JPH0198522A - Pneumatic transportation for bulk material - Google Patents

Pneumatic transportation for bulk material

Info

Publication number
JPH0198522A
JPH0198522A JP25659087A JP25659087A JPH0198522A JP H0198522 A JPH0198522 A JP H0198522A JP 25659087 A JP25659087 A JP 25659087A JP 25659087 A JP25659087 A JP 25659087A JP H0198522 A JPH0198522 A JP H0198522A
Authority
JP
Japan
Prior art keywords
plug
transport pipe
pressure
compressed air
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25659087A
Other languages
Japanese (ja)
Other versions
JPH05290B2 (en
Inventor
Satoyuki Terada
里行 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP25659087A priority Critical patent/JPH0198522A/en
Publication of JPH0198522A publication Critical patent/JPH0198522A/en
Publication of JPH05290B2 publication Critical patent/JPH05290B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To stabilize a high density transportation by detecting pressure at plural positions in the transport pipe extention direction, and adjusting a compressed air quantity by the pressure difference between individual positions in a pneumatic transportation in which a bulk material plug is intermittently formed in a transport pipe. CONSTITUTION:A bulk material in a force feed tank 1 is intermittently transported by a pressure difference before and behind, a plug with the plug formed in a duct line 12 by intermittently supplying a compressed air to a transport pipe 5 via an acceleration valve 13. On the other hand, a pressure difference between pressure detection seats 7 and 7 is detected with a differential manometer 8, and inputted in a control device 9 via an arithmetic unit 14. A compressed air supply quantity is adjusted so that a differential pressure variation condition is made to conform to a condition at the time of a stable plug formation since the detected differential pressure is occasionally changed according to a consolidation degree and a formation condition of the plug. This constitution enables a high density transportation to be stable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉粒体の空気輸送方法に係り、特に輸送管内に
間欠的な粉粒体のプラグを形成させながら粉粒体を空気
輸送する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for pneumatically transporting powder and granules, and particularly to a method for pneumatically transporting powder and granules while forming intermittent plugs of powder and granules in a transport pipe. Regarding the method.

〔従来の技術〕[Conventional technology]

