JPH0199861A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH0199861A
JPH0199861A JP25676587A JP25676587A JPH0199861A JP H0199861 A JPH0199861 A JP H0199861A JP 25676587 A JP25676587 A JP 25676587A JP 25676587 A JP25676587 A JP 25676587A JP H0199861 A JPH0199861 A JP H0199861A
Authority
JP
Japan
Prior art keywords
electrode
film
electrode layer
layer
resistive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25676587A
Other languages
Japanese (ja)
Inventor
Hayami Sugiyama
早実 杉山
Takashi Kubota
隆志 久保田
Chiaki Hara
原 千秋
Kenji Ogura
小倉 謙二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP25676587A priority Critical patent/JPH0199861A/en
Publication of JPH0199861A publication Critical patent/JPH0199861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To control the size of a dot to be printed, by covering with a resistance film the exposed portion of a first electrode layer exposed through the conduction hole of an insulation layer and depositing a second electrode layer on the outside of a region covered with a gap from a conduction hole on the resistance film so as to surround the region. CONSTITUTION:When current is passed from a first electrode 6 to a second electrode 5 via a resistance film 4, a current density and heat generated are the largest at that portion of the film 4 in the vicinity of contact portion with the first electrode 6. The current density and heat decrease gradually as the portion of the film 4 is away from the first electrode 6 and approaches the second electrode 5. Therefore, when conduction time of current to the film 4 or its peak value is small, an ink surface in the vicinity of contact portion of the film 4 with the first electrode 6 only is fused to print a small dot. When the conduction time or the peak value is increased, current density in the vicinity of the contact portion increases to increase an ink fusion region range and the size of a dot.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、サーマルプリンタに用いられるサーマルヘ
ッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal head used in a thermal printer.

[従来技術] 第5図は従来のサーマルヘッドの構成を示す断面図であ
る。この図において、lは酸化アルミニウム製の基板で
あり、同基板lの上面には熱絶縁のためのガラスゲレー
ス層2が積層されている。
[Prior Art] FIG. 5 is a sectional view showing the structure of a conventional thermal head. In this figure, l is a substrate made of aluminum oxide, and a glass gelase layer 2 for thermal insulation is laminated on the upper surface of the substrate l.

ガラスゲレース層2の上面には抵抗膜による発熱抵抗体
3が形成されており、発熱抵抗体3の上面には所定の距
離を隔てて電極4a、4bが形成されている。発熱抵抗
体3の電極4a、4bとの間に露出した面が発熱部3h
となる。また、電極4a、4bのうち一方が共通電極に
接続され、他方が図示しない給電制御部(発熱抵抗体3
に電流を流す機能を有する)の出力端に接続されている
。5は耐酸化膜であり、電極4a、4bおよび発熱部3
hを覆うように形成されている。また、耐酸化膜5の上
面には耐摩耗膜6が形成されている。耐酸化膜5と耐摩
耗膜6は保護膜を構成する。そして以上説明したサーマ
ルヘッドがプラテン10に対向して配置され、これらの
サーマルヘッドおよびプラテン10の間に、インク8の
付着したインクフィルム7と被転写用紙9が配置される
A heating resistor 3 made of a resistive film is formed on the top surface of the glass gelatin layer 2, and electrodes 4a and 4b are formed on the top surface of the heating resistor 3 at a predetermined distance apart. The surface of the heating resistor 3 exposed between the electrodes 4a and 4b is the heating part 3h.
becomes. Further, one of the electrodes 4a and 4b is connected to a common electrode, and the other is connected to a power supply control unit (not shown) (heating resistor 3
connected to the output end of the 5 is an oxidation-resistant film, which covers the electrodes 4a, 4b and the heat generating part 3.
It is formed to cover h. Furthermore, a wear-resistant film 6 is formed on the upper surface of the oxidation-resistant film 5 . The oxidation-resistant film 5 and the wear-resistant film 6 constitute a protective film. The thermal head described above is placed facing the platen 10, and between the thermal head and the platen 10, the ink film 7 to which the ink 8 is attached and the transfer paper 9 are placed.

