JPH0197852A - Minute electrode for electrochemical analysis - Google Patents

Minute electrode for electrochemical analysis

Info

Publication number
JPH0197852A
JPH0197852A JP63189386A JP18938688A JPH0197852A JP H0197852 A JPH0197852 A JP H0197852A JP 63189386 A JP63189386 A JP 63189386A JP 18938688 A JP18938688 A JP 18938688A JP H0197852 A JPH0197852 A JP H0197852A
Authority
JP
Japan
Prior art keywords
electrode
oxygen
conductive substance
length
micropores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63189386A
Other languages
Japanese (ja)
Inventor
Kenichi Morita
健一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63189386A priority Critical patent/JPH0197852A/en
Publication of JPH0197852A publication Critical patent/JPH0197852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE:To enable the measurement of the exact concentration of oxygen while enabling the measurement of a flow speed simultaneously, by a construction wherein one opening end of a molded matter formed of a non-conductive substance and provided with two or more minute holes different in length is fixed on the surface of an electrode. CONSTITUTION:In a minute electrode, a plurality of carbon fibers 1 are covered with a non-conductive substance 2 so as to form a bundle of carbon fibers. The upper ends of the carbon fibers are recessed from the upper end of the non-conductive substance 2 to form two or more piercing minute holes 3, 3' opened outside, and the minute holes are different in length between the group of 3 and that of 3'. When the aforesaid electrode is combined with a reference electrode to be used as a current- oxygen meter, a current value in a steady state is expressed by a formula I, since an oxygen-reducing reaction in a water solution is dominated by diffusion. In the electrode, the length of the whole diffused layer is the sum of the length of the minute hole 3 and the thickness of a diffused layer 5 produced on the upper end of the non- conductive substance 2. The thickness of the diffused layer 5 is determined when a flow speed is determined and has no relation with the concentration of oxygen. In addition, there is no effect of a diffusion constant D.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶存酸素濃度および流速を同時に測定する微小
加工電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microfabricated electrode for simultaneously measuring dissolved oxygen concentration and flow rate.

[従来の技術] 生物は水の中に溶解した酸素をいろいろなかたちで利用
しており、その濃度を測定することは、しばしば必要で
ある。例えば微生物を発酵させる場合は通常発酵槽内の
溶存酸素量を測定して管理される。また、医療上血液中
の溶存酸素量が測定されることがある。また、環境保全
上、海水中や湖沼中の溶存酸素量が測定されている。現
在、これらの溶存酸素を測定する方法としては電気化学
分析法が広く用いられている。即ち、溶存酸素を電極上
で電気化学的に還元し、その際発生する電流量を測定し
て定量する方法である。しかしながら、この方法は溶液
の流れの影響をうける欠点があり、流速が30 Cm/
 Sec以上でないと正確な測定結果を与えない。従っ
て例えば海水中の溶存酸素量を測定する場合は酸素計の
先に攪拌器を取付けるなどの面倒な方策がとられている
。また、血中の溶存酸素量をin vivoで測定する
場合は、そのような攪拌器を取付けることができないの
で従来の技術では正確に測定することができなかった。
[Prior Art] Living organisms utilize oxygen dissolved in water in various ways, and it is often necessary to measure its concentration. For example, when fermenting microorganisms, the amount of dissolved oxygen in the fermenter is usually measured and controlled. Further, the amount of dissolved oxygen in blood is sometimes measured for medical purposes. Additionally, for environmental conservation purposes, the amount of dissolved oxygen in seawater and lakes is being measured. Currently, electrochemical analysis is widely used as a method for measuring dissolved oxygen. That is, it is a method in which dissolved oxygen is electrochemically reduced on an electrode, and the amount of current generated at that time is measured and quantified. However, this method has the disadvantage that it is affected by the flow of the solution, and the flow rate is 30 Cm/
Unless it is Sec or more, accurate measurement results will not be given. Therefore, when measuring the amount of dissolved oxygen in seawater, for example, complicated measures are taken such as attaching a stirrer to the end of the oxygen meter. Furthermore, when measuring the amount of dissolved oxygen in blood in vivo, it has not been possible to accurately measure the amount of dissolved oxygen in the blood using conventional techniques because such a stirrer cannot be attached.

また、血流量と溶存酸素量、あるいは、海流の速度と溶
存酸素量など、流速と溶存酸素濃度を同時に測定する要
望があるにも拘らず、このようなセンサーは今までに存
在しなかった。
Furthermore, despite the desire to simultaneously measure flow velocity and dissolved oxygen concentration, such as blood flow and dissolved oxygen content, or ocean current speed and dissolved oxygen content, no such sensor has ever existed.

また、電機化学的流速測定法については、既に知られて
いる(明畠高司、佐原−雄、化学工学、第22巻、第7
@、430−435頁: Wi l l iam E、
 Ranz、^、1.Ch、E、JOLlrnal、V
Ol、4.No、3 pp 33B−342,Sept
ember、 1958 :アーネスト マイクル リ
ーマ、特開昭58−47262.58年3月18日)。
Furthermore, the electrochemical flow rate measurement method is already known (Takashi Akebatake, Yu Sahara, Chemical Engineering, Vol. 22, Vol. 7).
@, pages 430-435: William E.
Ranz, ^, 1. Ch, E., JOLlrnal, V.
Ol, 4. No, 3 pp 33B-342, Sept.
Ember, 1958: Ernest Michael Riemer, Japanese Patent Publication No. 58-47262. March 18, 1958).

しかしながら、これらの方法は流速測定時に温度や酸素
濃度の変化が生じた場合には、正確な流速を与えない欠
点があった。
However, these methods have the disadvantage that they do not provide accurate flow rates when changes in temperature or oxygen concentration occur during flow rate measurements.

