JPH0198953A - Nondestructive diagnosing method for creep notch weakening - Google Patents

Nondestructive diagnosing method for creep notch weakening

Info

Publication number
JPH0198953A
JPH0198953A JP25639687A JP25639687A JPH0198953A JP H0198953 A JPH0198953 A JP H0198953A JP 25639687 A JP25639687 A JP 25639687A JP 25639687 A JP25639687 A JP 25639687A JP H0198953 A JPH0198953 A JP H0198953A
Authority
JP
Japan
Prior art keywords
creep
value
weakening
epr
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25639687A
Other languages
Japanese (ja)
Inventor
Toru Goto
徹 後藤
Yoshikuni Kadoya
好邦 角屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25639687A priority Critical patent/JPH0198953A/en
Publication of JPH0198953A publication Critical patent/JPH0198953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To easily decide the degree of the creep notch weakening of a member in use without destruction by measuring the quantities of reactivation electricity (EPR value) previously by using test pieces which have different creep notch weakening parameters (gamma value) and recording the relation between both of them, and measuring the EPR value of a sample. CONSTITUTION:The gamma values and EPR values are measured by using the test pieces which differ in the notch weakening degree of creep to generate a correlation diagram previously. The measurement result has variance, but the correlation between the gamma values and EPR values can be recognized by using a lower- limit line. A cell is brought into contact with the sample and the EPR value is found to estimate its gamma value according to the correlation. Namely, it is decided that the notch is strong when gamma>1 and the degree of notch weakening is small when gamma=0.7-1 and large when gamma=0.5-0.7. Consequently, the EPR value of the sample whose creep notch weakening degree is to be decided is measured merely by bringing the cell into contact and then the gamma value is found to diagnose the degree of the creep notch weakening.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原動機等の高温部材のクリープ切欠き弱化の
程度を非破壊的に診断する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for non-destructively diagnosing the degree of creep notch weakening of a high-temperature member such as a prime mover.

〔従来の技術〕[Conventional technology]

高温で使用される原動機部材は、高温下で外力を受けて
いるので長時間使用中にクリープ損傷や材質劣化が生じ
、ある時期(破損する前)に交換する必要がある。特に
、クリープ損傷については、ある時間を境に切欠強化か
ら弱化に転じ破断寿命が著しく低下する現象が認められ
る場合がある。その交換時期決定のためには、長時間使
用高温部材の寿命損傷程度を伺らかの方法で求める必要
がある。
Since prime mover components used at high temperatures are subjected to external forces at high temperatures, creep damage and material deterioration occur during long-term use, and it is necessary to replace them at some point (before they break). In particular, with regard to creep damage, there are cases in which a phenomenon in which the notch strength changes to weakening after a certain period of time and the rupture life significantly decreases is observed. In order to determine when to replace them, it is necessary to determine the degree of damage caused by long-term use of high-temperature components using a known method.

従来の診断法は長時間使用した部材から直接試験片玄−
切シ出して破壊試験を行っていた。即ち、平滑試験片と
切欠き付き試験片全クリープ破断試験に付し、クリープ
に対する時間と温度の効果として次式により定義される
ラーンンミラーパラメータPヒ応力との関係を第4図の
ように作成する。
Conventional diagnostic methods are based on testing specimens directly from components that have been used for a long time.
They cut it out and did a destructive test. That is, all smooth specimens and notched specimens were subjected to creep rupture tests, and the relationship between the Learn-Miller parameter P and stress, defined by the following equation as the effect of time and temperature on creep, was shown in Figure 4. create.

