JPH02102154A - Admixture for fiber-reinforced concrete - Google Patents

Admixture for fiber-reinforced concrete

Info

Publication number
JPH02102154A
JPH02102154A JP25561788A JP25561788A JPH02102154A JP H02102154 A JPH02102154 A JP H02102154A JP 25561788 A JP25561788 A JP 25561788A JP 25561788 A JP25561788 A JP 25561788A JP H02102154 A JPH02102154 A JP H02102154A
Authority
JP
Japan
Prior art keywords
admixture
fiber
cement
viscosity
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25561788A
Other languages
Japanese (ja)
Other versions
JP2791054B2 (en
Inventor
Zenji Yamaguchi
善治 山口
Koichi Kawamura
川村 弘一
Akira Miyoshi
彰 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKUTOU KAGAKU KK
Nippon Steel Corp
Original Assignee
HAKUTOU KAGAKU KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKUTOU KAGAKU KK, Sumitomo Metal Industries Ltd filed Critical HAKUTOU KAGAKU KK
Priority to JP63255617A priority Critical patent/JP2791054B2/en
Publication of JPH02102154A publication Critical patent/JPH02102154A/en
Application granted granted Critical
Publication of JP2791054B2 publication Critical patent/JP2791054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To obtain an admixture for improving processability and quality of fiber-reinforced concrete by containing hydroxyethyl cellulose as an active component and specifying the hydroxyethyl molar substitution degree and viscosity of an aqueous solution thereof. CONSTITUTION:An admixture containing hydroxyethyl cellulose with 0.5-10 hydroxyethyl molar substitution degree and 1000-8000cP (20 deg.C) viscosity of a 1% aqueous solution thereof as an active component. If the viscosity (20 deg.C) of the 1% aqueous solution of the hydroxyethyl cellulose is lower than 1000cP, delaying action on cement hardening is great and demolding cannot be carried out or deformation of the extrusion molded product or cracking is caused in autoclave or steam curing. Furthermore, fiber dispersibility or impartment of plasticity tends to decrease. On the other hand, if the viscosity is higher than 8000cP, production of the hydroxyethyl cellulose itself tends to be difficult and the admixture is practically unusable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維補強コンクリート(以下FRCと記す)
を製造する際、補強繊維をセメント系マトリックス中に
均一分散させるとともに、未硬化FRCの諸物件と加工
性を改善して、硬化物の製造を容易にし、品質向上をも
たらすFRCコンクリート用混和剤、該混和剤により、
繊維補強コンクリートの加工性と品質を改善する方法、
FRCの加工性を改善するために該混和剤を配合された
セメント系マトリックスおよび該混和剤を配合して加工
され、品質を改善されたl’Rc未硬化物とI’llC
硬化物に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to fiber reinforced concrete (hereinafter referred to as FRC).
An admixture for FRC concrete that uniformly disperses reinforcing fibers in the cementitious matrix and improves the properties and processability of uncured FRC, facilitating the production of cured products and improving quality. With the admixture,
How to improve the workability and quality of fiber reinforced concrete,
A cementitious matrix blended with the admixture to improve the processability of FRC, and l'Rc uncured products and I'llC processed with the admixture to improve quality.
Regarding cured products.

〔従来の技術〕[Conventional technology]

セメント系硬化物に繊維状物質を配合することによって
、強度が向上することは、従来より知られており、アス
ベストを使用したアスベストコンクリートが、その典型
的な例である。さらに、近年、アスベストの発ガン性を
さけるためのアスベスト代替繊維での補強コンクリート
の検討や、高強度コンクリートの研究から、各種補強繊
維、例えば、無機系繊維としての炭素繊維・ガラス繊維
・スチールファイバー、有機系繊維としてのアラミド繊
維・ポリプロピレン繊維・ポリエチレン繊維・バルブな
どを使用した繊維補強コンクリートの実用化が行なわれ
ている。これらのFRCは流し込み成形法、あるいは、
押出成形法によって製造されているが、量産化に適し、
しかも、低水比のためにより高強度のコンクリートが得
られる押出成形法によって、主に製造されている。
It has been known for a long time that strength can be improved by adding a fibrous substance to a cement-based hardened product, and asbestos concrete using asbestos is a typical example. Furthermore, in recent years, studies have been conducted on reinforced concrete using asbestos alternative fibers to avoid the carcinogenicity of asbestos, and research on high-strength concrete has led to the use of various reinforcing fibers, such as carbon fiber, glass fiber, and steel fiber as inorganic fibers. , fiber-reinforced concrete using organic fibers such as aramid fibers, polypropylene fibers, polyethylene fibers, and valves has been put into practical use. These FRCs are made by casting method or
Manufactured using extrusion molding method, suitable for mass production.
Moreover, it is mainly produced by extrusion, which yields higher strength concrete due to the lower water ratio.