この種、粉粒体のプラグを形成させながら、粉粒体を空
気輸送する方法は、粉粒体を低速、高濃度に輸送する場
合に適している。この方法は空気速度が1〜8m/6程
度と低いので、輸送中での粉粒体の□破砕が少なく、輸
送管の摩耗も少ないという長所がある。一方、空気の静
圧力でプラグを押し動かして輸送することを原理として
いるので、輸送用の圧縮空気の圧力を2〜7 Kq/c
m”程度と高くしなければならず、また、プラグの長さ
が過大になると輸送管内で粉粒体が閉塞しやすいという
短所がある。特に、高圧の圧縮空気を用いるので粉粒体
を輸送管へ供給するための供給系の弁類はシール性が低
下し空気漏れが生じやすい。−旦、弁類のシール性が低
下すると、その部分に圧縮空気が高速で通り抜けるため
、弁シートの摩耗が加速し、漏れ空気量が級数的に増大
する。このため当初に設定した輸送用としての空気量で
は風量が不足し、輸送管内での粉粒体の閉塞を助長する
という悪循環があった。−旦、閉塞が発生すると、輸送
装置の全系統を停止しなげればならず、その回復には多
段の手間を必要とする。このような欠点をカバーするた
めに、圧縮空気の供給量を過大に設定しておき、゛前記
弁類からの空気漏れが生じても、輸送管での閉塞は最小
限防止するという方法も考えられる。しかしながら、こ
のような方法は、粉粒体を低速かつ高濃度に輸送し、粉
粒体の破砕や輸送管の摩耗を少なくできるというプラグ
輸送方式の長所を減殺するものであり、好ましい解決策
とはいえなかった。また、空気漏れが急速に進行した場
合には追従できないという欠点があった。
This type of method of pneumatically transporting the powder while forming a plug of the powder is suitable for transporting the powder at low speed and in high concentration. This method has the advantage that since the air velocity is as low as about 1 to 8 m/6, there is less □ crushing of the powder and granules during transportation, and less wear on the transportation pipe. On the other hand, since the principle of transportation is to push and move the plug using the static pressure of air, the pressure of compressed air for transportation is 2 to 7 Kq/c.
m", and if the length of the plug is too long, powder and granules are likely to become clogged in the transportation pipe. In particular, since high-pressure compressed air is used, it is difficult to transport powder and granules. The valves in the supply system for supplying pipes have poor sealing performance and are prone to air leakage. - Once the sealing performance of the valves has deteriorated, compressed air passes through that area at high speed, causing wear and tear on the valve seat. This accelerates, and the amount of leaked air increases exponentially.For this reason, the amount of air initially set for transportation is insufficient, creating a vicious cycle in which the clogging of powder and granular materials in the transportation pipes is facilitated. - Once a blockage occurs, the entire transport system must be stopped, and recovery requires multiple stages of effort.In order to overcome this drawback, the amount of compressed air supplied must be It is also possible to set the value too high so that even if air leaks from the valves, blockage in the transport pipe is prevented to a minimum. This was not a desirable solution, as it undermined the advantages of the plug transportation method, which allows for high concentration transportation and reduced crushing of powder and granules and the wear and tear of transportation pipes.In addition, air leakage progressed rapidly. The problem was that it could not be followed in some cases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、前記従来技術の問題点を改善し、輸送
管内に常に安定なプラグを形成し、粉粒体の低速、高濃
度輸送を安定に維持することができる粉粒体の空気輸送
方法を提供することにある。
An object of the present invention is to improve the problems of the prior art described above, to form a stable plug in the transport pipe, and to pneumatically transport powder and granular materials that can stably maintain low-speed, high-concentration transportation of powder and granular materials. The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、粉粒体を圧縮空気によって輸送管内に送り込
み、輸送管内に間欠的な粉粒体のプラグを形成させなが
ら空気輸送する方法において、前記輸送管の延在方向に
沿って複数箇所に圧力検出塵を設け、これらの圧力検出
塵から検出した前記複数箇所間の差圧に基づいて、輸送
管に供給する圧縮空気の量を調整するようにしたことを
特徴とする。
The present invention provides a method for pneumatically transporting powder or granular material by sending compressed air into a transport pipe while forming intermittent plugs of the powder or granular material in the transport pipe, at multiple locations along the extending direction of the transport pipe. The present invention is characterized in that pressure detection dust is provided, and the amount of compressed air supplied to the transport pipe is adjusted based on the differential pressure between the plurality of locations detected from the pressure detection dust.

〔作 用〕[For production]

前記差圧の時間的な変化の状況と、輸送管内での粉粒体
の挙動とは密接な関係がある。したがって、差圧の時間
的な変化の状況が、安定なプラグを形成しているときと
一致するように、圧縮空気の供給量を調整すれば、粉粒
体の低速、高濃度輸送を安定に維持することができる。
There is a close relationship between the temporal change in the differential pressure and the behavior of the powder inside the transport pipe. Therefore, by adjusting the supply amount of compressed air so that the temporal change in differential pressure matches that when a stable plug is formed, the low-speed, high-concentration transport of powder and granules can be stabilized. can be maintained.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を実施するための装置系統図である。粉
粒体は供給ホッパ3に入っており、受入弁2を開閉する
ことによって、供給ホッパ3内の粉粒体は下方の圧送タ
ンクlに受入れられる。圧送タンク1の底部には輸送管
5が接続し、輸送管5の末端は貯槽6に通じる。圧送タ
ンクlの上部には、コンプレッサ10からの圧縮空気が
管路11、流量調整弁4、管路12を経て流入する。
FIG. 1 is a system diagram of an apparatus for carrying out the present invention. The powder and granules are in the supply hopper 3, and by opening and closing the receiving valve 2, the powder and granules in the supply hopper 3 are received into the pressure feeding tank l below. A transport pipe 5 is connected to the bottom of the pressure tank 1, and the end of the transport pipe 5 communicates with a storage tank 6. Compressed air from the compressor 10 flows into the upper part of the pressure tank 1 via a pipe line 11, a flow rate regulating valve 4, and a pipe line 12.

