodiment of a boiling water nuclear reactor according to the present invention will be described with reference to FIGS. 1 to 5.

第1図において、原子炉容器1内には炉心2が配置され
ており、この炉心2内には制御棒CRが制御棒駆動機構
CRDによって挿脱される。炉心2の外周およびその上
方のプレナム5aを包囲して長尺の円筒状ライザ3が設
けられている。このライザ3と原子炉容器1との間には
円環状ダウンカマ4が形成される。炉心2の上部にはよ
り広い上部プレナム5aが形成されている。このプレナ
ム5aの上方に気液分離器22が配設され、この気液分
離器22の上方に蒸気乾燥器9が設けられている。この
気液分離器22と蒸気乾燥器9との配置関係は第2図に
部分的に拡大したような構成になっている。
In FIG. 1, a reactor core 2 is disposed within a reactor vessel 1, and a control rod CR is inserted into and removed from the reactor core 2 by a control rod drive mechanism CRD. A long cylindrical riser 3 is provided surrounding the outer periphery of the core 2 and a plenum 5a above it. An annular downcomer 4 is formed between the riser 3 and the reactor vessel 1. A wider upper plenum 5a is formed in the upper part of the core 2. A gas-liquid separator 22 is provided above this plenum 5a, and a steam dryer 9 is provided above this gas-liquid separator 22. The arrangement of the gas-liquid separator 22 and the steam dryer 9 is as shown in FIG. 2, partially enlarged.

すなわち、第2図において気液分離器22はプレート2
3に複数の鉛直状部材としてパイプ24が接続されたも
のからなっている。パイプ24には蒸気の流出孔24が
複ri個所設けられている。またプレート23にパイプ
24からの乾き蒸気が直接蒸気屹燥器9に流入する貫通
孔26が設けられている。したがって、蒸気乾燥器9に
は気液分離器22が直結懸架された接続構造になってい
る。
That is, in FIG. 2, the gas-liquid separator 22 is connected to the plate 2
3 to which pipes 24 are connected as a plurality of vertical members. The pipe 24 is provided with multiple steam outlet holes 24. Further, the plate 23 is provided with a through hole 26 through which dry steam from the pipe 24 directly flows into the steam drier 9. Therefore, the steam dryer 9 has a connection structure in which the gas-liquid separator 22 is directly connected and suspended.

なお、第1図中、符号10は主蒸気管、11は給水管、
12は二相界面を示している。このように気液分離器2
2における複数のパイプ24は蒸気乾燥器9の下面と二
相界面12との間に鉛直に配置され、蒸気の流れと平行
になっている。また、パイプ24の上端は蒸気乾燥器9
の下端と直結一体構造で、乾いた蒸気が蒸気乾燥器9に
スムーズに流入できるように開口構造になっている。一
方、パイプ24の下端は二相界面12の近傍に位置して
いるが、液面の下方に埋没させても、また液滴より上方
に開口させても何れでもよい。前者の場合は従来使用さ
れているスタンドバイブのような働きをする。後者の場
合は単なる液滴落下の促進体となる。
In addition, in FIG. 1, the code 10 is the main steam pipe, 11 is the water supply pipe,
12 indicates a two-phase interface. In this way, the gas-liquid separator 2
The plurality of pipes 24 in 2 are arranged vertically between the lower surface of the steam dryer 9 and the two-phase interface 12, and are parallel to the flow of steam. In addition, the upper end of the pipe 24 is connected to a steam dryer 9.
It has an open structure so that dry steam can smoothly flow into the steam dryer 9. On the other hand, although the lower end of the pipe 24 is located near the two-phase interface 12, it may be buried below the liquid level or opened above the droplet. In the former case, it functions like a conventional stand vibrator. In the latter case, it simply becomes a facilitator for droplet falling.

第3図は二相界面12近傍での液滴飛散の挙動を示した
ものである。図中Xは二相界面12から蒸気乾燥器9ま
での鉛直方向を、qは落下方向を示している。ある程度
重い液滴27は上方に行くにつれて抗力と重力加速度の
影響により落下してゆく。
FIG. 3 shows the behavior of droplet scattering near the two-phase interface 12. In the figure, X indicates the vertical direction from the two-phase interface 12 to the steam dryer 9, and q indicates the falling direction. The droplets 27, which are somewhat heavy, fall as they move upward due to the effects of drag and gravitational acceleration.