一般にPRCはセメント系7トリツクスに対して、補強
繊維を0.1〜30ffi螢%含むもので、補強繊維の
配合による補強効果を発揮さ・きるために、補強繊維を
セメント系マトリックス中に均一分散することが重要で
ある。ところが、補強繊維は、一般に細いために、繊維
結束状物や、ファイバーボールと言われる毛玉状物が、
セメント系マトリックス中に発生しやすく、補強効果が
十分に発揮されない。
In general, PRC contains 0.1 to 30ffi% of reinforcing fibers to the cement-based 7 Tricks, and in order to achieve the reinforcing effect by blending the reinforcing fibers, the reinforcing fibers are uniformly dispersed in the cement-based matrix. It is important to. However, reinforcing fibers are generally thin, so fiber bundles and pill-like materials called fiber balls can occur.
It tends to occur in cementitious matrices, and the reinforcing effect is not sufficiently exerted.

そこで、特開昭60−226440号公報、特公昭60
13810号公報および特開昭57−160979号公
報に開示されているように、一般に補強繊維分散剤とし
てメチル−セルロース(以下、nCと記す)が、使用さ
れてきた。さらに、このMCの使用により、低水比で行
なう押出成形において、セメント系マトリックスに可塑
性を付与し、押出潤滑性をも付与し、押出成形を容易に
している。また、流し込み成形では、ペースト状のセメ
ント系マトリックスに粘性を与えることによって、ブリ
ージングの防止、ポンプ移送を可能にする流動性の付与
の効果もある。このMCの使用量は、一般に、流し込み
成形注出は、0.1〜2.0重量%(対セメント)であ
り、押出成形法では、1〜3mff1%(対セメント)
である、しかし、MCを使用した場合、流し込み成形法
では、繊維の分散が均一になるものの、コンクリートの
のびが不十分なため、型枠に流し込んだ後に、欠m部が
生じる。さらに、表面平滑仕上げの際にコテばなれが悪
く、平滑仕上げに熟練を要する欠点がある。また、押出
成形法では、MCの水溶液が、高温(50〜70°C)
で、凝集・ゲル化する性質を持っているために、夏季あ
るいは、混合、混錬、押出の工程を経るにつれて、FR
C未硬化物の材温が上昇し、可塑性が低下し、押出圧力
の上昇や押出速度の低下となる。さらに材温か上がると
FRC未硬化物のゲル化が生じ、押出装置内での閉塞が
起こり、製造の停止に至る。ゲル化したpHC未硬化物
を冷却により、ゲル化から回復させるには多くの時間を
要し、その間にセメントの硬化が進むために再使用はで
きず原材料のt置火になる。
Therefore, Japanese Patent Application Publication No. 60-226440,
Methyl cellulose (hereinafter referred to as nC) has generally been used as a reinforcing fiber dispersant, as disclosed in Japanese Patent Application Laid-open No. 13810 and Japanese Patent Application Laid-open No. 160979/1983. Furthermore, the use of this MC imparts plasticity to the cementitious matrix and extrusion lubricity in extrusion molding performed at a low water ratio, making extrusion molding easier. In addition, by imparting viscosity to the paste-like cementitious matrix, casting has the effect of preventing breathing and imparting fluidity that enables pumping. The amount of MC used is generally 0.1 to 2.0% by weight (based on cement) for pouring, and 1 to 3% by weight (based on cement) for extrusion molding.
However, when using MC, although the fibers are dispersed uniformly in the pour molding method, the concrete does not spread sufficiently, resulting in missing parts after being poured into the formwork. Furthermore, there is a drawback that the trowel is difficult to release when smoothing the surface, and requires skill to finish the smoothing. In addition, in the extrusion molding method, the aqueous solution of MC is heated to a high temperature (50 to 70°C).
FR has the property of agglomerating and gelling, so during the summer or during the mixing, kneading, and extrusion processes, FR
C The temperature of the uncured material increases, the plasticity decreases, and the extrusion pressure increases and the extrusion speed decreases. When the material temperature further rises, gelation of the uncured FRC occurs, causing clogging in the extrusion device, leading to the stoppage of production. It takes a lot of time to recover the uncured gelled pHC material from gelation by cooling it, and during that time the cement hardens, so it cannot be reused and the raw material is left on fire.