[発明が解決しようとする課題] 本発明は、かかる従来技術の欠点を解消しようとするも
のであり、流速の影響を補正した正確な溶存酸素m度が
測定でき、かつ同時に流速も測定できる電気化学分析用
微小電極を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention aims to solve the drawbacks of the prior art, and is an electric method that can accurately measure the dissolved oxygen m degree with correction for the influence of flow rate, and can also measure the flow rate at the same time. The purpose is to provide microelectrodes for chemical analysis.

[課題を解決するための手段] 上記の目的は、以下の本発明により達成される。[Means to solve the problem] The above object is achieved by the present invention as follows.

「(1)  非導電性物質から成り、長さの異なる2以
上の微細孔を備えた成形物の一方の開口端が、電極面に
固着されていることを特徴とする電気化学分析用微小電
極。
(1) A microelectrode for electrochemical analysis, characterized in that one open end of a molded product made of a non-conductive substance and provided with two or more micropores of different lengths is fixed to the electrode surface. .

(2)  非導電性物質から成り、1以上の微細孔を供
えた成形物の一方の開口端が、電極面に固着されてなる
電極と、ポーラログラフ電極とからなることを特徴とす
る電気化学分析用微小電極。」より具体的には、まず第
1の発明は、非導性物質に好ましくは直径20μm以下
の貫通微細孔が多数おいている構造を有し、かつ該微細
孔が2種以上の深さの異なった細孔群で構成されている
成形物の、該微細孔の奥に電極が配置されていることを
特徴とする電気化学分析用微小電極である。
(2) An electrochemical analysis characterized by comprising an electrode made of a non-conductive substance and having one or more micropores and one open end of which is fixed to the electrode surface, and a polarographic electrode. Microelectrode for use. More specifically, the first invention has a structure in which a non-conductive substance has a large number of penetrating micropores preferably having a diameter of 20 μm or less, and the micropores have two or more depths. This is a microelectrode for electrochemical analysis, characterized in that an electrode is placed deep inside the micropores of a molded article composed of different pore groups.

また、第2の発明は、第1の発明において、該微細孔の
長さがすべて同一である電極と、ポーラログラフ電極と
を組み合わせてなる電気化学分析用微小電極である。こ
のような構成とすることによって、流速の影響を補正し
た溶存酸素濃度、および流速を同時に測定できる微小電
極が得られる。
Further, a second invention is a microelectrode for electrochemical analysis, which is a combination of an electrode in which the micropores have the same length and a polarographic electrode in the first invention. With such a configuration, a microelectrode that can simultaneously measure the dissolved oxygen concentration and the flow rate with the influence of the flow rate corrected can be obtained.

本発明の電極としては特に制限はないが、炭素、白金、
イリジウム、金、炭素繊維などの先端を微細加工して用
いることができる。この中でも、炭素繊維を用いること
が好ましいので、以下炭素繊維の例について詳細に説明
する。
The electrode of the present invention is not particularly limited, but carbon, platinum,
The tip of iridium, gold, carbon fiber, etc. can be finely processed and used. Among these, it is preferable to use carbon fibers, so examples of carbon fibers will be described in detail below.

第1図は、第1の発明の好ましい微小電極の概念図であ
る。ここで複数本の炭素繊維1が非導電性物質2によっ
て覆われ、炭素繊維束を形成している。同図において、
炭素繊維の上端は、非導電性物質2の上′端から後退し
て外部に解放された貫通した微細孔3,3°を形成し、
微細孔の長さは、3の群と3°の群とで異なった長さに
なっている。
FIG. 1 is a conceptual diagram of a preferred microelectrode of the first invention. Here, a plurality of carbon fibers 1 are covered with a non-conductive substance 2 to form a carbon fiber bundle. In the same figure,
The upper end of the carbon fiber recedes from the upper end of the non-conductive material 2 to form a penetrating microhole 3.3° open to the outside;
The length of the micropores is different between the 3° group and the 3° group.

微細孔の底面となる炭素繊維の先端面が電極面となる。The tip surface of the carbon fiber, which becomes the bottom surface of the micropore, becomes the electrode surface.

電極面は必要により電気化学的触媒活性物質4によって
修飾されていてもよい。本電極で溶存酸素濃度を測定す
るときは、拡散層5が水中に生成する。第1図の態様で
は、炭素繊維の電極部分が非導電性物質で覆われている
が、この部分は、非導電性物質がなく電極のみで構成さ
れていても良い。すなわち、非導電性物質から成り長さ
の異なる2以上の微細孔を備えた成形物に固着されてい
る電極部分は、一体成形されていても構わず、その形態
は問わない。
The electrode surface may be modified with an electrochemically catalytically active substance 4 if necessary. When measuring dissolved oxygen concentration with this electrode, a diffusion layer 5 is generated in water. In the embodiment shown in FIG. 1, the electrode portion of the carbon fiber is covered with a non-conductive material, but this portion may be composed only of the electrode without the non-conductive material. That is, the electrode portion fixed to a molded product made of a non-conductive material and having two or more micropores of different lengths may be integrally molded, and its form does not matter.

また、第2図は、第2の発明の微小電極の概念図である
。図中1〜5で示される部分は、第1図と同様であり、
微細孔3がすべて同じ長さになっている。ざらに、6は
、電気的触媒活性物質からなるポーラログラフ電極であ
り、通常白金、金および炭素が用いられる。7は、リー
ド線である。  □ポーラログラフ電極は、1〜4に示
される電極となるべく近傍に配置される。
Moreover, FIG. 2 is a conceptual diagram of the microelectrode of the second invention. The parts indicated by 1 to 5 in the figure are the same as in FIG.
All of the micropores 3 have the same length. In general, 6 is a polarographic electrode made of electrocatalytically active material, typically platinum, gold and carbon. 7 is a lead wire. □Polarographic electrodes are arranged as close as possible to the electrodes 1 to 4.