また輸送管5が圧送タンクlと接続する位置には、前記
流量調整弁4からの圧縮空気が加速弁13を経て合流す
るようにされている。前記受入弁2、流量調整弁4、加
速弁13は制御装置9によってその作動が制御される。
Further, at a position where the transport pipe 5 connects with the pressure tank 1, compressed air from the flow rate regulating valve 4 is connected via an accelerating valve 13. The operation of the receiving valve 2, flow rate adjustment valve 4, and acceleration valve 13 is controlled by a control device 9.

すなわち、受入弁2は圧送タンクlや供給ホッパ3に設
けた粉粒体レベル計(図示せず)の信号もしくはタイマ
などによって0N−OFF制御される。ま−た、流量調
整弁4は後述する演算装置14からの信号に基いて制御
される。加速弁13はタイマであらかじめ設定した時間
毎に0N−OFF (例えば開を4秒、閉2秒)を繰り
返す。
That is, the receiving valve 2 is ON-OFF controlled by a signal from a powder level meter (not shown) provided in the pressure feeding tank 1 or the supply hopper 3, a timer, or the like. Furthermore, the flow rate regulating valve 4 is controlled based on a signal from a calculation device 14, which will be described later. The acceleration valve 13 repeats ON-OFF (for example, open for 4 seconds and closed for 2 seconds) at intervals of a time set in advance by a timer.

輸送管5の末端側、水平部には輸送管の延在方向に沿っ
て2箇所に圧力検出塵7,7が設けられている。圧力検
出塵7,7には差圧計8が接続しており、輸送管内での
上記2箇所間の差圧を検出する。この検出信号は刻々演
算装置14に送られ、演算装置では差圧の時間的な変化
の状況を数値化して、この値を制御装置9に伝送する。
On the distal end side of the transport pipe 5, pressure detection dust 7, 7 is provided at two locations along the extending direction of the transport pipe in the horizontal part. A differential pressure gauge 8 is connected to the pressure detection particles 7, 7, and detects the differential pressure between the two locations in the transport pipe. This detection signal is sent to the arithmetic unit 14 every moment, and the arithmetic unit digitizes the temporal change in the differential pressure and transmits this value to the control device 9.

制御装置9では、この値に基づき流量調整弁40開度を
制御する。
The control device 9 controls the opening degree of the flow rate regulating valve 40 based on this value.

圧送タンクlに受入れられた粉粒体は、管路12から圧
送タンクl内に送給された圧縮空気によって、輸送管5
内にほぼ連続的に供給される。
The powder and granules received in the pressure-feeding tank l are transferred to the transport pipe 5 by compressed air fed into the pressure-feeding tank l from the pipe line 12.
is supplied almost continuously.

一方、加速弁13からは圧縮空気が輸送管5の始端部に
間欠的に送給される。このため、加速弁13が閉の時に
、輸送管5内に平均的に供給された粉粒体は、加速弁1
3が開とされることによって、始端部付近の粉粒体が加
速弁13からの圧縮空気の動エネルギによって加速され
、輸送管5内の前方側に粉粒体の集合、すなわちプラグ
を形成する。この際、管路12から圧送タンク1に供給
される圧縮空気の量が相対的に減少するので、圧送タン
ク1から輸送管5に供給される粉粒体の量も相対的に減
少する。したがって、加速弁13が開の時のプラグ形成
作用はスムースに行われる。
On the other hand, compressed air is intermittently supplied from the acceleration valve 13 to the starting end of the transport pipe 5. For this reason, when the acceleration valve 13 is closed, the powder and granules that are evenly supplied into the transport pipe 5 are
3 is opened, the powder and granules near the starting end are accelerated by the dynamic energy of the compressed air from the acceleration valve 13, and a collection of powder and granules, that is, a plug, is formed on the front side of the transport pipe 5. . At this time, since the amount of compressed air supplied from the pipe line 12 to the pressure-feeding tank 1 is relatively reduced, the amount of powder and granular material supplied from the pressure-feeding tank 1 to the transport pipe 5 is also relatively reduced. Therefore, the plug forming action when the acceleration valve 13 is open is performed smoothly.