この二相界面からの液滴(ドロップレット)の飛散の度
合を評価し、重い液滴27の自然落下を利用することに
よって上部プレナム5aの長さ、広さをある程度重6プ
れば蒸気乾燥器9を通過する液滴か細いもののみとなる
。より細かい粒子の液滴28は上方に移行する限界はあ
るが、圧力損失の大きい気液分離器を使用しなければお
る程度重いた状態の蒸気を維持することができる。
Evaluating the degree of scattering of droplets from this two-phase interface, and utilizing the natural fall of heavy droplets 27, the length and width of the upper plenum 5a can be increased to a certain extent to allow steam drying. Only thin droplets pass through the container 9. Although there is a limit to the upward movement of the finer droplets 28, it is possible to maintain a somewhat heavy vapor state unless a gas-liquid separator with a large pressure loss is used.

第4図はパイプ24に液膜排出用スリット29を形成し
た例を示している。このスリット29によって発達しだ
液膜30が持続せず、強制的にパイプ24の外部に排出
される。
FIG. 4 shows an example in which a liquid film discharge slit 29 is formed in the pipe 24. Due to this slit 29, the developed weeping liquid film 30 is not sustained and is forcibly discharged to the outside of the pipe 24.

第5図は冷却材が炉心で受熱し、気液の混合二相流とな
った界面12からの液滴が鉛直方向へ向ってパイプ24
内を流れ、液1!30に付着して流下する挙動状態を示
している。
Figure 5 shows that the coolant receives heat in the reactor core, and the droplets from the interface 12, which have become a mixed two-phase gas-liquid flow, are directed vertically into the pipe 24.
It shows the behavior state in which the liquid flows inside the liquid, adheres to the liquid 1!30, and flows down.

その挙動は以下の式で規定される。Its behavior is defined by the following formula.

に こで、dは液滴の直径、U9 、 UQ、 F’9 。to Here, d is the diameter of the droplet, U9, UQ, F'9.

P2は蒸気、液それぞれの流束と密度を示し、μは粘性
係数である。
P2 represents the flux and density of vapor and liquid, and μ is the viscosity coefficient.

この様な現象に加えて、より微細な液滴粒子は複数のパ
イプ24の内外面に衝突し、液滴30となって付着する
。衝突の確率は蒸気流速が遅く、蒸気の流路面積が小ざ
く、パイプの長さが長いほど大きくなる。付着しだ液膜
30は蒸気流速には同伴されずに残存し、緩やかではあ
るが厚さを増しパイプ24の内外面に拡がり、ある程度
の厚さになると自重によって落下する。−度液滴が形成
された後の液膜中への液滴の取り込みは高い確率で実現
される。実験によれば、BWR運転圧力条件での液面か
らの液滴の飛散については実験の面積によって結果にば
らつきが見られるものの、1〜3m程度上方になるとか
なり乾き度の高い蒸気となるとの結果が得られている。
In addition to this phenomenon, finer droplet particles collide with the inner and outer surfaces of the plurality of pipes 24 and adhere as droplets 30. The probability of collision increases as the steam flow rate becomes slower, the steam flow path area becomes smaller, and the length of the pipe becomes longer. The deposited saliva film 30 remains unaccompanied by the steam flow rate, and gradually increases in thickness and spreads over the inner and outer surfaces of the pipe 24, and when it reaches a certain thickness, it falls due to its own weight. Incorporation of the droplet into the liquid film after the droplet is formed is achieved with high probability. According to experiments, there are variations in the results regarding the scattering of droplets from the liquid surface under BWR operating pressure conditions depending on the area of the experiment, but the results show that the vapor becomes considerably dryer when it is about 1 to 3 meters above the surface. is obtained.

この結果から、(1)二相流の面積によって結果が異な
る液滴の面への衝突の影響が間接的に類推され、また(
2)例え3mであったとしてもこれは従来の気液分離器
とほぼ同様のスケールであるため、本発明を実施すれば
原子炉圧力容器1を長大化しなくてもよいことなどが判
る。
From this result, we can indirectly infer (1) the influence of impact on the surface of a droplet, which results in different results depending on the area of the two-phase flow, and also (
2) Even if it is 3 m, this is approximately the same scale as a conventional gas-liquid separator, so it can be seen that if the present invention is implemented, there is no need to increase the length of the reactor pressure vessel 1.