これを防ぐために、押出機を強制的に、水、氷あるいは
ドライアイスで冷却したり、または通常の1〜3重量%
(対セメント)のMC使用量を3〜6重■%(対セメン
ト)に増すなどの対策をとっている。しかし、このよう
な方法では、生産性や作業性が低下するだけでなく、作
業に熟練を必要とする。さらに、セメント、骨材に比べ
てより高価なMCの使用量の増加は、製品コストの上昇
となり極めて好ましくない。
To prevent this, the extruder must be forcibly cooled with water, ice, or dry ice, or the normal 1 to 3% by weight
Measures are being taken such as increasing the amount of MC used (relative to cement) to 3 to 6% (relative to cement). However, such a method not only reduces productivity and workability, but also requires skill. Furthermore, an increase in the amount of MC, which is more expensive than cement and aggregate, increases product cost, which is extremely undesirable.

そこで、MCのゲル化性を改みする方法として、?IC
にプロピレンオキサイドを付加してヒドロキシプロピル
メチルセルロース(以下、IIPMCと記す)あるいは
MCにエチレンオキサイドを付加してヒドロキシエチル
メチルセルロース(以下、Ill!MCと記す)として
、ゲル化温度を高くしたもの([+ncycloped
ia of Po1yser 5cience and
 Engineering(2nd1idit−ion
)HVo13.p250−p253)が使用されている
が、セメント中の塩類の影響により、IIPMCあるい
はIll!MCを使用してもセメント系マトリックスの
ゲル化温度は、50〜vo’c前後であり、ゲル化を防
ぐことは不可能で抜本的な解決には至っていない。
So, as a way to improve the gelling properties of MC? IC
Hydroxypropyl methyl cellulose (hereinafter referred to as IIPMC) is obtained by adding propylene oxide to MC, or hydroxyethyl methyl cellulose (hereinafter referred to as Ill!MC) is obtained by adding ethylene oxide to MC, which has a high gelling temperature ([+ncyclopeded
ia of Polyser 5science and
Engineering (2nd1idit-ion
)HVo13. p250-p253) are used, but due to the influence of salts in cement, IIPMC or Ill! Even if MC is used, the gelation temperature of the cement matrix is around 50 to vo'c, and it is impossible to prevent gelation, so no fundamental solution has been reached.

11PMcあるいは、IIcMc以外の増粘剤としてゲ
ル化のないカルボキシメチルセルロース(CMC) 、
ポリビニルアルコール(PVA)、天然高分子(例エバ
、グアーガム、ローカストビンガム、プルランなど)、
ポリアクリル酸ソーダ、ポリエチレンオートナイドなど
も検討されたが、カルシウムイオンとの反応による不溶
塩の形成、可塑性付与が不十分などにより、上記の問題
点を解決するには至っていない。
Non-gelling carboxymethylcellulose (CMC) as a thickener other than 11PMc or IIcMc,
Polyvinyl alcohol (PVA), natural polymers (e.g. Eva, guar gum, locust Bingham, pullulan, etc.),
Sodium polyacrylate, polyethylene autonide, and the like have been considered, but the above problems have not been solved due to the formation of insoluble salts due to reaction with calcium ions and insufficient plasticity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記の諸問題を解決することを目的とする。 The present invention aims to solve the above problems.

