JPH02101102A - Material for metallic mold - Google Patents

Material for metallic mold

Info

Publication number
JPH02101102A
JPH02101102A JP25329488A JP25329488A JPH02101102A JP H02101102 A JPH02101102 A JP H02101102A JP 25329488 A JP25329488 A JP 25329488A JP 25329488 A JP25329488 A JP 25329488A JP H02101102 A JPH02101102 A JP H02101102A
Authority
JP
Japan
Prior art keywords
mold
powder
added
metallic mold
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25329488A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Kato
龍彦 加藤
Kazuyuki Nishikawa
和之 西川
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP25329488A priority Critical patent/JPH02101102A/en
Publication of JPH02101102A publication Critical patent/JPH02101102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a material for metallic mold having fine porosity for venting and excellent strength and toughness by heating and sintering under reducing atmosphere after adding the specific ratio of carbon powder into fer rous short fiber specifying aspect ratio and compacting. CONSTITUTION:Wire rod of low Mn steel, etc., is shaved by wire shaving method to make long fiber having <=100mum diameter and this is cut to make the short fiber having 30 - 100 aspect ratio. The carbon powder of natural graphite, etc., is added at 0.5 - 1.2wt.% to this short fiber, and further, if neces sary, Cr powder or Mn powder is added. This mixed material is packed in a mold for press-forming or a rubber mold for CIP method at uniform density. Successively, by pressurized force of 0.5 - 8 ton/cm<2>, this is compacted. This green compact is heated and sintered under reducing atmosphere of hydrogen gas, etc., to make the material for metallic mold. As this metallic mold has fine and uniform opening holes on the whole surface, the boring for venting is not needed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、全面にわたって通気用の細孔を有する金型を
製作するための型材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mold material for manufacturing a mold having pores for ventilation over its entire surface.

(従来技術と問題点) 従来、プラスチックスの真空成形、圧空成形、ブロー成
形、射出成形、あるいは金属の重力金型鋳造、低圧金型
鋳造、グイキャスト鋳造等に使用される金型は、通気の
ために細孔、スリット1あるいはベントプラグ等の加工
が施されるのが一般的である。しかしこれらの加工は局
部的であるため均一な空気抜けができないと共に加工が
製品に転写される等の問題がある。
(Prior art and problems) Conventionally, molds used for vacuum forming, pressure forming, blow molding, injection molding of plastics, or gravity mold casting, low pressure mold casting, guicast casting of metal, etc. For this purpose, processing such as pores, slits 1, or vent plugs is generally performed. However, since these processes are localized, there are problems such as not allowing uniform air release and the process being transferred to the product.

上記の問題を解決するものとして最近ではセラミックス
粉と金属粉とを混合した材料を粉末冶金の手法を用いて
成形焼結した型が開発されている。
In order to solve the above problems, molds have recently been developed in which a mixture of ceramic powder and metal powder is molded and sintered using a powder metallurgy technique.

このような型は、微細な空孔が全面にわたって均一に分
布しているため、空気抜けがよい上に空孔が微細である
ため・製品に転写されることもない等の利点を有する反
面、粉体が点接触により焼結されているため強さ及び靭
性に欠けるという問題がある。
This type of mold has fine pores evenly distributed over the entire surface, which allows for good air release, and the pores are so small that they do not transfer onto the product. Since the powder is sintered by point contact, there is a problem in that it lacks strength and toughness.

(目 的) 本発明は、上記の問題に鑑みて成されたもので、全面に
わたって通気用の微細空孔を有しかつ強度及び靭性にす
ぐれた金型用型材を提供することな目的とするものであ
る。
(Purpose) The present invention was made in view of the above-mentioned problems, and an object thereof is to provide a mold material having fine pores for ventilation over the entire surface and having excellent strength and toughness. It is something.

(問題点を解決するための手段) 本発明は、ワイヤー切削法により製造した太さ100μ
m以下の鉄系長繊維を寸断して得たアスペクト比30〜
100の短繊維に、炭素粉を05〜L 2 wt%添加
すると共に必要に応じてC「粉及びMn粉を加えて混合
した混合材料を、プレス成形用型もしくはCIP法用ラ
バー型内に均一密度に充填し、05〜g ton/c−
の加圧力で加圧成形した後還元性雰囲気にて加熱焼結す
ると共に必要に応じて熱処理を施して成る金型用型材で
ある。
(Means for Solving the Problems) The present invention provides a 100 μm thick wire manufactured by a wire cutting method.
Aspect ratio 30 ~ obtained by shredding iron-based long fibers of 30 m or less
100 short fibers, add 05 to L 2 wt% of carbon powder, and add C powder and Mn powder as necessary, and mix the mixed material uniformly in a press molding mold or a rubber mold for CIP method. Packed to a density of 05~g ton/c-
This mold material is formed by pressure molding with a pressure of 100 ml, followed by heating and sintering in a reducing atmosphere, and subjecting it to heat treatment if necessary.