非導電性物質としては、特に制限はないが弗素樹脂、ポ
リエステル樹脂、エポキシ樹脂、ポリフェニレンオキシ
ド樹脂、ポリフェニレンスルフィド樹脂、ウレタン樹脂
、シリコン樹脂、塩化ビニル樹脂、フェノール樹脂など
の高分子材料が好ましく用いられる。本発明の微小電極
を生体内に挿入して用いるような場合には、抗血栓性の
すぐれた樹脂・を使用するのが好ましい。
The non-conductive substance is not particularly limited, but polymeric materials such as fluororesin, polyester resin, epoxy resin, polyphenylene oxide resin, polyphenylene sulfide resin, urethane resin, silicone resin, vinyl chloride resin, and phenol resin are preferably used. . When using the microelectrode of the present invention by inserting it into a living body, it is preferable to use a resin with excellent antithrombotic properties.

本発明の微小電極は、第1図の様に炭素繊維の各々が非
導電性樹脂によって覆われ、一体として固められ、得ら
れた複合体を繊維軸に対して垂直な面で切った断面を見
たときに非導電性樹脂の海の中に、それぞれの炭素繊維
が島成分として存在するように構成する方が好ましい。
In the microelectrode of the present invention, as shown in Fig. 1, each carbon fiber is covered with a non-conductive resin and solidified as a single body, and the cross section of the resulting composite is taken along a plane perpendicular to the fiber axis. It is preferable to configure the structure so that each carbon fiber exists as an island component in a sea of non-conductive resin when viewed.

すなわち、炭素繊維同志は接触しないように構成されて
いる方が好ましい。しかし前記の様に、電極は一体化し
ていてももちろん構わない。炭素繊維の本数は本発明の
微小電極の使用目的に応じて適宜決定されるが一般的に
は50〜50,000本である。この本数が微細孔の数
に相当する。
That is, it is preferable that the carbon fibers are configured so that they do not come into contact with each other. However, as mentioned above, the electrodes may of course be integrated. The number of carbon fibers is appropriately determined depending on the purpose of use of the microelectrode of the present invention, but is generally 50 to 50,000. This number corresponds to the number of micropores.

前記の断面の面積中に占める炭素繊維断面積の割合は3
〜60%が好ましい。炭素繊維の直径は20μm以下で
あることが好ましく、特に10μm以下とするのが好ま
しい。炭素繊維の径は微細孔の径でもあり、その径が2
0μm以下になると、いわゆるフィルターの効果を呈す
るようになる。
The ratio of the carbon fiber cross-sectional area to the area of the above-mentioned cross-section is 3
~60% is preferred. The diameter of the carbon fiber is preferably 20 μm or less, particularly preferably 10 μm or less. The diameter of carbon fiber is also the diameter of micropores, and the diameter is 2
When the thickness becomes 0 μm or less, a so-called filter effect is exhibited.

微細孔の深さは通常0.5〜500μmであり、特に2
0〜400μmとするのが好ましい。電極面は平面であ
る必要はなく、例えば鉛筆の芯のように尖っていても逆
に下に凸の形状になっていてもよいが、その場合の微細
孔の深さは最も深い位置で定義するものとする。微細孔
の深さは2群以上に分けられるが、2群に分けるのが好
ましい。
The depth of the micropores is usually 0.5 to 500 μm, especially 2
It is preferable to set it as 0-400 micrometers. The electrode surface does not need to be flat; for example, it can be pointed like a pencil lead, or convex downward; however, in that case, the depth of the micropore is defined by the deepest position. It shall be. Although the depth of the micropores can be divided into two or more groups, it is preferable to divide them into two groups.

2群に分けた場合の微細孔の深さは、浅い方の微細孔の
深さに対する深い方の微細孔の深さの割合が、1:1.
2以上の範囲にするのが好ましい。
The depth of the micropores when divided into two groups is such that the ratio of the depth of the shallower micropores to the depth of the deeper micropores is 1:1.
It is preferable to set the range to 2 or more.

各詳はなるべく近い距離にあることが好ましい。It is preferable that each detail be as close as possible.

また、それぞれの群は別々にリード線がとりつけられる
Further, each group is separately attached with a lead wire.

電極面を必要により修飾する電気化学的触媒活性物質は
、白金、銀、金、イリジウム、フタロシアニン類などで
ある。この層を形成させることにより、電極の酸素還元
活性などを高くすることができる。
Electrochemically catalytically active substances that modify the electrode surface if necessary include platinum, silver, gold, iridium, phthalocyanines, and the like. By forming this layer, the oxygen reduction activity of the electrode can be increased.

本発明の電極は、電極面上を選択透過性の膜で覆うこと
により、電極面の汚染をより受けにくくするようにする
ことができる。この膜は電解酸化重合によって形成され
る電解酸化重合膜であることが望ましい。
The electrode of the present invention can be made less susceptible to contamination by covering the electrode surface with a permselective membrane. This membrane is preferably an electrolytic oxidative polymeric membrane formed by electrolytic oxidative polymerization.

本発明の電極は例えば次のようにして製造される。The electrode of the present invention is manufactured, for example, as follows.