すなわち、本発明の目的は無機系繊維および有機系繊維
からなる繊維群のうちの少なくとも一種を補強131組
として、配合したta維補強コンクリート(FRC)を
製造する際、繊維のセメント系マトリックス中での均一
分散を容易にし、流し込み成形法においては、流動性を
向上し欠m部の発注を少なくし、表面平滑性を容易し、
また、押出成形法においては、可塑性を付与し、かつゲ
ル化を防止し、製造を容易にする繊維補強コンクリート
用混和剤を提供するごとにある。本発明者らは、上記の
問題点の解決を目的として、鋭意、実験・研究を重ね本
発明を完成するに至った。
That is, the object of the present invention is to provide 131 reinforcing groups of at least one of the fiber groups consisting of inorganic fibers and organic fibers when producing TA fiber reinforced concrete (FRC) in a cement matrix of fibers. In the casting method, it improves fluidity, reduces the need for missing parts, and improves surface smoothness.
In addition, in the extrusion molding method, it is necessary to provide an admixture for fiber-reinforced concrete that imparts plasticity, prevents gelation, and facilitates production. The present inventors have completed the present invention through extensive experiments and research with the aim of solving the above-mentioned problems.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の混和剤は、FRCの加工性と品質を改善するた
めのヒドロキシエチルセルロース(以下+1[icと記
す)を有効成分として構成される0本発明のセメント系
マトリックス、F I? Cの未硬化物および成形硬化
物はそれぞれ同混和剤を配合されることによって構成さ
れる。さらに本発明の方法は、1iRcに同混和剤を配
合して、未硬化物の作業性・加工性・成形性を改苦し、
1・RCの成形硬化物の晶′?rを向上させることによ
って構成される。
The admixture of the present invention is a cement-based matrix of the present invention, FI? The uncured product and molded cured product of C are each constituted by blending the same admixture. Furthermore, the method of the present invention improves the workability, workability, and moldability of the uncured product by blending the same admixture with 1iRc,
1.Crystals of molded and cured RC? It is constructed by improving r.

本発明に用いるIIUcは、コン1ンリンターやウッド
パルプをNa0llによってアルカリセルロースとした
後、これにエチレンオー1−サイドを付加して得られる
もので、ヒドロ−1−ソニーエールモル置IM度(M、
S)が0.5〜10、好ましくは1〜3、IIEcの1
%水溶液粘度(20°C)が1OOO〜8000cps
、好ましくは3000〜7000cpsのもノテアル。
IIUc used in the present invention is obtained by adding ethylene oxide to alkaline cellulose from container linter or wood pulp with Na0ll, and is obtained by adding hydro-1-sonyyl mol IM degree (M ,
S) is 0.5 to 10, preferably 1 to 3, 1 of IIEc
%Aqueous solution viscosity (20°C) is 100~8000cps
, preferably 3000 to 7000 cps.

11εC1C17)カ0.5より低いと、セメント系マ
l−’Jフックス可溶なものは得られなくなる傾向があ
り、本発明の効果は充分に発揮されない。またMSがI
Oより高いと、その合成が困難となる傾向があり、実用
的ではない。
11εC1C17) If the value is lower than 0.5, there is a tendency that a cement-based multi-'J Fuchs soluble product cannot be obtained, and the effects of the present invention are not fully exhibited. Also, MS is I
If it is higher than O, its synthesis tends to be difficult and is not practical.

112cの1%水)8液の粘度(20°C)が、1oo
Ocpsより小さいと、セメント硬化遅延作用が大きく
、脱型ができなかったり、押出成形品の成形後の変形、
さらにはオートクレーブ養生、水蒸気養生における亀裂
の原因となる。さらに繊維分散性や可塑性付与も小さく
なる傾向がある。一方、8000cpsより大きいと、
肛C自体の製造が困難となる傾向があり、実用的ではな
い。
The viscosity (20°C) of 112c (1% water) 8 liquid is 1oo
If it is smaller than Ocps, cement hardening retardation effect is large, demolding is not possible, deformation of extruded product after molding,
Furthermore, it causes cracks during autoclave curing and steam curing. Furthermore, fiber dispersibility and plasticity imparting also tend to be reduced. On the other hand, if it is larger than 8000 cps,
The anus C itself tends to be difficult to manufacture and is not practical.