(作 用) 本発明は、主材料として鉄系の短繊維を使用する。その
代表例は、化学成分がC: 0.1〜0.15%、Si
: 0.05〜0.1%、Mn ! 0.9〜15%の
低Mn鋼であり、この化学成分から成る線材をワイヤー
切削法で削り出すことにより直径換算で10〜50μm
の長繊維を作り、この長繊維をカッターミル等で寸断す
るか、若しくは寸断後ふるいで選別するなどしてアスペ
クト比30〜100の短繊維を得る。
(Function) The present invention uses iron-based short fibers as the main material. A typical example is that the chemical components are C: 0.1-0.15%, Si
: 0.05-0.1%, Mn! It is a low Mn steel with a content of 0.9 to 15%, and by cutting a wire made of this chemical composition using a wire cutting method, it has a diameter of 10 to 50 μm.
The long fibers are made into long fibers, and the long fibers are shredded with a cutter mill or the like, or after being shredded, they are sorted with a sieve to obtain short fibers with an aspect ratio of 30 to 100.

この短繊維は、ワイヤー切削法により削り出されたもの
を寸断したものであるため繊維軸線が切削方向と平行で
あり、全体としてカール気味になり、かつ繊維軸線と直
角の断面が割面状若しくは偏平矩形であり、全体として
帯状を呈している。
Since these short fibers are cut into pieces by wire cutting, the fiber axis is parallel to the cutting direction, and the overall shape is slightly curled, and the cross section perpendicular to the fiber axis has a split or split surface shape. It has a flat rectangular shape and has a band-like shape as a whole.

さらに材質的には、低炭素、低シリコンの鋼であり、強
さが格段に良好であると共に熱処理に優れている。
Furthermore, the material is low-carbon, low-silicon steel, which has extremely good strength and is excellent in heat treatment.

このようにして得た短繊維に炭素粉を05〜12wt%
添加すると共に必要に応じてCr粉及びMn粉を加えて
混合した混合材料をプレス成形用型若しくはCIP法用
ラバー型内に均一・に充填すると共に所要の圧力により
加圧成形して圧粉体を得る。
05 to 12 wt% of carbon powder is added to the short fibers obtained in this way.
Cr powder and Mn powder are added and mixed as necessary, and the mixed material is uniformly filled into a press molding mold or a rubber mold for CIP method, and then pressure molded with the required pressure to form a green compact. get.

この圧粉体をアンモニア分解ガス、あるいは水素ガス等
の還元性雰囲気にて加熱焼結したものである。これによ
り、全面に微細な空孔を有し、かつ強度及び靭性にすぐ
れた金型用型材が得られる。
This green compact is heated and sintered in a reducing atmosphere such as ammonia decomposition gas or hydrogen gas. As a result, a mold material having fine pores all over the surface and having excellent strength and toughness can be obtained.

尚この金型用型材は熱処理を施すことによりさらに強度
を向上させることができる。
The strength of this mold material can be further improved by subjecting it to heat treatment.

(実施例) 化学成分がC:0.13%%8i:0.08%、Mn:
113%の低Mn1l線材3〜5闘φをワイヤー切削法
により切削して直径換算25〜40μmの長繊維を作り
、これをカッターミルで寸断して長さ0.4〜L6I1
1++1とした短繊維を得た。この短繊維に添加炭素と
して天然黒鉛粉L Owt%を添加して混合した混合材
料をCIP法用ラバー型に充填してL 5 ton/e
ra の加圧力により加圧成形して圧粉体を得た後、こ
の圧粉体を水素ガス雰囲気中にて1140℃の加熱湯度
により2時間保持して加熱焼結し、金型用型材を得た。
(Example) Chemical components are C: 0.13%, 8i: 0.08%, Mn:
A 113% low Mn1L wire rod 3 to 5 mm diameter is cut using a wire cutting method to produce long fibers with a converted diameter of 25 to 40 μm, and this is cut into pieces with a cutter mill to lengths of 0.4 to L6I1.
Short fibers with a rating of 1++1 were obtained. A mixed material prepared by adding L Owt% of natural graphite powder as added carbon to the short fibers was filled into a rubber mold for the CIP method to produce L 5 ton/e.
After obtaining a compact by pressure molding with a pressure of ra, the compact was heated and sintered by holding it in a hydrogen gas atmosphere at a temperature of 1140°C for 2 hours to obtain a mold material. I got it.