まず炭素繊維束を硬化剤を含んだ非導電性樹脂中に通し
、ついで加熱処理等を施すことにより樹脂を硬化させ、
非導電性樹脂によって覆われた針金状の炭素繊維束を得
る。一端には銀ペーストを用いてリード線を接着する。
First, the carbon fiber bundle is passed through a non-conductive resin containing a hardening agent, and then the resin is hardened by heat treatment, etc.
A wire-like carbon fiber bundle covered with a non-conductive resin is obtained. A lead wire is glued to one end using silver paste.

この針金状の炭素繊維束を2本以上用い、上記と同様の
操作を繰返し一体化する。これを所望の電極の長さに切
断し、一方の断面を研磨し、研磨した側の炭素繊維は以
下に述べる電解酸化法により、削り込むことによって微
細孔を形成させる。異なる長さの微細孔を形成する場合
には、針金状炭素繊維束毎に、異なる電流量で削り込む
ことによって、炭素繊維束毎に深さの異なる微細孔を形
成させる。
Using two or more of these wire-like carbon fiber bundles, the same operation as above is repeated to integrate them. This is cut to the desired length of the electrode, one cross section is polished, and the polished carbon fibers are ground down using the electrolytic oxidation method described below to form micropores. When forming micropores of different lengths, micropores with different depths are formed for each bundle of wire-like carbon fibers by carving with different amounts of current.

電解酸化液としては、酸性あるいはアルカリ性水溶液、
塩類を溶解した水溶液およびメタノールなどのアルコー
ル類が用いられる。炭素繊維束を陽極へ接続し、対極に
金属電極を用いて陽極化する。酸化の際の電圧は1〜1
00ボルトの範囲が好ましい。また酸化と還元を繰返し
行なう方法も好ましい方法の一つである。
As the electrolytic oxidizing solution, acidic or alkaline aqueous solution,
Aqueous solutions containing dissolved salts and alcohols such as methanol are used. The carbon fiber bundle is connected to the anode and anodized using a metal electrode as the counter electrode. The voltage during oxidation is 1 to 1
A range of 0.00 volts is preferred. Another preferred method is one in which oxidation and reduction are repeated.

電極面を前記の電気化学的触媒活性物質で修飾する場合
には、メツキ、真空蒸着、スパッタリングなどの方法に
よって行なうことができる。
When the electrode surface is modified with the electrochemically catalytically active substance described above, it can be done by methods such as plating, vacuum deposition, and sputtering.

常法により、上記電極を参照電極と組合せて流速兼酸素
計とする。第1図1〜4で示される電極を複数本1つの
プローブに集積せざることも好ましい方法の一つである
The above electrode is combined with a reference electrode in a conventional manner to form a flow rate/oxygen meter. One preferable method is not to integrate a plurality of electrodes shown in FIGS. 1 to 4 into one probe.

水溶液中の酸素還元反応は拡散支配になっているので、
定常状態での電流値(この値が酸素濃度に比例する)は
次式で表わされる。
Since the oxygen reduction reaction in aqueous solution is diffusion-dominated,
The current value in a steady state (this value is proportional to the oxygen concentration) is expressed by the following equation.

i oo= n F D C3/ L−・・・・(1)
(但し、’ oo ”定常電流値、n:反応電子数(こ
の場合は4)、  F:ファラデ一定数(96500^
・S/mole) 、 D : F1a素の拡散常数>
、c:m水濃度。
i oo = n FD C3/ L-...(1)
(However, 'oo'' steady current value, n: number of reaction electrons (4 in this case), F: Faraday constant number (96500^
・S/mole), D: Diffusion constant of F1a element>
, c: m water concentration.

S:電極面積、 L:全拡散層の長さ)本発明の電極で
は全拡散層の長さは、微細孔3の長さ、および非導電物
質2の上端に生成する拡散層5の厚さの和となる。拡散
層5の厚さは流速が決れば決るものであり、酸素濃度と
は無関係であり、また、拡散常数りによる影響もない。
S: electrode area, L: length of the total diffusion layer) In the electrode of the present invention, the length of the total diffusion layer is the length of the micropore 3 and the thickness of the diffusion layer 5 formed at the upper end of the non-conductive material 2. is the sum of The thickness of the diffusion layer 5 is determined by the flow rate and is unrelated to the oxygen concentration, and is not affected by the diffusion constant.

まず、第1図においてA群の微細孔の深さをQaとし、
B群の深さをαbとし、拡散層5の厚さをり、cとする
と、A群およびB群に流れる定常電流1ai1およ(j
i2は次式で表される。
First, in Fig. 1, the depth of the micropores in group A is Qa,
When the depth of group B is αb and the thickness of the diffusion layer 5 is c, the steady currents 1ai1 and (j
i2 is expressed by the following formula.

i 1=nFC31/ (Qc/D1−t4a/D2)
・・・・・・ (2) i 2=nFC32/ (Qc/Dt +D、b/D2
>・・・・・・ (3) (但し、Sl:へ群の電極面積、S2:B群の電極面積
、Dl:QCでの酸素拡散常数、D2:Qaおよびり、
bでの酸素拡散常数)。
i 1=nFC31/ (Qc/D1-t4a/D2)
...... (2) i2=nFC32/ (Qc/Dt +D, b/D2
>... (3) (However, Sl: electrode area of group B, S2: electrode area of group B, Dl: oxygen diffusion constant at QC, D2: Qa and
(oxygen diffusion constant at b).

ここで、i 1 / i 2 = r、($1・Dl)
/(32・、D2>=にと置くと、 r−k      ・・・・・・ (4)となり、二つ
の電極を流れる電流の比(rを測定することにより、拡
散層の厚さ(1)を求めることができる。次で公知の方
法により境膜の厚さから流速および補正された溶存酸素
濃度を計算により求めることができる。
Here, i 1 / i 2 = r, ($1・Dl)
/(32・, D2>=, r−k ...... (4), and by measuring the ratio (r) of the current flowing through the two electrodes, the thickness of the diffusion layer (1 ) can be determined.Next, the flow velocity and corrected dissolved oxygen concentration can be calculated from the thickness of the boundary film using a known method.