以上に説明したように、輸送管5内における粉粒体の間
欠的なプラグの形成は加速弁13の開閉動作の1サイク
ル毎に1個のプラグが形成される作用によって実現する
。プラグを輸送管5内壁の抵抗に打ち勝って移動させる
駆動力は、プラグ前後の圧力差である。輸送管5内では
、プラグの前後で大きな圧力差を生じながら、プラグを
順繰りに輸送する。
As explained above, the intermittent formation of plugs of the powder and granular material in the transport pipe 5 is realized by the action of forming one plug for each cycle of the opening/closing operation of the acceleration valve 13. The driving force that moves the plug overcoming the resistance on the inner wall of the transport pipe 5 is the pressure difference before and after the plug. Inside the transport pipe 5, the plugs are transported one after another while creating a large pressure difference before and after the plugs.

したがって、前記圧力検出座7,7間の差圧、すなわち
差圧計8が検出する信号値の大きさは、圧力検出座7,
7間に存在するプラグ部分の長さにほぼ比例する。この
時の経時変化を第2図にモデル化して示す。図中(イ)
rlはプラグの長さが圧力検出座の取付間隔(以下、検
出区間という。)よりも°長い場合であり、差圧は壷初
、検出区間に侵入した長さに比例して上昇したのち、検
出区間よりもプラグの長さが長い部分では主として検出
区間の大きさによって定まる最大値の差圧を示してプラ
グが摺動し、その後は検出区間に残存するプラグの長さ
に比例して差圧が低下する。一方、図中(ロ)(ホ)は
プラグの長さが検出区間よりも短い場合であり、差圧は
プラグの長さに対応した最大値を示してプラグが検出区
間内で摺動したのち、前記と同じく残存するプラグの長
さに比例して差圧が低下する。図中に)はプラグの長さ
が検出区間と一致する場合である。差圧が零の時間帯T
oは、この時間帯には検出区間内をプラグの少(とも一
部が通過しなかったことを示す。
Therefore, the pressure difference between the pressure detection seats 7, 7, that is, the magnitude of the signal value detected by the differential pressure gauge 8,
It is approximately proportional to the length of the plug portion that exists between 7 and 7. The temporal change at this time is modeled and shown in Fig. 2. In the diagram (a)
rl is the case when the length of the plug is longer than the mounting interval of the pressure detection seats (hereinafter referred to as the detection section), and the differential pressure increases in proportion to the length of penetration into the detection section at the beginning of the pot, and then In the part where the length of the plug is longer than the detection section, the plug slides with a maximum differential pressure determined mainly by the size of the detection section, and after that, the difference increases in proportion to the length of the plug remaining in the detection section. Pressure decreases. On the other hand, (b) and (e) in the figure are cases where the length of the plug is shorter than the detection section, and the differential pressure shows the maximum value corresponding to the length of the plug, and after the plug slides within the detection section. , as before, the differential pressure decreases in proportion to the length of the remaining plug. ) in the figure is the case where the length of the plug matches the detection section. Time period T when the differential pressure is zero
o indicates that at least some of the plugs did not pass through the detection zone during this time period.

以上に述べたように、差圧計8によって検出される差圧
は時々刻々変化し、その時々に通過するプラグの長さ、
プラグの圧密の程度、プラグの形成状態などによって変
化する。この差圧の変化の状態を比較的長い時間帯につ
いて例示すると第3図のようになる。
As mentioned above, the differential pressure detected by the differential pressure gauge 8 changes from moment to moment, and the length of the plug passing from time to time,
It changes depending on the degree of compaction of the plug, the state of formation of the plug, etc. FIG. 3 shows an example of how the differential pressure changes over a relatively long period of time.