さらにこの金型用型材に熱処理を施してプラスチックイ
ンジェクション用金型を製作した。
Furthermore, this mold material was heat treated to produce a plastic injection mold.

このようにして製作した金型により射出成形された成形
品の出来上りは良好で、射出成形圧も従来の約2/3で
よく、特にコーナ部のガス欠陥のない成形品が得られた
The molded product injection-molded using the mold thus manufactured had a good quality, the injection molding pressure was only about 2/3 that of the conventional method, and a molded product without gas defects, especially in the corners, was obtained.

なお、上記により得られた熱処理後の金型用型材の特性
値を表1に示すと共に組織の顕微鏡写真な第1図に示す
。尚顕微鏡写真において黒い部分が開空孔である。
The characteristic values of the heat-treated mold material obtained above are shown in Table 1, and a microscopic photograph of the structure is shown in FIG. In the micrograph, the black parts are open pores.

表      1 (混合成形テスト) 化学成分がc : 0.13%、Si:008%、Mn
:113%の低Mn@l材3〜5鰭φをワイヤー切削法
により切削して直径換算25〜40μmの長繊維を作り
、この長繊維をスライバーカットにて、0、9〜1.2
 tnm、15〜29m、2.5〜3.01118.3
.5〜45闘、50〜5.5鴎の5種類の短繊維を得て
混合成形テストを行なった。
Table 1 (Mixed molding test) Chemical components are c: 0.13%, Si: 008%, Mn
: 113% low Mn@l material 3 to 5 fin diameter is cut by wire cutting method to make long fibers with a diameter equivalent to 25 to 40 μm, and this long fiber is sliver cut to 0, 9 to 1.2
tnm, 15-29m, 2.5-3.01118.3
.. Five types of short fibers, 5 to 45 mm and 50 to 5.5 mm, were obtained and mixed molding tests were conducted.

35〜45闘の短繊維で71イバーボールを形成し、混
合むらが生じ50〜5.5mのものはその程度が極めて
大きいものであった。
71 ivar balls were formed with short fibers of 35 to 45 m long, and uneven mixing occurred, and the extent of the mixing was extremely large in the case of 50 to 5.5 m long fibers.

また09〜L2Nの短繊維は、繊維が粉状となりからみ
合いが少なく圧粉体の強度が弱いものであった。
In addition, the short fibers of 09 to L2N were powder-like and had little entanglement, resulting in a weak green compact.

15 mm−10mm (77,ヘ9ト比的3O−70
)及び35〜30朋(アスペクト比的50〜100)の
ものはファイバーボールも生ぜず良好な繊維のからみ合
った圧粉体が得られた。
15 mm-10mm (77, 3O-70
) and 35 to 30 mm (aspect ratio: 50 to 100), no fiber balls were formed and green compacts with good fiber entanglement were obtained.

(添加元素テスト) 直径換825〜40 prn、長さλ5〜30111I
11の前記短繊維を用いて各種添加元素の影響を調査し
た。
(Additional element test) Diameter conversion 825~40 prn, length λ5~30111I
The influence of various additive elements was investigated using 11 short fibers.

l)炭素について 炭素は鉄中に固溶され、強さ、硬さ、熱処理性を向上さ
せる上で欠くことのできない添加元素であり、第2図、
及び第3図に示すように炭素量が05W1%までは強さ
、硬さ、とも上昇する。これは鉄母地がパーライト化が
進むためである。さらに炭素量が05〜L Owt%ま
では、強さがほぼ一定となり、硬さは0.5〜l 5 
wt%までほぼ−・定となる。一方炭素量がL2wt%
以上になると機械的性質にはあまり影響がなくとも顕微
鏡組織上は残留黒鉛がみられるようになり成形品に黒鉛
が付着するようになる。
l) About carbon Carbon is a solid solution in iron and is an essential additive element for improving strength, hardness, and heat treatability.
As shown in FIG. 3, both strength and hardness increase when the carbon content reaches 05W1%. This is because the iron matrix becomes pearlite. Furthermore, when the carbon content reaches 05~L Owt%, the strength becomes almost constant, and the hardness increases from 0.5~L5.
It becomes almost constant up to wt%. On the other hand, the carbon content is L2wt%
If the temperature exceeds this level, residual graphite will be visible on the microscopic structure, and graphite will adhere to the molded product, even if the mechanical properties are not affected much.