P = T (c + logtr) T:温度(’C1+273、C:定数、tr:破断時間
(Hr) 第4図にみるように、平滑破断寿命に比べて、切欠き破
断寿命が長くなるとき全クリープ切欠き強化といい、逆
に短かくなるときをクリープ切欠き弱化という。このよ
うに長時間使用部材から切シ出した試験片を破壊試験に
何する方法のためにこの診断法は適用範囲が限定され、
かつ、大変に手間がかかるものであった。
P = T (c + logtr) T: temperature ('C1+273, C: constant, tr: rupture time (Hr) As shown in Figure 4, when the notched rupture life becomes longer than the smooth rupture life, the total This is called creep notch strengthening, and conversely, when it shortens, it is called creep notch weakening.The scope of this diagnostic method is limited because it is a method for destructive testing of test pieces cut from parts that have been used for a long time. is limited,
Moreover, it was extremely time-consuming.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の欠点を解消し、使用部材のクリープ切欠
き弱化の程度を非破壊的に、かつ、簡便に判定すること
のできる診断法に提供しようとするものである。
The present invention aims to eliminate the above-mentioned drawbacks and provide a diagnostic method that can non-destructively and easily determine the degree of creep notch weakening of a used member.

〔作用〕[Effect]

不発間者等は、クリープ切欠き弱化現象が、主にP J
P Sn 等の不純物元素の粒界への拡散(偏析)によ
って粒界が脆弱化し、破断延性が低下することであシ、
これらの粒界の脆弱化や粒界腐食感受性の変化全電気化
学的再活性化法(EPR法)によって再活性化電気量と
して測定できることに着目し、再活性化電気量と切欠き
弱化との間に一定に相関関係があることを見い出した。
For unexploded cases, the creep notch weakening phenomenon is mainly caused by P.J.
Diffusion (segregation) of impurity elements such as P Sn into the grain boundaries weakens the grain boundaries and reduces fracture ductility.
Focusing on the fact that these weakening of grain boundaries and changes in intergranular corrosion susceptibility can be measured as reactivation electricity by the all-electrochemical reactivation method (EPR method), we investigated the relationship between reactivation electricity and notch weakening. We found that there was a certain correlation between them.

因に、再活性化電気量の測定は第2図に示すようにセル
を被検体表面に接触させ、セル内には金属銅入夛硫酸−
硫酸鋼のような試験溶液を満す。次いで、被検体を自然
電位よシ一定の速度でアノード分極させ、活性溶解、不
動態化金経た後活性域へ逆掃引する。第3図はこの間の
電流密度と電位の関係を示したものである。図中、矢印
のように活性化電流密度a、活性電気量αを付与してア
ノード分極させ、逆掃引によシ再活性化電流密度すで再
活性化電気量C(EPR値)を示す。(電気化学的再活
性化法(EPR法〕については日本金属学会会報第22
巻第10号(1985)894頁参照)また、クリープ
切欠き弱化パラメータ(γ値)を、切欠き付き試験片の
破断時間(tr切欠)と平滑試験片の破断時間(tr平
滑)の比として求める。
Incidentally, to measure the amount of reactivation electricity, the cell is brought into contact with the surface of the object as shown in Figure 2, and the cell is filled with metallic copper-containing sulfuric acid.
Fill the test solution like sulphate steel. The specimen is then anodic polarized at a constant rate at a natural potential, and after active dissolution and passivation, it is swept back into the active region. FIG. 3 shows the relationship between current density and potential during this period. In the figure, as shown by the arrow, an activation current density a and an activation charge α are applied to polarize the anode, and by reverse sweeping, the reactivation current density already shows the reactivation charge C (EPR value). (For the electrochemical reactivation method (EPR method), please refer to the Bulletin of the Japan Institute of Metals 22
Vol. 10 (1985) p. 894) In addition, the creep notch weakening parameter (γ value) is expressed as the ratio of the rupture time of a notched specimen (tr notch) to the rupture time of a smooth specimen (tr smooth). demand.

そこで、クリープの切欠き弱化程度の異なる試験片を用
いて、γ値とEPR値を測定して、第1図に示す相関図
金子じめ作成する。測定結果は図にみるようにバラツキ
があるが、下限線を用いることによシγ値とEPR値の
間に相関t−認めることができる。
Therefore, the γ value and EPR value were measured using test specimens with different degrees of notch weakening due to creep, and the correlation diagram shown in FIG. 1 was created. Although the measurement results vary as shown in the figure, by using the lower limit line, a correlation t- can be recognized between the γ value and the EPR value.