一方、粉粒体を輸送するための圧縮空気の量が過大であ
ると、たとえ、前記加速弁13によって圧縮空気の送給
を間欠的に行うように操作しても、プラグが形成しにく
り、また、形成したプラグが崩壊しやすい。このため、
粉粒体は輸送管内で不規則な動きをしながら、はぼ連続
的に高速に移動する。この時の前記検出区間における差
圧の変化の状態を例示すると第4図のようになる。すな
わち、前記第3図に示したプラグ輸送の場合に比べて、
瞬時における差圧の最大値は小さく、差圧の変化の程度
は小さくて連続的な波形となっており、単位時間当りの
平均差圧も低下する。
On the other hand, if the amount of compressed air for transporting the powder is too large, plugs will be difficult to form even if the acceleration valve 13 is operated to supply compressed air intermittently. , Also, the formed plug is likely to collapse. For this reason,
The powder and granules move irregularly and almost continuously at high speed within the transport pipe. An example of the state of change in the differential pressure in the detection section at this time is as shown in FIG. 4. That is, compared to the case of plug transportation shown in FIG.
The instantaneous maximum value of the differential pressure is small, the degree of change in the differential pressure is small and has a continuous waveform, and the average differential pressure per unit time also decreases.

逆に、粉粒体を輸送するための圧縮空気の奇が過少であ
ると、輸送管内においてプラグが長く形成され、閉塞の
傾向を示す。このため、前記検出区間をプラグが通過す
る時間帯が長くなり、単位時間当りの平均差圧が上昇す
る。
On the other hand, if the amount of compressed air used to transport the powder or granular material is too small, a long plug will be formed in the transport pipe, which tends to cause blockage. Therefore, the time period during which the plug passes through the detection section becomes longer, and the average differential pressure per unit time increases.

本発明は、上記に鑑みて発案されたものであって、本実
施においては、前記差圧計8の検出信号に基づいて、例
えば1分間毎に差圧の時間的平均を演算装置14で演算
し、この結果を制御装置に送る。
The present invention has been devised in view of the above, and in the present implementation, the temporal average of the differential pressure is computed by the computing device 14 every minute, for example, based on the detection signal of the differential pressure gauge 8. , sends this result to the control device.

制御装置では例えば、差圧の時間的平均PaがQ、Q 
I Kg/cm2以下のときは、被輸送物である粉粒体
が前送圧送タンク1側から供給されていないとみなして
、運転を停止するか、もしくは風量をそのまま維持する
か適宜に選択して出力する。Pdが0.01〜0.lK
f/α2では粉粒体の量に比べて、圧縮空気の供給量が
過剰であり、前記第4図で示した連続輸送のケースと判
断して風景を減少するように出力する。Paが0.1〜
0.2Kg/cm”では良好なプラグ輸送が進行してい
ると判断して、風量をそのまま維持する。Pdが0.2
Kt/α2を越えるときは、圧縮空気の供給量が実質的
に不足しており、粉粒体が輸送管内で閉塞傾向にあると
判断して、風量を増加するように出力する。風量を減少
増加させるための具体的手段は、前記流量調整弁4の開
度を段階的又はリニアに制御することによって実施する
。前記風量を制御するためのPdの設定値は、取扱う粉
粒体の性状、輸送管の口径、圧力検出座の位置、取付間
隔によって著しく変化するので、試行錯誤の上で最も適
した値を選定して設定すればよい。
In the control device, for example, the temporal average Pa of the differential pressure is Q, Q
When it is less than I Kg/cm2, it is assumed that the powder or granular material to be transported is not being supplied from the front pressure feeding tank 1 side, and the operation is stopped or the air volume is maintained as it is, which is selected as appropriate. and output it. Pd is 0.01-0. lK
At f/α2, the amount of compressed air supplied is excessive compared to the amount of powder and granules, and it is determined that this is the case of continuous transportation shown in FIG. 4, and the output is made to reduce the scenery. Pa is 0.1~
0.2Kg/cm", it is judged that good plug transport is progressing, and the air volume is maintained as it is. Pd is 0.2
When Kt/α2 is exceeded, it is determined that the supply amount of compressed air is substantially insufficient and that the powder or granular material tends to clog within the transport pipe, and output is performed to increase the air volume. A specific means for decreasing or increasing the air volume is implemented by controlling the opening degree of the flow rate regulating valve 4 stepwise or linearly. The set value of Pd for controlling the air volume changes significantly depending on the properties of the powder and granular material being handled, the diameter of the transport pipe, the position of the pressure detection seat, and the installation interval, so the most suitable value is selected through trial and error. and set it.