2)C「について 第4図に示すようにCrは、添加量が2〜3%をピーク
に5 wt%までは実用強度及び硬さを有する。これは
C「を添加することにより非常に硬いがもろいセメンタ
イト相の体積率が上昇するためである。
2) Regarding C, as shown in Figure 4, Cr has practical strength and hardness at a peak addition amount of 2 to 3% and up to 5 wt%. This is because the volume fraction of the brittle cementite phase increases.

すなわち2〜3%のCr添加により析出するセメンタイ
ト相の量が強さ及び硬さに有効である。
That is, the amount of cementite phase precipitated by addition of 2 to 3% Cr is effective for improving strength and hardness.

3)  Mnについて 短繊維中に1%強のMnが含まれているため材料自体強
さ、硬さ、熱処理特性に優れているが第5図に示すよう
にMy+の添加量が2,5w1%までは実用強度、硬さ
を有するが添加量が20wt%をこすと熱処理後残留オ
ーステナイト量が増加し、型使用中に亀裂が発生する原
因となる。
3) About Mn Since the short fibers contain over 1% Mn, the material itself has excellent strength, hardness, and heat treatment properties, but as shown in Figure 5, the amount of My+ added is 2.5w1%. It has practical strength and hardness up to 20 wt%, but when the amount added exceeds 20 wt%, the amount of retained austenite increases after heat treatment, which causes cracks to occur during mold use.

(加圧テスト) 上記添加元素テストに使用した短繊維をC1l’法によ
り加圧成形して圧粉体を作り、これを焼成し、その影響
を調べた。
(Pressure test) The short fibers used in the above additive element test were pressure-molded by the C1l' method to produce a green compact, which was fired, and its influence was investigated.

第6図に示す通り成形圧が上昇するに従い強さが向上す
る。これは密度が上昇するためであるがそれは逆に通気
のための残留空孔を少なくすることを意味する。JCI
P法成形の場合、成形圧4 torylJ(プレス成形
圧8 to口/C−とほぼ同様な密度が得られる)の場
合残留空孔率が15%弱となり金型の通気性に若干問題
が生じる。
As shown in FIG. 6, the strength increases as the molding pressure increases. This is because the density increases, but it also means that there are fewer remaining pores for ventilation. JCI
In the case of P method molding, when the molding pressure is 4 torylJ (a density almost the same as press molding pressure 8 to/C- can be obtained), the residual porosity is less than 15%, causing some problems with the air permeability of the mold. .

(発明の効果) 本発明の型材により製作される金型は全面に微細で均一
な閉空孔を有するため、通気用の孔加工を一切必要とせ
ず、また強度及び靭性に優れた特性を有する型にするこ
とができる等種々の効果がある。
(Effects of the Invention) Since the mold manufactured using the mold material of the present invention has fine and uniform closed pores on the entire surface, it does not require any hole processing for ventilation, and has excellent strength and toughness. There are various effects such as the ability to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例により得られた金型用型材の熱処理後の
顕微鏡写真、第2図は炭素量と圧環強さの関係を示すグ
ラフ、第3図は炭素量と硬さの関係を示すグラフ、第4
図はcr添加量と圧環強さ、及び硬さの関係を示すグラ
フ、第5図はMn添加量と圧環強さ及び硬さの関係を示
すグラフ、第6@はcrp法成形圧と圧環強さの関係を
示すグラフである。 図面の浄書(内容に変更なし) 図面の浄書(内容に変更なし) 図面の浄書(内容に変更なし) 片如Mnt(畦%) 等 悶 手 続 ネrli 正 書 (方 式) 平成1年2月ノ%3日
Figure 1 is a micrograph of the mold material obtained in the example after heat treatment, Figure 2 is a graph showing the relationship between carbon content and radial crushing strength, and Figure 3 is a graph showing the relationship between carbon content and hardness. Graph, 4th
The figure is a graph showing the relationship between the amount of Cr added and the radial crushing strength and hardness. Figure 5 is the graph showing the relationship between the amount of Mn added and the radial crushing strength and hardness. The sixth @ is the graph showing the relationship between the amount of Mn added and the radial crushing strength and hardness. It is a graph showing the relationship between Engraving of the drawing (no change in the content) Engraving of the drawing (no change in the content) Engraving of the drawing (no change in the content) Katana Mnt (Round %) Equal procedure nerli Official copy (method) February 1999 %3 days