第6図は、上述したサーマルヘッドの平面図であり、こ
の図に示すように発熱抵抗体3の発熱部3hは方形状と
なっている。
FIG. 6 is a plan view of the above-mentioned thermal head, and as shown in this figure, the heating portion 3h of the heating resistor 3 has a rectangular shape.

このように構成されたサーマルヘッドにおいて、発熱抵
抗体3に電流が流れると、同抵抗体3の全熱部全面が均
一に発熱する。これにより、サーマルヘッドの上に置か
れたインクフィルムの前記発熱部に面した部分が加熱さ
れ、インクが溶融する。
In the thermal head configured in this manner, when a current flows through the heating resistor 3, the entire heated portion of the resistor 3 uniformly generates heat. As a result, the portion of the ink film placed on the thermal head facing the heat generating portion is heated, and the ink is melted.

この結果、被転写用紙には、第6図に破線りで示す形状
のドツト印刷が行なわれる。
As a result, dots having the shape shown by broken lines in FIG. 6 are printed on the transfer paper.

[発明が解決しようとする問題点] ところで、サーマルプリンタにおける画像の濃度階調を
表現するためには、印刷されろドツトの大きさを制御す
ることが望ましいが、上述したように従来のサーマルヘ
ッドにあっては、発熱抵抗体の発熱部の形状に基づいた
形状でしかドツト印刷を行なうことができず、ドツトの
大きさを制御する事ができない。
[Problems to be Solved by the Invention] Incidentally, in order to express the density gradation of an image in a thermal printer, it is desirable to control the size of the printed dots, but as mentioned above, the conventional thermal head In this case, it is only possible to print dots in a shape based on the shape of the heat generating part of the heating resistor, and the size of the dots cannot be controlled.

この発明は上述した事情に鑑みてなされたもので、印刷
されるドツトの大きさを制御することができるサーマル
ヘッドを提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a thermal head that can control the size of printed dots.

[問題点を解決するための手段] 上記問題点を解決するためこの発明は、基板表面に熱絶
縁層を形成し、その上に第1電極層と絶縁層を順次積層
し、この絶縁層に導通穴を形成して前記第17u極層を
一部露出させ、前記絶縁層と前記第1電極層の露出部を
覆って抵抗膜を積層し、前記抵抗膜上の前記導通穴から
所定の距離を隔てて囲った領域の外側に、前記領域を囲
うように第27tt極層を積層した事を特徴としている
[Means for Solving the Problems] In order to solve the above problems, the present invention forms a thermal insulation layer on the surface of the substrate, sequentially stacks a first electrode layer and an insulation layer thereon, and forms a heat insulation layer on the insulation layer. A conductive hole is formed to expose a portion of the 17U electrode layer, a resistive film is laminated covering the exposed portions of the insulating layer and the first electrode layer, and a predetermined distance from the conductive hole on the resistive film is formed. It is characterized in that a 27th tt pole layer is laminated on the outside of the area surrounded by , so as to surround the area.

[作用] 上記構成によれば、第1電極から抵抗膜を介して第27
ri極に電流を流した場合、抵抗膜において第1電極と
の接触部近傍の電流密度が最ら大きく、発熱量も最大と
なる。そして第1電極を離れてその周囲に設けられた第
2電極に近づくに従い電流密度が疎になり、発熱量も小
さくなる。従って、抵抗膜に流す電流の通電時間あるい
はその波高値が小の場合は、抵抗膜の第1電極との接触
部近傍のインク面のインクのみが溶融し、抵抗膜に流す
電流の通電時間あるいはその波高値を大にすると、抵抗
膜の第1電極層との接触部の周囲の部分の電流密度も大
きくなるので発熱量も大となり、インクの溶融範囲を大
きくする事ができる。従って、抵抗膜に流す電流の通電
時間あるいはその波高値を制御すれば、インクの溶融範
囲を制御でき、印刷されるドツトの大きさを制御するこ
とが可能となる。
[Function] According to the above configuration, the 27th electrode is connected from the first electrode through the resistive film.
When a current is passed through the ri electrode, the current density is highest near the contact portion with the first electrode in the resistive film, and the amount of heat generated is also highest. As the electrode leaves the first electrode and approaches the second electrode provided around it, the current density becomes sparser and the amount of heat generated also becomes smaller. Therefore, if the current flow time or the peak value of the current flowing through the resistive film is small, only the ink on the ink surface near the contact portion of the resistive film with the first electrode will melt, and the current flow time or peak value of the current flowing through the resistive film will melt. When the peak value is increased, the current density in the area around the contact portion of the resistive film with the first electrode layer also increases, so the amount of heat generated increases, and the melting range of the ink can be increased. Therefore, by controlling the duration of the current flowing through the resistive film or its peak value, it is possible to control the melting range of the ink and the size of the printed dots.