圧力検出座は前記したように、輸送管5の末端側の水平
部に設けることが好ましい。すなわち、輸送管内におけ
るプラグの形成は始端側はど、粉粒体の離合、集散が激
しく、プラグの崩壊、再形成を繰り返す頻度が多いのに
比べ、末端側では一旦形成されたプラグは比較的整然と
管内を移動する。また、垂直部では粉粒体の落下現象が
観察され、プラグが不安定である。水平部においても粉
粒体の居残り現象等に起因してプラグの分割、合体とい
った現象が見受けられるが、垂直部に比べて安定してい
る。
As described above, it is preferable that the pressure detection seat is provided in the horizontal portion of the distal end of the transport pipe 5. In other words, when a plug is formed in a transport pipe, at the starting end, the separation and aggregation of particles are severe, and the plug collapses and re-forms frequently, whereas at the end, once formed, the plug is relatively small. Move through the pipe in an orderly manner. In addition, a falling phenomenon of powder particles was observed in the vertical part, making the plug unstable. Phenomenon such as splitting and coalescence of plugs can be seen in the horizontal part due to residual particles, etc., but it is more stable than in the vertical part.

圧力検出塵は2箇所に限らず、3箇所に設けて各検出座
相互間の差圧に基いて、制御するようにすれば、より一
層精密な運転が可能となる。また輸送管が特に長い場合
には、差圧検出を相互に離れた位置で複数箇所で行い、
これらの検出結果に基いてより精密な制御をするように
してもよい。
If the pressure detection dust is not limited to two locations but is provided at three locations and controlled based on the differential pressure between each detection seat, even more precise operation will be possible. In addition, if the transport pipe is particularly long, differential pressure detection may be performed at multiple locations separated from each other.
More precise control may be performed based on these detection results.

差圧を検出するための圧力検出塵の取付間隔(検出区間
)は、予想し得るプラグの好ましい長さ程度にする。検
出区間が必要以上に長いと、区間内に常時、1個以上プ
ラグが存在することになり、プラグ輸送独特の激しい差
圧の変化状況を確認することが難しくなる。逆に検出区
間が短いと、検出される差圧が相対的に小さ(なるので
運転状況の識別が困難になり、その分、制御の誤差が太
き(なる。
The mounting interval (detection section) of the pressure detection dust for detecting the differential pressure is set to be approximately the desired predictable length of the plug. If the detection section is longer than necessary, one or more plugs will always be present in the section, making it difficult to confirm the drastic change in differential pressure that is unique to plug transportation. Conversely, if the detection interval is short, the detected differential pressure will be relatively small, making it difficult to identify the operating situation, and the control error will be correspondingly large.

前記実施例では差圧の時間的な変化の状況として、差圧
の時間的平均値を演算したが、これに代って、差圧の時
間的偏差を演算し、この結果に基いて圧縮空気の供給量
を制御すればより一層安定な運転を実現できる。
In the above embodiment, the temporal average value of the differential pressure was calculated as the condition of the temporal change in the differential pressure, but instead, the temporal deviation of the differential pressure was calculated, and based on this result, the compressed air By controlling the supply amount, even more stable operation can be achieved.