繊維補強コンクリートは、無機系繊維として、炭素繊維
・ガラス繊維・アスベスト・スチールファイバー、有機
系繊維として、アラミド繊維・パルプ・ポリエチレン繊
維・ポリプロピレン繊維、などのなかから、少なくとも
1種を補強繊維として配合された、臂通ポルトランドセ
メント・アルミナセメント・高炉セメント・シリカセメ
ントなどの水硬性セメントと川砂・微Inな珪砂・シラ
スバルーンなどの無機軽量骨材と水とからなるもので、
これらに他のセメント混和剤である減少剤、流動化剤、
AC剤、硬化促進剤、硬化遅延剤を必要に応じて使用し
ても差支えない。
Fiber-reinforced concrete contains at least one type of reinforcing fiber from among inorganic fibers such as carbon fiber, glass fiber, asbestos, and steel fiber, and organic fibers such as aramid fiber, pulp, polyethylene fiber, and polypropylene fiber. It is made of hydraulic cement such as Otong Portland cement, alumina cement, blast furnace cement, and silica cement, inorganic lightweight aggregate such as river sand, fine silica sand, and shirasu balloon, and water.
In addition to these, other cement admixtures such as reducers, superplasticizers,
An AC agent, a curing accelerator, and a curing retardant may be used as necessary.

これらのFIICの製造において、使用される補強繊維
の量は、FRC全星に対して0.1〜30重■%であり
、この場合、本発明の混和剤として用いるllECの使
用計は、0.1〜5.0重里%(対セメント)で効果を
示すが、流し込み成形法においては0.1〜2.0mw
t%(対セメント)が好ましく、さらに好ましくは0.
3〜1.offlfft%(対セメント)であり、押出
成形法においては0.5〜4.0重■%(対セメント)
が好ましく、さらに好ましくは2.0〜3.0mM%(
対セメント)である。本発明の混和剤の使用方法は、従
来の肛やIIP)IC,IIEMcの使用方法と同様に
行なうことができる。また本発明の混和剤を使用してノ
PIICノ製造も、従来ノMcやIIPMc、 Ill
聞合使用したFIICの製造と同様に行なうことができ
る。
In the production of these FIICs, the amount of reinforcing fibers used is 0.1 to 30% by weight based on the total FRC star, and in this case, the total amount of IIEC used as the admixture of the present invention is 0. It is effective at .1 to 5.0 mw% (based on cement), but in the pour molding method, 0.1 to 2.0 mw
t% (based on cement) is preferred, more preferably 0.
3-1. Offffft% (based on cement), and in the extrusion molding method, it is 0.5 to 4.0% by weight (based on cement)
is preferable, more preferably 2.0 to 3.0mM% (
vs. cement). The method of using the admixture of the present invention can be carried out in the same manner as the method of using conventional anal, IIP) IC, and IIEMc. In addition, the admixture of the present invention can be used to produce PIIC as well as conventional Mc, IIPMc, Ill
It can be carried out in the same manner as in the production of FIIC using a conventional method.

〔実施例] 本発明の効果を実証するために実施例を示すが、本発明
はそれらによって、何ら限定されるものではない。
[Examples] Examples are shown to demonstrate the effects of the present invention, but the present invention is not limited thereto.