他方、被検体には第2図のようにセルを接触させEPR
値を求め、第1図の矢印にみるように上記相関に基づい
てγ値を推定するもので、r>1であれば切欠き強化で
あ勺、r=0.7〜1においては切欠き弱化の程度は小
さく、r二0.5〜0.7では切欠き弱化の程度は太き
いと判定することができる。
On the other hand, the cell is brought into contact with the subject as shown in Figure 2, and EPR is performed.
As shown by the arrow in Figure 1, the γ value is estimated based on the above correlation. The degree of weakening is small, and when r2 is 0.5 to 0.7, it can be determined that the degree of notch weakening is large.

このように、第1図の相関を求めるためにはγ値の異な
る多数の試験片が必要であるが、具体的にクリープ切欠
き弱化の程度全判定する被検体については、第2図のよ
うなセルを単に接触するだけで、極めて簡単にEPR値
を測定し次いでγ値を求めてクリープ切欠き弱化の程度
を診断することができるのである。
In this way, in order to obtain the correlation shown in Figure 1, a large number of test specimens with different γ values are required, but for the specimen for which the full degree of creep notch weakening is to be determined, it is necessary to use the test specimens shown in Figure 2. By simply touching a suitable cell, it is possible to very easily measure the EPR value and then determine the γ value to diagnose the degree of creep notch weakening.

〔実施例〕〔Example〕

クリープの切欠き弱化程度の異なる6mの試験片 (Tl  切欠き強化の試験片(r>1)(il+  
切欠き弱化の小さな試験片(γ=0.7〜1.)(Il
l  切欠き弱化の大きな試験片(γ=0.5〜0.7
)を用いてEPR値(再活性化電気量)を測定した。測
定結果の代表的なものを第5図に示す。
6m test pieces with different creep notch weakening degrees (Tl Notch strengthened test pieces (r>1) (il+
Test piece with small notch weakening (γ = 0.7 to 1.) (Il
l Test piece with large notch weakening (γ = 0.5 to 0.7
) was used to measure the EPR value (reactivation charge). Figure 5 shows typical measurement results.

それぞれのEPR値は試験片(11が0.006 c 
7m2、試験片(IIが0.06 C/ LMi2  
及び試験片(ffi+が0.83 Q / CIIL2
テあった。
Each EPR value is the test piece (11 is 0.006 c
7 m2, test piece (II is 0.06 C/LMi2
and test piece (ffi+ is 0.83 Q/CIIL2
There was a time.

これらのEPR値を第1図のEPR値−クリープ切欠き
弱化パラメータ(γ値)相関図に導入して、検定カーブ
を用いることによシγ値を求めることができ、当初のそ
れぞれの範囲に入っていることが確認された。
By introducing these EPR values into the EPR value-creep notch weakening parameter (γ value) correlation diagram in Figure 1 and using the test curve, the γ value can be determined, and the initial range It was confirmed that it was included.

〔発明の効果〕〔Effect of the invention〕

本発明は上記の構成を採用することによシ、原動機等の
長時間使用高温部材のクリープ切欠き弱化の程度を非破
壊的に、極めて簡単に診断することができ、上記の部材
の寿命損傷程度に対して適切な評価が行なえるようにな
った。
By employing the above configuration, the present invention can non-destructively and extremely easily diagnose the degree of creep notch weakening in high-temperature components that are used for long periods of time, such as prime movers. Appropriate evaluations can now be made based on the degree of damage.

【図面の簡単な説明】 第1図はクリープ切欠き弱化パラメータ(γ値)と再活
性化電気量(EPR値)との相関を示した図、第2図は
再活性化電気量測定用セルの概念図、第3図は再活性化
電気量の測定結果の1例を示す図、第4図は従来の破断
試験結果を示す破断寿命線図、第5図(11(Ml (
mlはクリープ弱化程度の異なる試験片についてEPR
値全測定した結果を示す図である。
[Brief explanation of the drawings] Figure 1 is a diagram showing the correlation between creep notch weakening parameter (γ value) and reactivation electricity quantity (EPR value), and Figure 2 is a cell for measuring reactivation electricity quantity. 3 is a diagram showing an example of the measurement results of the amount of reactivated electricity, FIG. 4 is a rupture life diagram showing the conventional rupture test results, and FIG. 5 (11 (Ml
ml is EPR for test pieces with different degrees of creep weakening.
It is a figure which shows the result of measuring all the values.