さら如、差圧の時間的平均端と、時間的偏差を組み合せ
て木目細かな制御を行うようにしてもよい。さらには差
圧の経時変化を波形として認識し制御するようにしても
よい。
Alternatively, fine-grained control may be performed by combining the temporal average end of the differential pressure and the temporal deviation. Furthermore, the temporal change in differential pressure may be recognized as a waveform and controlled.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、複数箇所間の差圧に基いて、輸送管に
供給する圧縮空気の量を調整するようにしたので、粉粒
体の供給系などにおいて空気漏れが生じていても、輸送
管内にプラグ輸送のための適正な圧縮空気を供給できる
。このため、粉粒体の低速、高濃度輸送を安定に維持す
ることができる。
According to the present invention, the amount of compressed air supplied to the transport pipe is adjusted based on the differential pressure between multiple locations, so even if air leaks occur in the powder supply system, etc., the transport Appropriate compressed air for transporting plugs can be supplied into the pipe. Therefore, it is possible to stably maintain low-speed, high-concentration transport of the granular material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置系絖図、第2図は
差圧の経時変化をモデル化した説明図、第3図はプラグ
輸送時の差圧の経時変化を例示した図、第4図はプラグ
輸送よりも高速に輸送した場合の差圧の経時変化を例示
した図である。 l・・・圧送タンク、   2・・・受入弁。 4・・・流量調整弁、   5・・・輸送管。 7・・・圧力検出塵、   8・・・差圧計。 9・・・制御装置、   IO・・・コンプレッサ。 13・・・加速弁、     14・・・演算装置。 第2図 T。 吟 聞
Fig. 1 is a diagram of the equipment system for carrying out the present invention, Fig. 2 is an explanatory diagram modeling the change in differential pressure over time, and Fig. 3 is a diagram illustrating the change in differential pressure over time during plug transportation. FIG. 4 is a diagram illustrating a change in differential pressure over time when the plug is transported at a higher speed than the plug transport. l...Pressure tank, 2...Receiving valve. 4...Flow rate adjustment valve, 5...Transport pipe. 7...Pressure detection dust, 8...Differential pressure gauge. 9...Control device, IO...Compressor. 13... Acceleration valve, 14... Arithmetic device. Figure 2 T. Ginken

Claims (1)

【特許請求の範囲】[Claims]  粉粒体を圧縮空気によつて輸送管内に送り込み、輸送
管内に間欠的な粉粒体のプラグを形成させながら空気輸
送する粉粒体の空気輸送方法において、前記輸送管の延
在方向に沿つて複数箇所に圧力検出座を設け、これらの
圧力検出座から検出した前記複数箇所間の差圧に基づい
て、輸送管に供給する圧縮空気の量を調整することを特
徴とする粉粒体の空気輸送方法。
In a pneumatic transport method for powder and granular material, in which powder and granular material is sent into a transport pipe using compressed air and transported by air while forming intermittent plugs of the powder and granular material in the transport pipe, pressure detection seats are provided at a plurality of locations, and the amount of compressed air supplied to the transport pipe is adjusted based on the differential pressure between the plurality of locations detected from the pressure detection seats. Air transportation method.
JP25659087A 1987-10-12 1987-10-12 Pneumatic transportation for bulk material Granted JPH0198522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25659087A JPH0198522A (en) 1987-10-12 1987-10-12 Pneumatic transportation for bulk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25659087A JPH0198522A (en) 1987-10-12 1987-10-12 Pneumatic transportation for bulk material

Publications (2)

Publication Number Publication Date
JPH0198522A true JPH0198522A (en) 1989-04-17
JPH05290B2 JPH05290B2 (en) 1993-01-05

Family

ID=17294741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25659087A Granted JPH0198522A (en) 1987-10-12 1987-10-12 Pneumatic transportation for bulk material

Country Status (1)