(実施例−1) 表−1に示す混和剤を用いて、表−2に示す配合の炭素
繊維補強ご1ンクリー) (CFI?Cと記す)のペー
スト状物をつくり型枠(40nua X 160alI
o X 10++++a)に流し込んで成形し、20’
Cの調l兄箱に入れて24時間静置した。脱型後、オー
トクレーブ養生(18゜”C,10kg/cJ、  5
時間)を行なって、CI’llC仮を得た。使用した混
和剤と得られたCFIICペースト状物およびCFII
C板の物性は表−3に示す結果となった。
(Example-1) Using the admixture shown in Table-1, a paste-like material of carbon fiber reinforced concrete (denoted as CFI?C) having the composition shown in Table-2 was made, and a formwork (40nua
o
It was placed in a size C box and left undisturbed for 24 hours. After demolding, autoclave curing (18°C, 10kg/cJ, 5
time) to obtain a CI'llC provisional. Admixture used and obtained CFIIC paste and CFII
The physical properties of the C plate were as shown in Table 3.

(実施例−2) 表−1に示す混和剤を用いて、表−4の配合のCFRC
の押出成形品をつくり、調湿箱に入れて、24時間静置
、そしてオートクレーブ養生(工80°c、i。
(Example-2) Using the admixture shown in Table-1, CFRC of the formulation shown in Table-4
An extrusion molded product was made, placed in a humidity control box, left undisturbed for 24 hours, and then autoclaved (80°C, i.

kg / cd、5時間)を行なって、CFRC押出成
形品を得た。その結果を表−5に示す。
kg/cd, 5 hours) to obtain a CFRC extrusion. The results are shown in Table-5.

〔発明の効果〕〔Effect of the invention〕

本発明の混和剤、混和剤配合セメント系マトリックス、
混和剤により、FRCの加工性と品質を改善する方法に
よれば、FRCをrM造する際に、セメント系マトリッ
クス中の補強繊維の分散を均一にする。さらに、流し込
み成形法においては、適度な流動性を付与して、欠…部
を減少させ表面平滑仕上げを容易にする。押出成形法に
おいては、材温上昇によるゲル化やダイスの閉塞を起こ
すことなく、押出成形を容易にし、生産性・作業性を向
上させる。さらに、各原料のミキサー混合後の混合物を
湿った粉体状物あるいは、小さな団子状物とわ)棒状物
の混合体物とするために、従来のMC。
The admixture of the present invention, the admixture-containing cement matrix,
According to the method of improving processability and quality of FRC by using admixtures, the dispersion of reinforcing fibers in the cementitious matrix is made uniform when FRC is manufactured. Furthermore, in the casting method, appropriate fluidity is imparted to reduce defects and facilitate smooth surface finishing. In the extrusion molding method, extrusion molding is facilitated without causing gelation or die clogging due to material temperature rise, improving productivity and workability. Furthermore, in order to make the mixture of each raw material after mixing with a mixer into a wet powder or a mixture of small dumplings and sticks, a conventional MC is used.

+1PMc、 III!MC使用時の団子状物に比べて
、1jk続工程へのベルトコンベアー移送性を向上させ
、混練回数を減少し、所要時間を短縮する等の混練均一
性の向上をもたらす、上記、いずれの成形法においても
、本発明は、Fl?Cの製造作業性と品質の向上に著し
い効果を奏するものである。
+1PMc, III! Any of the above-mentioned moldings improves the belt conveyor transferability to the 1jk subsequent process, reduces the number of times of kneading, and improves the uniformity of kneading, such as shortening the required time, compared to the dumpling-like material when using MC. The present invention also applies to Fl? This has a remarkable effect on improving the manufacturing workability and quality of C.

Claims (1)

【特許請求の範囲】[Claims] 1、ヒドロキシエチルセルロースを有効成分として含有
し、そのヒドロキシエチルモル置換度が0.5〜10で
あり、その1%水溶液粘度が1000〜8000cps
(20℃)であることを特徴とする繊維補強コンクリー
トの加工性と品質を改善するための混和剤。2、請求項
1記載の混和剤を配合され、品質を改善された繊維補強
コンクリート硬化物。
1. Contains hydroxyethyl cellulose as an active ingredient, has a hydroxyethyl molar substitution degree of 0.5 to 10, and has a 1% aqueous solution viscosity of 1000 to 8000 cps
(20°C) An admixture for improving the workability and quality of fiber-reinforced concrete. 2. A cured fiber-reinforced concrete whose quality has been improved by adding the admixture according to claim 1.
JP63255617A 1988-10-11 1988-10-11 Admixture for fiber reinforced concrete Expired - Lifetime JP2791054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255617A JP2791054B2 (en) 1988-10-11 1988-10-11 Admixture for fiber reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255617A JP2791054B2 (en) 1988-10-11 1988-10-11 Admixture for fiber reinforced concrete