[実施例] 本発明を実施例によりさらに具体的に説明する。[Example] The present invention will be explained in more detail with reference to Examples.

実施例1〜4 炭素繊維1000本の束(“トレカT−1300IK”
、直径約7μm)を硬化剤を含んだエポキシ樹脂中を走
らせ樹脂を含浸させたまま加熱して硬化させ、直径約Q
、3mmの針金状の複合材料を得た。これらの側面をエ
ポキシ樹脂で完全に絶縁したのち切断し、一方の端に銀
ペーストを用いてリード線を接着した。該複合材の2本
を、内径1mmのポリエチレンのチューブに挿入し、エ
ポキシ樹脂を注入し、加熱硬化させた。リード線のつい
ている反対側の断面を常法で研磨した。
Examples 1 to 4 Bundle of 1000 carbon fibers (“Trading Card T-1300IK”)
, diameter of approximately 7 μm) is run through an epoxy resin containing a hardening agent, heated and cured while impregnated with the resin, and the diameter is approximately Q.
, a 3 mm wire-like composite material was obtained. After completely insulating these sides with epoxy resin, they were cut, and a lead wire was glued to one end using silver paste. Two pieces of the composite material were inserted into a polyethylene tube with an inner diameter of 1 mm, an epoxy resin was injected, and the tube was heated and cured. The cross section on the opposite side where the lead wire was attached was polished using a conventional method.

研磨した部分を0.2モルの@酸ナトリウムを溶解した
2ミリモルの硫酸水溶液につけ対極に白金線を用い、次
の条件で陽極酸化を行なった。即ち、2本のうち、1本
は0.3ミリアンペアの電流を12.5分流した。微細
孔の深さは200μmであった。2本のうちの他の1本
は、実施例1では、0.3ミリアンペアの電流を6.3
分流した。微細孔の深さは100μmであった。実施例
2では、0.1ミリアンペアの電流を11.4分流した
。微細孔の深さは60μmであった。実施例3では、0
.1ミリアンペアの電流を7.6分流した。微細孔の深
さは40μmであった。実施例4では、0.1ミリアン
ペアの電流を3.8分流した。微細孔の深さは20μm
であった。
The polished portion was immersed in a 2 mmol sulfuric acid aqueous solution containing 0.2 mol of sodium oxide dissolved therein, and anodic oxidation was performed under the following conditions using a platinum wire as a counter electrode. That is, one of the two wires passed a current of 0.3 milliampere for 12.5 minutes. The depth of the micropores was 200 μm. In Example 1, the other one of the two wires carries a current of 0.3 milliampere to 6.3 milliamps.
Divided. The depth of the micropores was 100 μm. In Example 2, a current of 0.1 milliampere was passed for 11.4 minutes. The depth of the micropores was 60 μm. In Example 3, 0
.. A current of 1 milliampere was applied for 7.6 minutes. The depth of the micropores was 40 μm. In Example 4, a current of 0.1 milliampere was passed for 3.8 minutes. The depth of micropores is 20μm
Met.

上記に得られた微細孔電極上に、次に説明する方法で、
白金の薄膜を生成せしめた。即ち、塩化白金110.0
37モル/Lリシリンンモニウム0.1341E−ル/
ff、リン酸ナトリウム0.704モル/D、を含む水
溶液に上記微細孔電極を浸漬し、白金を対極として炭素
繊維1000本当り8ミリクーロンの電流を流した。得
られた電極を水でよく洗浄した。電子顕微鏡の観察では
、約0゜6μmの白金薄膜が電極上に均一に付着してい
た。
On the microporous electrode obtained above, by the method described below,
A thin film of platinum was produced. That is, platinum chloride 110.0
37 mol/L ricylinmonium 0.1341E-L/
The microporous electrode was immersed in an aqueous solution containing 0.704 mol/D of sodium phosphate, and a current of 8 millicoulombs per 1000 carbon fibers was applied using platinum as a counter electrode. The obtained electrode was thoroughly washed with water. Observation using an electron microscope revealed that a thin platinum film of approximately 0.6 μm was uniformly adhered to the electrode.

上記の白金メツキを行なった電極上に、下記に詳述する
方法で電解酸化重合法を用いてポリアニリンの薄膜を形
成せしめた。
A thin film of polyaniline was formed on the platinum-plated electrode using an electrolytic oxidation polymerization method as detailed below.

即ち、白金メツキした微細孔電極を、アニリン0.01
モル/D、、過塩素酸ソーダ0.1モル/a、ピリジン
0.02モル/aを含むアセトニトリル溶液に浸漬し、
1.2ボルトの正電位を与えて電流が流れなくなるまで
重合を行なった。電子顕微鏡による観察で白金上に重合
体薄膜の生成が認められた。
That is, a platinum-plated microporous electrode was coated with 0.01 aniline.
mol/D, immersed in an acetonitrile solution containing 0.1 mol/a of sodium perchlorate and 0.02 mol/a of pyridine,
Polymerization was carried out by applying a positive potential of 1.2 volts until no current flowed. Observation using an electron microscope revealed the formation of a thin polymer film on the platinum.

jqられた電極の先端を、37℃に保った生理食塩水に
つけ作動極とし、対極に銀/塩化銀電極を装着した。作
動極に0.6ボルトの負電圧をかけ、流れる電流を測定
した。
The tip of the jqed electrode was immersed in physiological saline kept at 37°C to serve as a working electrode, and a silver/silver chloride electrode was attached to the counter electrode. A negative voltage of 0.6 volts was applied to the working electrode, and the flowing current was measured.