し実施例] 以下図面を参照してこの発明の実施例につ0て説明子ろ
Embodiments] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の構成を示す断面図、第2
図は同実施例の平面図である。
FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a plan view of the same embodiment.

第1図において1は酸化アルミニウム製の基板であり、
この上面には熱絶縁のためのガラスゲレース層2が積層
されている。ガラスゲレース層2の上には第1電極層6
と絶縁層3が順次積層されており、絶縁層3の一部に導
通穴6aが空けられ第1電極層6が露出している。そし
て、絶縁層3と第1電極層6の露出部を覆って抵抗膜4
が積層されている。この結果、第1電極層6と抵抗膜4
とが導通穴6aを介して接触する。また、第2図に示す
ように抵抗膜4の上において導通穴6aの位置から一定
の距離を隔てた円形の領域の外側を囲むように第2電極
層5が積層されている。そして、抵抗膜4において、電
極層5が積層されて0ない円形状の露出部が発熱部4h
となる。さらに第2電極層5および抵抗膜4の上に、図
示は省略しているが耐酸化膜と耐摩耗膜が順次積層され
、保護層を形成している。なお、第1電極層には図示し
ない給電制御部の出力端が接続され、第2電極層は共通
電極に接続されている。
In FIG. 1, 1 is a substrate made of aluminum oxide,
A glass gelase layer 2 for thermal insulation is laminated on this upper surface. A first electrode layer 6 is provided on the glass gelase layer 2.
and an insulating layer 3 are sequentially laminated, and a conductive hole 6a is formed in a part of the insulating layer 3, so that the first electrode layer 6 is exposed. Then, the resistive film 4 covers the exposed portions of the insulating layer 3 and the first electrode layer 6.
are layered. As a result, the first electrode layer 6 and the resistive film 4
are in contact with each other through the conduction hole 6a. Further, as shown in FIG. 2, a second electrode layer 5 is laminated on the resistive film 4 so as to surround the outside of a circular region spaced a certain distance from the position of the conductive hole 6a. In the resistive film 4, a non-zero circular exposed portion where the electrode layer 5 is laminated is a heat generating portion 4h.
becomes. Further, although not shown, an oxidation-resistant film and an abrasion-resistant film are successively laminated on the second electrode layer 5 and the resistive film 4 to form a protective layer. Note that the first electrode layer is connected to an output end of a power supply control section (not shown), and the second electrode layer is connected to a common electrode.

このように構成されたサーマルヘッドにおいて、発熱部
に電流を流した場合、電流は前記導通穴6aからその周
囲の第2電極層5に向って流れるため、発熱部における
電流密度は導通穴6a付近が最大でそこから離れて第2
電極層5に近寄る程小さくなってゆく。従って、このサ
ーマルヘッドの上方に置かれたインク面の受ける加熱量
ら、導通穴〇a付近が最大でそこから離れて第2電極層
5に近寄る程小さくなってゆく。
In the thermal head configured in this way, when a current is passed through the heat generating part, the current flows from the conductive hole 6a toward the second electrode layer 5 around it, so that the current density in the heat generating part is low near the conductive hole 6a. is the largest and the second away from it
The closer it gets to the electrode layer 5, the smaller it becomes. Therefore, the amount of heat received by the ink surface placed above the thermal head is maximum near the conductive hole 0a, and decreases as the distance from the conductive hole ○a approaches the second electrode layer 5.