Publications (2)

Publication Number Publication Date
JPH02102154A true JPH02102154A (en) 1990-04-13
JP2791054B2 JP2791054B2 (en) 1998-08-27

Family

ID=17281234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255617A Expired - Lifetime JP2791054B2 (en) 1988-10-11 1988-10-11 Admixture for fiber reinforced concrete

Country Status (1)

Country Link
JP (1) JP2791054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147995A (en) * 1991-06-25 1993-06-15 Jdc Corp Concrete composition
US6843845B2 (en) * 2002-03-11 2005-01-18 Shin-Etsu Chemical Co., Ltd. Admixture and extrudable hydraulic composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125525A (en) * 1974-08-27 1976-03-02 Toyo Boseki GARASUSENIHOKYOSEMENTOSEIHIN NO SEIZOHOHO
JPS60239348A (en) * 1984-05-14 1985-11-28 ダイセル化学工業株式会社 Admixer for cement extrusion moldings
JPS61151074A (en) * 1984-12-24 1986-07-09 ダイセル化学工業株式会社 Improvement of operating lightweight concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125525A (en) * 1974-08-27 1976-03-02 Toyo Boseki GARASUSENIHOKYOSEMENTOSEIHIN NO SEIZOHOHO
JPS60239348A (en) * 1984-05-14 1985-11-28 ダイセル化学工業株式会社 Admixer for cement extrusion moldings
JPS61151074A (en) * 1984-12-24 1986-07-09 ダイセル化学工業株式会社 Improvement of operating lightweight concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147995A (en) * 1991-06-25 1993-06-15 Jdc Corp Concrete composition
US6843845B2 (en) * 2002-03-11 2005-01-18 Shin-Etsu Chemical Co., Ltd. Admixture and extrudable hydraulic composition

Also Published As

Publication number Publication date
JP2791054B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
CN105541384B (en) A kind of ultralight foam concrete and preparation method thereof
US7018466B2 (en) Process for producing a concrete and a mortar
CZ20032694A3 (en) Low-density additive based on calcium silicate hydrate for accelerated achievement of cement product strengths
CN108516774B (en) High-strength and high-toughness concrete and preparation method thereof
CN113372074A (en) Low-shrinkage 3D printing concrete doped with lignin fibers and preparation method thereof
CN115231893B (en) Shrinkage-compensating self-compacting expansive concrete and preparation method thereof
CN112358244A (en) Pumping anti-permeability super-retarding concrete and preparation method thereof
US4144086A (en) Additive for concrete
JPH02102154A (en) Admixture for fiber-reinforced concrete
RU2413703C2 (en) Method of producing wood-slag composite
JP2839724B2 (en) Cement composition
CN114524646B (en) Concrete cast-in-place process for building construction
KR970008736B1 (en) Process for the preparation of slag board
JP4220781B6 (en) Low density calcium silicate hydrate strength accelerator additive for cementitious products
JPH1112015A (en) Production of high strength hardened cement having excellent water resistance
CN117776608A (en) Early-alkali slag composite material suitable for negative temperature environment and preparation method and application thereof
JPS5932418B2 (en) Manufacturing method of extrusion molding material
CN117401941A (en) Low-carbon environment-friendly ultra-high-performance concrete and preparation method thereof
JPH0345023B2 (en)
TW202100486A (en) Method for manufacture of concrete with enhanced compression strength and use of the same
JPS5811379B2 (en) Manufacturing method of inorganic wall material
JPH02239140A (en) Production of extruded molding of slag cement
JPH038781A (en) Production of aerated concrete
JPH04209777A (en) Production of lightweight cement molded cured product
JPH07308909A (en) Preparation of fiber-reinforced cement hardened material