実施例1〜4の、それぞれの電極の200μmエツチン
グした方の電極に流れる電流と流速の関係を第2図に示
した。即ち、酸素飽和状態で、流速毎秒50cmのとき
に流れる電流値を1とし、流速を徐々に落し、流速□が
Oになるまで変化させそのとぎに流れる電流値の毎秒5
Qcmのときに対する比(相対電流値)の変化を第2図
にプロットした。
FIG. 2 shows the relationship between the current flowing through the 200 μm etched electrode of Examples 1 to 4 and the flow rate. That is, in an oxygen-saturated state, the current value flowing when the flow rate is 50 cm per second is set to 1, the flow rate is gradually decreased until the flow rate □ becomes O, and then the current value flowing is 5 cm per second.
Changes in the ratio (relative current value) with respect to Qcm are plotted in FIG.

また、それぞれの電極の、他の1本に流れる電流につい
ても、同様に流速毎秒5Qcmのときに流れる電流値を
それぞれ1とし、流速を変更し、毎秒5QCmのときの
電流値に対する比(相対電流値)を求めた。
Regarding the current flowing through the other electrode of each electrode, similarly, the current value flowing when the flow rate is 5 Qcm per second is set to 1, and the flow rate is changed, and the ratio (relative current) to the current value when the flow rate is 5 Qcm per second. value) was calculated.

実施例1については、20011m電極と100μm電
極の相対電流値の比を求め第3図の100μmと示した
曲線で示した。実施例2〜4については、それぞれ、6
0μm、40μm、20μmと示した曲線で示した。以
上で補正を終了した。
Regarding Example 1, the ratio of the relative current values of the 20011m electrode and the 100 μm electrode was determined and shown in the curve shown as 100 μm in FIG. For Examples 2 to 4, 6
The curves are shown as 0 μm, 40 μm, and 20 μm. This completes the correction.

任意の水溶液に、実施例1〜4のセンサをつけ、相対電
流値の比を測定し、第3図から流速を求めた。これは実
測値とよく一致した。また、第2図を用い流速が遅いと
きの測定値から、流速毎秒5Qcm以上のときの溶存酸
素量を求めた。これも実測値とよく一致した。
The sensors of Examples 1 to 4 were attached to any aqueous solution, the ratio of relative current values was measured, and the flow velocity was determined from FIG. This was in good agreement with the measured value. Further, using FIG. 2, the amount of dissolved oxygen when the flow rate was 5 Qcm per second or more was determined from the measured value when the flow rate was slow. This also agreed well with the measured value.

実施例5 実施例4において、炭素繊維の複合材の2本を、内径1
#のポリエチレンのチューブに挿入し、エポキシ樹脂を
注入し、加熱硬化させ、ざらに、ポリエチレンのチュー
ブを除去し、内径4#のポリエチレンチューブに挿入し
、同様にエポキシ樹脂を注入し加熱硬化させたのちポリ
エチレンチューブを取除き外径4mのセンサーを作製し
、リード線のついている反対側の断面を研磨し半球状と
した以外は、実施例4と同様にして、微細孔電極を得、
さらに同様にして、該電極上に白金薄膜、重合体薄膜を
生成した。
Example 5 In Example 4, two pieces of carbon fiber composite material with an inner diameter of 1
Insert it into a ## polyethylene tube, inject epoxy resin, heat and harden it, roughly remove the polyethylene tube, insert it into a #4 polyethylene tube, and inject epoxy resin in the same way and heat harden it. Afterwards, the polyethylene tube was removed to prepare a sensor with an outer diameter of 4 m, and a microporous electrode was obtained in the same manner as in Example 4, except that the cross section on the opposite side to which the lead wire was attached was polished and made into a hemispherical shape.
Furthermore, a platinum thin film and a polymer thin film were formed on the electrode in the same manner.

上記により得られたセンサーの先端部に直径1ミリの銀
線を巻付け、その表面に塩化銀被膜を生成させた。かく
して、流速兼酸素計を作成した。
A silver wire with a diameter of 1 mm was wrapped around the tip of the sensor obtained above, and a silver chloride film was formed on the surface of the wire. In this way, a flow velocity and oxygen meter was created.

下記に本センサを用いた実施例を説明する。2電極力式
で動作電極に−0,6ボルトを印加した。
An example using this sensor will be described below. -0.6 volts was applied to the working electrode using a two-electrode force method.

攪拌機をそなえ37°Cに保ったビーカ中にセンサを入
れ攪拌機の回転数を変え流速を変化させ、2つの電極に
流れる電流を測定した。流速はレーザ・ドツプラー流速
計を用いて設定した。拡散層の厚さ(0)は (kh2−rht )/ (r−k> 但しh2=20.h1=200.に=1、r=i1/i
2で計算した。溶存酸素濃度補正値は測定値に補正係数
(200十Qmin >/ (200十α)を乗じて求
めた。流速(V)はV−νL/1((Eしνは動粘度、
Lはセンサーの直径)の式を用いて求めた。結果を表1
に示した。
A sensor was placed in a beaker equipped with a stirrer and kept at 37°C, and the rotation speed of the stirrer was changed to change the flow rate, and the current flowing through the two electrodes was measured. Flow velocity was set using a laser Doppler velocimeter. The thickness (0) of the diffusion layer is (kh2-rht)/(r-k> where h2=20.h1=200.=1, r=i1/i
Calculated using 2. The dissolved oxygen concentration correction value was obtained by multiplying the measured value by the correction coefficient (200 Qmin >/ (200 α).
L is the diameter of the sensor). Table 1 shows the results.
It was shown to.