このようにして、単独では蒸気に同伴して容易に分離で
きないような微粒の液体を回収することにより、良好な
気液の分離性能が得られる。他方、本発明による気水分
離器前後での圧力損失は旋回羽根を有する従来例の気水
分離器8の圧力損失に比べて旋回羽根15前後の圧損が
なくなった分だけはるかに小さいものとなる。本発明の
場合、蒸気の流れに対してパイプが平行でおることも圧
損を小さいものとするのに貢献している。
In this way, by recovering fine liquid particles that cannot be easily separated along with vapor by themselves, good gas-liquid separation performance can be obtained. On the other hand, the pressure loss before and after the steam-water separator according to the present invention is much smaller than the pressure loss in the conventional steam-water separator 8 having swirl vanes, since the pressure loss before and after the swirl vanes 15 is eliminated. . In the case of the present invention, the fact that the pipe is parallel to the flow of steam also contributes to reducing pressure loss.

すなわち、粒子径大の液滴の自重落下効果と粒子径小の
液)内のパイプ面への付着効果どの相乗作用にJ:って
従来の気液分離器8はどの流動抵抗を消費Uずに従来と
同程度の気水分離性能を得ることができる。
In other words, the conventional gas-liquid separator 8 does not consume any flow resistance due to the synergistic effects of the falling droplets due to their own weight and the adhesion of small-sized liquid droplets to the pipe surface. It is possible to obtain the same level of steam and water separation performance as conventional methods.

なお、パイプ24の長さは蒸気乾燥器9の下端面と二相
界面12との距離よりも小であるものとする。
Note that the length of the pipe 24 is assumed to be smaller than the distance between the lower end surface of the steam dryer 9 and the two-phase interface 12.

またパイプ24の本数は従来の気液分離器8とほぼ等し
い本数としてもよい。
Further, the number of pipes 24 may be approximately the same as that of the conventional gas-liquid separator 8.

第6図は気液分離器22のパイプ24の代りに鉛直状部
材として中実棒体くロッド)32を使用した例を示して
いる。この例もパイプ24を使用した第3図に示した原
理と同様、上部する蒸気流31に同伴される液滴28は
蒸気乾燥器9に到達するまでに中実棒体32の表面に付
着したのち、液膜30となって流下する。重い液滴27
は自然落下する。かくして、この例では中実棒体である
ため、乾いた蒸気は自然に蒸気乾燥器9内に流入する。
FIG. 6 shows an example in which a solid rod 32 is used as a vertical member in place of the pipe 24 of the gas-liquid separator 22. This example also uses the pipe 24 and is similar to the principle shown in FIG. Afterwards, it becomes a liquid film 30 and flows down. heavy droplet 27
falls naturally. Thus, due to the solid rod in this example, the dry steam naturally flows into the steam dryer 9.

液滴が棒体32の表面に付着する効果は表面積が大きい
ほど大きくなる。
The effect of droplets adhering to the surface of the rod 32 increases as the surface area increases.

第7図は鉛直状部材としてパイプ24内に中実棒体32
を挿入して二重管体のタイプに形成するとともに表面積
を増加させた例を示している。
FIG. 7 shows a solid rod 32 installed inside the pipe 24 as a vertical member.
This figure shows an example in which a double-tube structure is formed by inserting a tube, and the surface area is increased.

この例では表面積が大きくなっているため、液滴がパイ
プ27の内外面および中実棒体32の表面に付着する効
果が大きくなり、蒸気乾燥器9の下面ではより乾いた蒸
気流を得ることができる。言い換えれば、同じ乾き度で
あれば蒸気乾燥器9をより炉心2に近付けられるため、
二相界面12と蒸気乾燥器9の下面までの上部プレナム
5aを狭くでき、原子炉圧力容器の短尺化に寄与できる
In this example, since the surface area is large, the effect of droplets adhering to the inner and outer surfaces of the pipe 27 and the surface of the solid rod 32 is greater, and a drier steam flow is obtained on the lower surface of the steam dryer 9. Can be done. In other words, if the dryness is the same, the steam dryer 9 can be moved closer to the core 2,
The upper plenum 5a between the two-phase interface 12 and the lower surface of the steam dryer 9 can be narrowed, contributing to the shortening of the reactor pressure vessel.

また、パイプ24オよび中実棒状体32の表面に焼結金
属などいわゆる多孔質媒体を設けるか、ないしはメツシ
ュを設けて液滴捕獲効果を高めることができる。
Furthermore, the droplet trapping effect can be enhanced by providing a so-called porous medium such as a sintered metal on the surfaces of the pipe 24 and the solid rod-shaped body 32, or by providing a mesh.