Claims (1)

【特許請求の範囲】[Claims] クリープ切欠き弱化パラメータ(γ値)の異なる試験片
を用いて再活性化電気量(EPR値)を予じめ測定して
両者の関係を記録し、被検体の再活性化電気量を測定し
て、上記の関係よりクリープ切欠き弱化パラメータの値
を求めてクリープ切欠き弱化の程度を判定することを特
徴とするクリープ切欠き弱化の非破壊診断方法。
The amount of reactivation electricity (EPR value) is measured in advance using test pieces with different creep notch weakening parameters (γ value), the relationship between the two is recorded, and the amount of reactivation electricity of the subject is measured. A non-destructive diagnostic method for creep notch weakening, characterized in that the degree of creep notch weakening is determined by determining the value of the creep notch weakening parameter from the above relationship.
JP25639687A 1987-10-13 1987-10-13 Nondestructive diagnosing method for creep notch weakening Pending JPH0198953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25639687A JPH0198953A (en) 1987-10-13 1987-10-13 Nondestructive diagnosing method for creep notch weakening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25639687A JPH0198953A (en) 1987-10-13 1987-10-13 Nondestructive diagnosing method for creep notch weakening

Publications (1)

Publication Number Publication Date
JPH0198953A true JPH0198953A (en) 1989-04-17

Family

ID=17292093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25639687A Pending JPH0198953A (en) 1987-10-13 1987-10-13 Nondestructive diagnosing method for creep notch weakening

Country Status (1)

Country Link
JP (1) JPH0198953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887484A (en) * 1996-03-18 1999-03-30 Kanzaki Kokyukoki Mfg., Co., Ltd. Transmission for self-propelled walking lawn mowers
JP2008002622A (en) * 2006-06-23 2008-01-10 Honda Motor Co Ltd Key shift transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887484A (en) * 1996-03-18 1999-03-30 Kanzaki Kokyukoki Mfg., Co., Ltd. Transmission for self-propelled walking lawn mowers
JP2008002622A (en) * 2006-06-23 2008-01-10 Honda Motor Co Ltd Key shift transmission

Similar Documents

Publication Publication Date Title
US6280603B1 (en) Electrochemical noise technique for corrosion
JPS62177440A (en) Method of measuring growth of crack
JP3300810B2 (en) Non-destructive method for measuring the aging of the strength of ferromagnetic structural materials
JPH0198953A (en) Nondestructive diagnosing method for creep notch weakening
JP2000329726A (en) Evaluation method for hydrogen embrittlement susceptibility of steel product
JP3121953B2 (en) Method for detecting carbide in low alloy steel by electrochemical polarization method
JP3441181B2 (en) Method for detecting deterioration of super heat resistant alloy steel
JPS5892952A (en) Estimating method for service life of high temperature member
JP3372437B2 (en) Creep life evaluation method for high temperature equipment materials
Mangual et al. Assessment of corrosion rate in prestressed concrete with acoustic emission
JPS6014155A (en) Detection for secular brittleness
JPH01129154A (en) Method and apparatus for inspecting embrittlement point of metal material
JP2002122561A (en) Method and system for diagnosing intergranular corrosiveness of nickel-based alloy
JPS5860248A (en) Life forecast for high temperature apparatus
JPH07225217A (en) Method for detecting aging deterioration of metal material
JPH05223726A (en) Method for detecting secular embrittlement
Gross Engineering Materials Evaluation by Reversed Bending
RU2017115C1 (en) Method of material fatigue test
JPH01145562A (en) Inspecting method and device of fracture transition temperature
JPH02157642A (en) Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
RU2167421C2 (en) Method determining safety assurance factor of loaded material
JPH0344661B2 (en)
SU447780A1 (en) Method for determining the corrosion resistance of lead and its alloys for a lead battery
JPH07151662A (en) Creep life evaluation through temperature acceleration test
RU2095784C1 (en) Process of determination of fatigue characteristic of ferromagnetic materials and welds