Country Link
JP (1) JPH0198522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125789A (en) * 1990-01-02 1992-06-30 Peerless Automation Molded parts removal and transfer robot
JPH05186045A (en) * 1992-01-08 1993-07-27 Unyusho Kowan Gijutsu Kenkyusho Flowing of slurry and others mixed with pressure air
WO2007139106A1 (en) * 2006-05-31 2007-12-06 Sintokogio, Ltd. Pressurized tank, device for feeding powder to transportation pipe and its feeding method, and method of determining feeding interval of powder to transportation pipe
CN106103319A (en) * 2014-03-14 2016-11-09 新东工业株式会社 Pressurized canister, the feeder that powder is sent into conveying pipe and its feeding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162516U (en) * 1985-02-05 1985-10-29 ソシエテ・アノニム・デ・ゼタブリスマン・ヌ− Pneumatic transportation equipment for powdered or granular materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162516U (en) * 1985-02-05 1985-10-29 ソシエテ・アノニム・デ・ゼタブリスマン・ヌ− Pneumatic transportation equipment for powdered or granular materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125789A (en) * 1990-01-02 1992-06-30 Peerless Automation Molded parts removal and transfer robot
JPH05186045A (en) * 1992-01-08 1993-07-27 Unyusho Kowan Gijutsu Kenkyusho Flowing of slurry and others mixed with pressure air
WO2007139106A1 (en) * 2006-05-31 2007-12-06 Sintokogio, Ltd. Pressurized tank, device for feeding powder to transportation pipe and its feeding method, and method of determining feeding interval of powder to transportation pipe
US8113745B2 (en) 2006-05-31 2012-02-14 Sintokogio, Ltd. Pressure tank, an device for feeding powder to a conveying pipe, and its feeding method, and method for determining feeding intervals of powder to the conveying pipe
CN106103319A (en) * 2014-03-14 2016-11-09 新东工业株式会社 Pressurized canister, the feeder that powder is sent into conveying pipe and its feeding method
CN106103319B (en) * 2014-03-14 2018-07-13 新东工业株式会社 Pressurized canister, the feeder and its feeding method that powder is sent into delivery pipe

Also Published As

Publication number Publication date
JPH05290B2 (en) 1993-01-05

Similar Documents

Publication Publication Date Title
US3604758A (en) Apparatus for the conveyance of cohesive particulate material
US4009912A (en) Pneumatic conveying apparatus and method
US5718539A (en) Boundary air/laminar flow conveying system with air reduction cone
US4381897A (en) Installation for transporting fine-grained material
US4059311A (en) Process for discharging bulk material from a silo
US4446876A (en) Tobacco metering and feeding system
US3599832A (en) Flow control of fluidized material
CN104684825A (en) Method for the vacuum-pneumatic transporting of bulk materials with a high mass concentration
US3837540A (en) Control method and apparatus
JPH0198522A (en) Pneumatic transportation for bulk material
JPH08501980A (en) Method and apparatus for discharging particulate material from a pressure vessel
GB983155A (en) Method of and apparatus for successively charging receivers with a granular material
US4261672A (en) Suction head for a pneumatic plug-suction conveyor
JPH085548B2 (en) High-pressure transportation equipment for powders
JP2646017B2 (en) High-pressure transport equipment for granular materials
CN204872247U (en) Prevent whitewashed feeding storehouse of lime that blocks up
WO1991008145A1 (en) Flow rate controller and feeder
JPH06278868A (en) Conveying pressure adjusting device of high pressure powder conveying system
JPS631631A (en) Pressure type powder quantitative feeder
US11952156B2 (en) Vertical packaging machine for packaging products in a modified atmosphere
US3556606A (en) Particulate matter transfer system
JPS58164692A (en) Supplying coal under stabilized condition by means of lock hopper
CN108545483B (en) Dense-phase pneumatic conveying equipment and method for powder materials
JPH0126966B2 (en)
JPH0748578Y2 (en) Pneumatic transport device