Claims (1)

【特許請求の範囲】[Claims] ワイヤー切削法により製造した太さ100μm以下の鉄
系長繊維を寸断して得たアスペクト比30〜100の短
繊維に、炭素粉を0.5〜1.2wt%添加すると共に
必要に応じてCr粉及びMn粉を加えて混合した混合材
料を、プレス成形用型もしくはCIP法用ラバー型内に
均一密度に充填し、0.5〜8ton/cm^2の加圧
力で加圧成形した後、還元性雰囲気にて加熱焼結すると
共に必要に応じて熱処理を施して成る金型用型材。
0.5 to 1.2 wt% of carbon powder is added to short fibers with an aspect ratio of 30 to 100 obtained by cutting iron-based long fibers with a thickness of 100 μm or less produced by a wire cutting method, and Cr is added as necessary. The mixed material mixed with powder and Mn powder is filled into a press molding mold or a rubber mold for CIP method at a uniform density, and after pressure molding with a pressure of 0.5 to 8 ton/cm^2, A mold material made by heating and sintering in a reducing atmosphere and subjecting it to heat treatment if necessary.
JP25329488A 1988-10-07 1988-10-07 Material for metallic mold Pending JPH02101102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25329488A JPH02101102A (en) 1988-10-07 1988-10-07 Material for metallic mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25329488A JPH02101102A (en) 1988-10-07 1988-10-07 Material for metallic mold

Publications (1)

Publication Number Publication Date
JPH02101102A true JPH02101102A (en) 1990-04-12

Family

ID=17249288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25329488A Pending JPH02101102A (en) 1988-10-07 1988-10-07 Material for metallic mold

Country Status (1)

Country Link
JP (1) JPH02101102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0868955A1 (en) * 1997-01-29 1998-10-07 PIRELLI COORDINAMENTO PNEUMATICI S.p.A. Method of producing tyres, of making vulcanization moulds for said tyres, tyres and moulds thus produced
US10907657B2 (en) 2016-12-02 2021-02-02 Eagle Industry Co., Ltd. Accumulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0868955A1 (en) * 1997-01-29 1998-10-07 PIRELLI COORDINAMENTO PNEUMATICI S.p.A. Method of producing tyres, of making vulcanization moulds for said tyres, tyres and moulds thus produced
US10907657B2 (en) 2016-12-02 2021-02-02 Eagle Industry Co., Ltd. Accumulator

Similar Documents

Publication Publication Date Title
US4721599A (en) Method for producing metal or alloy articles
US4579699A (en) Method for making α-Si3 N4 whiskers and articles therefrom
US4090874A (en) Method for improving the sinterability of cryogenically-produced iron powder
KR970701800A (en) A METHOD OF MAKING A SINTERED ARTICLE
US5009841A (en) Process for dewaxing injection molded metal pieces and for improving the properties thereof
EP0821639B1 (en) Method of producing mouldings
JPH02101102A (en) Material for metallic mold
US3246060A (en) Method of making machinable high energy permanent magnets
JP2588057B2 (en) Manufacturing method of mold material for mold
US5250254A (en) Compound and process for an injection molding
US5336291A (en) Method of production of a metallic composite material incorporating metal carbide particles dispersed therein
EP0409646A2 (en) Compound for an injection molding
FI81283C (en) Process when making a mold body of an iron alloy
Igharo et al. Design of sintered high speed steel alloy powders for wear applications
JPH0328303A (en) Mold material for metallic mold
JPH02107703A (en) Composition for injection molding
JPS5957964A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JPS5838386B2 (en) Manufacturing method of carbon-ceramics composite material
KR0166436B1 (en) Binder for powder injection molding and method of the production of powder injection molded products using the same
JPH11181541A (en) Production of stainless steel sintered body
JPS5957960A (en) Manufacture of fiber reinforced silicon carbide sintered bo-dy
KR20000042176A (en) Method for injection molding austenite stainless powder
JPS60162701A (en) Production of sintered and forged parts
JPS5812321B2 (en) Method for manufacturing sintered bodies of gray cast iron powder