ところで、サーマルヘッドの上方に置かれたインク面の
インクは、溶融するのに一定の熱エネルギーを必要とす
る。このサーマルヘッドにおいて、発熱部に流す電流の
通電時間あるいはその波高値が小の場合は、導通穴6a
近傍の抵抗膜における発熱量のみがこの熱エネルギーに
達するため導通穴6aの上方のインク面のインクのみが
溶融する。
By the way, the ink on the ink surface placed above the thermal head requires a certain amount of thermal energy to melt. In this thermal head, if the current flow time or the peak value of the current flowing through the heat generating part is small, the conduction hole 6a
Since only the amount of heat generated in the nearby resistive film reaches this thermal energy, only the ink on the ink surface above the conductive hole 6a is melted.

そして、発熱部の電流の通電時間あるいは波高値を大き
くすると、導通穴6aの周囲の抵抗膜における発熱1も
上述のインクを溶融せしめる熱エネルギーに達するので
、インクの溶融範囲が広がる。
When the current conduction time or peak value of the current in the heat generating portion is increased, the heat generated in the resistive film around the conductive hole 6a also reaches the thermal energy that melts the ink, thereby widening the melting range of the ink.

従って、第1電極層から抵抗膜を介して第2電極層に電
流を流す場合、抵抗膜に流す電流の通電時間あるいは波
高値を制御する事で、インクの溶融範囲を制御する事が
できる。この結果、被転写用紙に熱転写されるドツトの
形状を第3図(a) 、 (b) 。
Therefore, when a current is passed from the first electrode layer to the second electrode layer via the resistive film, the melting range of the ink can be controlled by controlling the duration or peak value of the current passed through the resistive film. As a result, the shape of the dots thermally transferred to the transfer paper is shown in FIGS. 3(a) and 3(b).

(c) 、 (d)のように制御する事ができる。It can be controlled as shown in (c) and (d).

第4図はこの発明の第2の実施例の構成を示す平面図で
あるが、抵抗膜4と第1電極層6を接触させろための導
通穴6aと、第2電極層5に覆われていない抵抗膜4の
露出部分すなわち発熱部が、共に方形状になっている。
FIG. 4 is a plan view showing the structure of a second embodiment of the present invention, in which a conductive hole 6a for bringing the resistive film 4 and the first electrode layer 6 into contact and a hole covered by the second electrode layer 5 are shown. The exposed portions of the resistive film 4, that is, the heat generating portions, both have a rectangular shape.

このようにしても、抵抗膜の電流密度は導通穴6a近傍
が最も密でそこから離れるに従い疎になるので、第1の
実施例と同様の効果かある。
Even in this case, the current density in the resistive film is highest near the conductive hole 6a and becomes sparse as it moves away from there, so that the same effect as in the first embodiment can be obtained.

[発明の効果] 以上説明したようにこの発明によれば、基板表面に熱絶
縁層を形成し、その上に第1電極層と絶縁層を順次積層
し、この絶縁層に導通穴を形成して前記第17[i極層
を一部露出させ、前記絶縁層と前記第1電極層の露出部
を覆って抵抗膜を積層し、前記抵抗膜上の前記導通穴か
ら所定の距離を隔てて囲った領域の外側に、前記領域を
囲うように第2電極層を積層したので、第17tt極層
から抵抗膜を介して第2電極に流す電流の通電時間ある
いは波高値を制御する事により、インクの溶融範囲を制
御する事ができ、従って、印刷されるドツトの大きさを
制御する事が可能である。
[Effects of the Invention] As explained above, according to the present invention, a thermal insulating layer is formed on the surface of a substrate, a first electrode layer and an insulating layer are sequentially laminated thereon, and a conductive hole is formed in this insulating layer. the 17th [i-pole layer is partially exposed, a resistive film is laminated covering the exposed portions of the insulating layer and the first electrode layer, and a resistive film is stacked at a predetermined distance from the conductive hole on the resistive film. Since the second electrode layer was laminated outside the enclosed area so as to surround the area, by controlling the conduction time or peak value of the current flowing from the 17th tt pole layer to the second electrode via the resistive film, It is possible to control the melting range of the ink and therefore the size of the printed dots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の構成を示す断面図、第2
図は同実施例の平面図、第3図はこの発明のサーマルヘ
ッドにおいて熱転写されるドツトの形状を示す図、第4
図はこの発明の第2の実施例の構成を示す平面図、第5
図は従来のサーマルヘッドを示す断面図、第6図は同ザ
ーマルヘッドを示す平面図である。 ■・・・・・・基板、2・・・・・・ガラスゲレース層
(熱絶縁層)、3・・・・・・絶縁層、4・・・・・・
抵抗膜、5・・・・・・第2電極層、6・・・・・第1
電極層。
FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention, and FIG.
The figure is a plan view of the same embodiment, FIG. 3 is a diagram showing the shape of dots thermally transferred in the thermal head of the present invention, and FIG.
The figure is a plan view showing the configuration of the second embodiment of the present invention.
The figure is a sectional view showing a conventional thermal head, and FIG. 6 is a plan view showing the same thermal head. ■... Substrate, 2... Glass gelase layer (thermal insulation layer), 3... Insulating layer, 4...
Resistive film, 5...second electrode layer, 6...first
electrode layer.