測定流速値と設定流速値とは、よく一致した。The measured flow velocity value and the set flow velocity value were in good agreement.

流れの影響を受けない溶存酸素を測定することができた
We were able to measure dissolved oxygen unaffected by flow.

実施例6 炭素繊維1000本の束(“トレカ”  T−300I
に、直径約7μTrt)を硬化剤を含んだエポキシ樹脂
中を走らぜ樹脂を含浸させた。次に、この含浸した繊維
束を引張ったまま加熱して硬化させ、直径約0.38の
針金状の複合材料を得た。これらの側面をエポキシ樹脂
で完全に絶縁したのち切断し、一方の端に銀ペーストを
用いてリード線を接着した。該複合材と直径0.3ミリ
の白金線とを、内径1mのポリエチレンのチューブに挿
入し、エポキシ樹脂を注入し、加熱硬化させた。ポリエ
チレンチューブに除去し、外径6mのステンレスチュー
ブに鎖管とともに挿入し、同様にボキシ樹脂を注入し加
熱硬化させたのちコネクターを取付はコネクタのついて
いる反対側の断面を研磨した。
Example 6 Bundle of 1000 carbon fibers (“Trading Card” T-300I
A diameter of approximately 7 μTrt) was run through an epoxy resin containing a curing agent to impregnate the resin. Next, this impregnated fiber bundle was heated and cured while being stretched, to obtain a wire-like composite material with a diameter of about 0.38 mm. After completely insulating these sides with epoxy resin, they were cut, and a lead wire was glued to one end using silver paste. The composite material and a platinum wire with a diameter of 0.3 mm were inserted into a polyethylene tube with an inner diameter of 1 m, and an epoxy resin was injected and hardened by heating. It was removed into a polyethylene tube, inserted into a stainless steel tube with an outer diameter of 6 m together with a chain tube, and the boxy resin was similarly injected and heated to harden. Then, the connector was attached by polishing the cross section on the opposite side where the connector was attached.

研磨面には中心に炭素繊維電極および白金電極、その周
りに銀電極が位置している。
On the polishing surface, a carbon fiber electrode and a platinum electrode are located in the center, and a silver electrode is located around them.

研磨した部分を0.2モルの硫酸ナトリウムを溶解した
2ミリモルの硫酸水溶液につけ対極に白金線を用い、炭
素繊維電極の陽極酸化を行なった。
The polished portion was immersed in a 2 mmol sulfuric acid aqueous solution containing 0.2 mol of sodium sulfate, and a platinum wire was used as a counter electrode to anodize the carbon fiber electrode.

即ち、0.3ミリアンペアの電流を12.5分流した。That is, a current of 0.3 milliampere was passed for 12.5 minutes.

微細孔の深さは200μmc必った。The depth of the micropores was required to be 200 μmc.

上記に得られた微細孔電極上に、次に説明する方法で、
白金の薄膜を生成せしめた。即ち、塩化白金10.03
7モル/D、、リン酸アンモニウム0.134モル/ρ
、リン酸ナトリウム0.704モル/Qを含む水溶液に
上記微細孔電極を浸漬し、白金を対極として炭素繊維1
000本当り8ミリクーロンの電流を流した。得られた
電極を水でよく洗浄した。電子顕微鏡の12察では、約
0゜6μmの白金薄膜が電極上に均一に付着していた。
On the microporous electrode obtained above, by the method described below,
A thin film of platinum was produced. That is, platinum chloride 10.03
7 mol/D, ammonium phosphate 0.134 mol/ρ
, the above microporous electrode was immersed in an aqueous solution containing 0.704 mol/Q of sodium phosphate, and the carbon fiber 1 was immersed with platinum as a counter electrode.
A current of 8 millicoulombs was applied per 000 wires. The obtained electrode was thoroughly washed with water. Twelve observations using an electron microscope revealed that a platinum thin film of approximately 0.6 μm was uniformly adhered to the electrode.

上記に白金メツキを行なった電極上に、下記に詳述する
方法で電解酸化重合法を用いてポリアニリンの薄膜を形
成せしめた。
A thin film of polyaniline was formed on the platinum-plated electrode using an electrolytic oxidation polymerization method as detailed below.

即ち、白金メツキした微細孔電極を、アニリン0.01
モル/I2、過塩素酸ソーダ0.1モル/a1ピリジン
0.02モル/aを含むアセトニトリル溶液に浸漬し、
1.2ボルトの正電位を与えて電流が流れなくなるまで
重合を行なった。電子顕微鏡による観察で白金上に重合
体薄膜の生成が認められた。かくしてセンサが完成した
That is, a platinum-plated microporous electrode was coated with 0.01 aniline.
mol/I2, sodium perchlorate 0.1 mol/a1 pyridine 0.02 mol/a immersed in an acetonitrile solution,
Polymerization was carried out by applying a positive potential of 1.2 volts until no current flowed. Observation using an electron microscope revealed the formation of a thin polymer film on the platinum. The sensor was thus completed.

本センサを用いて、流れる電流を測定した。充分攪拌し
たときの電流値を1とした。拡散層の厚ざaは次式で計
算した。
Using this sensor, we measured the flowing current. The current value when sufficiently stirred was set to 1. The thickness a of the diffusion layer was calculated using the following formula.

α=h1 x、Qmin /rx (hI 十〇、mi
n )但しhl =200.ffm1n =7.5、r
= i 1 / i 2 結果を表2に示す。
α=h1 x, Qmin/rx (hI 10, mi
n) However, hl = 200. ffm1n =7.5, r
= i 1 / i 2 The results are shown in Table 2.