なお、パイプ24または中実棒体32を使用することに
よって蒸気乾燥器9に向かう蒸気の流速は流路断面積の
減少分だけ増加する。これに伴う液滴の飛散距離の増加
と付着面積増加による微粒液滴増とは後者の方が効果が
大きい。
Note that by using the pipe 24 or the solid rod 32, the flow rate of steam toward the steam dryer 9 increases by the decrease in the cross-sectional area of the flow path. The latter has a greater effect on the increase in the droplet scattering distance and the increase in fine droplets due to the increase in the adhering area.

[発明の効果] 本発明によれば炉心で受熱し、気液混合二相流となった
界面からの液滴は重力によって液滴が自然落下すること
あにびより細かい液滴を鉛直状部材の面で流下される。
[Effects of the Invention] According to the present invention, droplets from the interface that have received heat in the reactor core and become a gas-liquid mixed two-phase flow naturally fall due to gravity, and the droplets, which are finer than a snail, are transferred to the vertical member. flowed down on the surface.

したがって、従来の気水分離器よりも小さい圧損で同等
の気液分離性能を得ることができるので、同じ炉心発熱
量でありながら、従来より大きい流量つまりより高い熱
出力を取り出すことができる。
Therefore, it is possible to obtain the same gas-liquid separation performance with a smaller pressure drop than a conventional steam-water separator, so it is possible to extract a larger flow rate, that is, a higher thermal output, than the conventional steam-water separator, while maintaining the same core calorific value.

また、原子炉の過渡変化における液面の変化に緩衝材と
なって急激な蒸気量の変化などが蒸気乾燥器、ひいては
主蒸気管への直接の変化を和らげる効果もある。
It also acts as a buffer against changes in the liquid level during transient changes in the reactor, and has the effect of softening direct changes in the steam dryer and, by extension, the main steam pipe due to sudden changes in the amount of steam.

ざらに蒸気乾燥器に気液分離器が一体的に取り付けるこ
とができるので燃料交換時に蒸気乾燥器を取り外すこと
によって、直らに燃料集合体を取り出すことができ、従
来よりも短時間で燃料交換作業を行うことができる。
Since the gas-liquid separator can be integrally attached to the steam dryer, the fuel assembly can be taken out immediately by removing the steam dryer during fuel exchange, making the fuel exchange process faster than before. It can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る沸騰水型原子炉の一実施例を概略
的に示す縦断面図、第2図は第1図のA ”部を拡大し
て示す縦断面図、第3図は第1図の鉛直状部材にあける
液滴飛散の挙動を説明するだめの概念図、第4図は第1
図における鉛直状部材の他の例を示す縦断面図、第5図
は第1図および第4図にa5ける鉛直状部材の作用を説
明するための模式図、第6図は鉛直状部材としての中実
棒体とその作用を説明するための模式図、第7図は鉛直
状部材の他の例を示す斜視図、第8図は従来の沸騰水型
原子炉を概略的に示す縦断面図、第9図は第8図におけ
る気液分離器を示す縦断面図である。 1・・・原子炉圧力容器 2・・・炉心 3・・・ライザ 4・・・ダウンカマ 5・・・上部プレナム 6・・・シュラウドヘット 7・・・スタンドパイプ 8・・・気液分離器 9・・・蒸気乾燥器 10・・・主蒸気管 11・・・給水管。 13・・・ボイド。 15・・・旋回羽根。 17・・・排水口。 19・・・環状流路。 21・・・蒸気排出管 22・・・気液分離器 23・・・プレート 24・・・パイプ。 26・・・貫通穴。 28・・・細かい液滴 29・・・スリット 30・・・発達した液膜 31・・・蒸気流 32・・・中実棒体
FIG. 1 is a vertical cross-sectional view schematically showing an embodiment of the boiling water nuclear reactor according to the present invention, FIG. 2 is a vertical cross-sectional view showing an enlarged section A'' in FIG. 1, and FIG. Figure 1 is a conceptual diagram of a container to explain the behavior of droplet scattering in a vertical member.
5 is a schematic diagram for explaining the action of the vertical member at a5 in FIGS. 1 and 4, and FIG. 6 is a vertical sectional view showing another example of the vertical member in A schematic diagram for explaining a solid rod and its function, Figure 7 is a perspective view showing another example of a vertical member, and Figure 8 is a longitudinal section schematically showing a conventional boiling water reactor. 9 is a longitudinal sectional view showing the gas-liquid separator in FIG. 8. 1... Reactor pressure vessel 2... Core 3... Riser 4... Down comer 5... Upper plenum 6... Shroud head 7... Stand pipe 8... Gas-liquid separator 9 ...Steam dryer 10...Main steam pipe 11...Water supply pipe. 13...Void. 15...Swirl blade. 17... Drain port. 19...Annular channel. 21... Steam discharge pipe 22... Gas-liquid separator 23... Plate 24... Pipe. 26...Through hole. 28... Fine droplets 29... Slit 30... Developed liquid film 31... Vapor flow 32... Solid rod