Claims (1)

【特許請求の範囲】[Claims] 基板表面に熱絶縁層を形成し、その上に第1電極層と絶
縁層を順次積層し、この絶縁層に導通穴を形成して前記
第1電極層を一部露出させ、前記絶縁層と前記第1電極
層の露出部を覆って抵抗膜を積層し、前記抵抗膜上の前
記導通穴から所定の距離を隔てて囲った領域の外側に、
前記領域を囲うように第2電極層を積層した事を特徴と
するサーマルヘッド。
A thermal insulating layer is formed on the surface of the substrate, a first electrode layer and an insulating layer are sequentially laminated thereon, a conductive hole is formed in the insulating layer to partially expose the first electrode layer, and a first electrode layer and an insulating layer are sequentially laminated thereon. A resistive film is laminated to cover the exposed portion of the first electrode layer, and outside an area surrounded by a predetermined distance from the conductive hole on the resistive film,
A thermal head characterized in that a second electrode layer is laminated to surround the area.
JP25676587A 1987-10-12 1987-10-12 Thermal head Pending JPH0199861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25676587A JPH0199861A (en) 1987-10-12 1987-10-12 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25676587A JPH0199861A (en) 1987-10-12 1987-10-12 Thermal head

Publications (1)

Publication Number Publication Date
JPH0199861A true JPH0199861A (en) 1989-04-18

Family

ID=17297135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25676587A Pending JPH0199861A (en) 1987-10-12 1987-10-12 Thermal head

Country Status (1)

Country Link
JP (1) JPH0199861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251465A (en) * 1990-03-01 1991-11-08 Alps Electric Co Ltd Thermal head
JP2010221616A (en) * 2009-03-25 2010-10-07 Toshiba Hokuto Electronics Corp Thermal print head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251465A (en) * 1990-03-01 1991-11-08 Alps Electric Co Ltd Thermal head
JP2010221616A (en) * 2009-03-25 2010-10-07 Toshiba Hokuto Electronics Corp Thermal print head

Similar Documents

Publication Publication Date Title
CN208277639U (en) A kind of spliced thermal printing head
JPH0199861A (en) Thermal head
JPH0199860A (en) Thermal head
JPH0199862A (en) Thermal head
JPH0661950B2 (en) Thermal head
JPS6213367A (en) Thermal head
JP2590974B2 (en) Electrode structure of thermal head
JPS59133078A (en) Heat-sensitive head
JP2582397B2 (en) Thin-film thermal head
JP3029650B2 (en) Thermal printer
JPS60174662A (en) Recording head
JP3099431B2 (en) Thermal head
KR920010636B1 (en) Thermal head
JPH1029335A (en) Thermal head
JP2533087B2 (en) Thermal head
JPH08112924A (en) Thermal head
JPH08112925A (en) Thermal head
JPS59133079A (en) Heat-sensitive head
JPS60210471A (en) Thermal head
JP2571767B2 (en) Thermal head
JPH01150555A (en) Thermal head
JP2001260403A (en) Thermal and manufacturing method
JPH05201047A (en) Thermal head
JPH02137945A (en) Thermal head
JPS59209892A (en) Thermal recording head