[発明の効果コ 本発明の電気化学分析用微小電極は、流速の影響を補正
した正確な溶存酸素濃度が測定できる。
[Effects of the Invention] The microelectrode for electrochemical analysis of the present invention can accurately measure dissolved oxygen concentration with the influence of flow rate corrected.

また同時に流速も測定できる微小電極であるため−非常
に有用である。
It is also very useful because it is a microelectrode that can also measure flow velocity at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の微小電極を、第2図は流速
と相対電流値の関係を、第3図は流速と相対電流値の比
の関係を示す。 第4図は、本発明の実施例6の微小電極を示す。 1・・・・・・炭素繊維 2・・・・・・非導電性物質 3.3”・・・・・・微細孔 4・・・・・・電気化学的触媒活性物質5・・・・・・
拡散層 6・・・・・・ポーラログラフ電極 7・・・・・・リード線 特許出願人 東 し 株 式 会 社 第1図 第2図 第3図
FIG. 1 shows the microelectrode of Example 1 of the present invention, FIG. 2 shows the relationship between flow velocity and relative current value, and FIG. 3 shows the relationship between flow velocity and the ratio of relative current value. FIG. 4 shows a microelectrode of Example 6 of the present invention. 1... Carbon fiber 2... Non-conductive material 3.3"... Micropores 4... Electrochemically catalytically active material 5...・・・
Diffusion layer 6... Polarographic electrode 7... Lead wire Patent applicant Toshi Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)非導電性物質から成り、長さの異なる2以上の微
細孔を備えた成形物の一方の開口端が、電極面に固着さ
れていることを特徴とする電気化学分析用微小電極。
(1) A microelectrode for electrochemical analysis, characterized in that one open end of a molded product made of a non-conductive substance and provided with two or more micropores of different lengths is fixed to an electrode surface.
(2)非導電性物質から成り、1以上の微細孔を供えた
成形物の一方の開口端が、電極面に固着されてなる電極
と、ポーラログラフ電極とからなることを特徴とする電
気化学分析用微小電極。
(2) Electrochemical analysis characterized by comprising an electrode made of a non-conductive substance and having one or more open ends of a molded article fixed to the electrode surface, and a polarographic electrode. Microelectrode for use.
JP63189386A 1987-07-28 1988-07-28 Minute electrode for electrochemical analysis Pending JPH0197852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63189386A JPH0197852A (en) 1987-07-28 1988-07-28 Minute electrode for electrochemical analysis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18950987 1987-07-28
JP62-189509 1987-07-28
JP63189386A JPH0197852A (en) 1987-07-28 1988-07-28 Minute electrode for electrochemical analysis

Publications (1)

Publication Number Publication Date
JPH0197852A true JPH0197852A (en) 1989-04-17

Family

ID=26505445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63189386A Pending JPH0197852A (en) 1987-07-28 1988-07-28 Minute electrode for electrochemical analysis

Country Status (1)

Country Link
JP (1) JPH0197852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512743A (en) * 1996-05-16 2000-09-26 センデックス メディカル,インク. Sensor having microminiature through-holes and method of manufacturing such a sensor
JP2019536982A (en) * 2016-09-08 2019-12-19 ザ フランシス クリック インスティチュート リミティッド Electrochemical wire electrode array and corresponding manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000512743A (en) * 1996-05-16 2000-09-26 センデックス メディカル,インク. Sensor having microminiature through-holes and method of manufacturing such a sensor
JP2019536982A (en) * 2016-09-08 2019-12-19 ザ フランシス クリック インスティチュート リミティッド Electrochemical wire electrode array and corresponding manufacturing method

Similar Documents

Publication Publication Date Title
DK167716B1 (en) Microelectrode for electrochemical analysis
EP1841363B1 (en) Catheter-free implantable needle biosensor
US5954685A (en) Electrochemical sensor with dual purpose electrode
CN101360449A (en) Hydrogel for an intravenous amperometric biosensor
US4582589A (en) pH sensor
Ates et al. Carbon fiber microelectrodes electrocoated with polycarbazole and poly (carbazole-co-p-tolylsulfonyl pyrrole) films for the detection of dopamine in presence of ascorbic acid
Canovas et al. Cytotoxicity study of ionophore-based membranes: Toward on-body and in vivo ion sensing
GB2538731A (en) Methods
US9681828B2 (en) Physiological characteristic sensors and methods for forming such sensors
US11359300B1 (en) Electrochemical method for enzyme immobilization on biosensor electrodes
Wang et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose
KR20180006835A (en) Bio sensor and manufacturing method thereof
WO2016189301A1 (en) Methods
JPH0197852A (en) Minute electrode for electrochemical analysis
Navera et al. Nafion‐coated carbon fiber for acetylcholine and choline sensors
Cosofret et al. Planar micro sensors for in vivo myocardial pH measurements
Mao et al. Electrochemical microsensor for in vivo measurements of oxygen based on Nafion and methylviologen modified carbon fiber microelectrode
Silver Microelectrodes in medicine
KR100541267B1 (en) Transdermal Glucose biosensor
CN108802145A (en) A kind of electrochemica biological sensor and preparation method thereof of detection alpha-fetoprotein
JPH0358663B2 (en)
Li et al. Developing an iridium oxide film modified microelectrode for microscale measurement of pH
US4893625A (en) Insertion type electrode arrangement for continuous pO2 measurement in living skin tissue
JPS6168030A (en) Minute sensor for measuring oxygen partial pressure
Wang A Membrane Biosensor for the Detection of Lactate in Body Fluids