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉圧力容器内に炉心と、この炉心を包囲する
長尺のライザと、前記炉心の上方に気水分離器および蒸
気乾燥器とを有し、軽水冷却材を駆動するポンプを原子
炉圧力容器の内部に保有せず、前記炉心で発生する熱を
定常状態で自然循環によつて前記冷却材で除去する型式
の沸騰水型原子炉において、前記炉心で前記冷却材が沸
騰した気液二相界面の近傍に下端が開口され、かつ上端
が前記蒸気乾燥器に直結懸架される如く複数の鉛直状部
材が配設された気液分離器を接続してなることを特徴と
する沸騰水型原子炉。
(1) The reactor pressure vessel has a reactor core, a long riser that surrounds the reactor core, and a steam separator and a steam dryer above the reactor core. In a boiling water reactor of the type in which the heat generated in the reactor core is removed by the coolant through natural circulation in a steady state without being retained inside the reactor pressure vessel, the coolant boils in the reactor core. A boiling system characterized by connecting a gas-liquid separator having a plurality of vertical members arranged such that the lower end is opened near the liquid two-phase interface and the upper end is directly connected and suspended to the steam dryer. Water reactor.
(2)前記鉛直状部材は管状体、中実棒体または管状体
内に中実棒体が挿入された二重管体もしくは該鉛直状部
材の表面に多孔質金属またはメッシュが設けられたもの
から選ばれた少くとも一種からなることを特徴とする請
求項1記載の沸騰水型原子炉。
(2) The vertical member is a tubular body, a solid rod, a double tube with a solid rod inserted into the tubular body, or a porous metal or mesh provided on the surface of the vertical member. The boiling water nuclear reactor according to claim 1, characterized in that it comprises at least one selected type.
JP63253877A 1988-10-11 1988-10-11 Boiling water reactor Pending JPH02102489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253877A JPH02102489A (en) 1988-10-11 1988-10-11 Boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253877A JPH02102489A (en) 1988-10-11 1988-10-11 Boiling water reactor

Publications (1)

Publication Number Publication Date
JPH02102489A true JPH02102489A (en) 1990-04-16

Family

ID=17257374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253877A Pending JPH02102489A (en) 1988-10-11 1988-10-11 Boiling water reactor

Country Status (1)

Country Link
JP (1) JPH02102489A (en)

Similar Documents

Publication Publication Date Title
KR101056010B1 (en) Water separator
US3603062A (en) Gas-liquid separator
JP3142931B2 (en) Gas / liquid separator
US4947485A (en) Method for obtaining load-following capability in natural circulation, free-surface separation boiling water reactors
EP0493900A1 (en) Steam dryer
JPH02281194A (en) Steam separating system for boiling water reactor
KR20210080946A (en) Swirl vane type steam separator
CN110075623A (en) A kind of fining gas-liquid separator
JPH06201890A (en) Module type drier-unified steam separator
JPS6141363B2 (en)
JPH02102489A (en) Boiling water reactor
JP3971146B2 (en) Steam separator and boiling water reactor
US3507099A (en) Centrifugal liquid-vapor separator
US5106573A (en) BWR Natural steam separator
Zeng et al. Experimental study on two different gas-liquid separators under different flow patterns
JPH04231897A (en) Boiling water reactor whose steam separating system is improved
JP2003090892A (en) Steam dryer, heat exchanger, heating element sheath and heat transfer system
JP3272142B2 (en) Steam separator and steam separator
JPH0675082A (en) Multiple steam water separator
JP2004245656A (en) Steam separator
JP2008298309A (en) Steam separator
JP2003307584A (en) Steam separation device
EP0859368A1 (en) Low pressure drop steam separators
JPH02251797A (en) Boiling water nuclear reactor
Nishida et al. Development of moisture separator with high performance of steam generator