JPH0197767A - Earthquakeproof structure - Google Patents

Earthquakeproof structure

Info

Publication number
JPH0197767A
JPH0197767A JP25236787A JP25236787A JPH0197767A JP H0197767 A JPH0197767 A JP H0197767A JP 25236787 A JP25236787 A JP 25236787A JP 25236787 A JP25236787 A JP 25236787A JP H0197767 A JPH0197767 A JP H0197767A
Authority
JP
Japan
Prior art keywords
center
rigidity
elastic
upper structure
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25236787A
Other languages
Japanese (ja)
Other versions
JPH0464391B2 (en
Inventor
Hiroshi Okada
宏 岡田
Tetsuo Suzuki
哲夫 鈴木
Takeshi Nakamura
嶽 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP25236787A priority Critical patent/JPH0197767A/en
Publication of JPH0197767A publication Critical patent/JPH0197767A/en
Publication of JPH0464391B2 publication Critical patent/JPH0464391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE: To inhibit as much of torsional deformation as possible by forming with high rigidity an elastic body placed along the outer periphery of an upper structure, and forming with higher rigidity an elastic body which is closer to the center of weight of the upper structure. CONSTITUTION: An elastic laminate 16 is interposed between an upper structure 12 and a foundation 14. The elastic laminate 16 comprises flat rubber plates 18 and steel plates 20 laminated alternately, with end plates 22a, 22b attached to upper and lower ends, the steel plates 20 having the same form as the rubber plates 18. In a base isolated structure 10, a high-load elastic body 16a formed with high horizontal rigidity is placed below a side pole 24a on the outer periphery of the structure 12. Thus, any placement below a mid column 24b is not necessary provided that the total load of the structure 12 can be supported only by the elastic body 16a below a side pole 24a. Therefore, the position of the center of rigidity G' of an entire base isolator is kept as close to the position of the center of gravity of the structure 12 as possible and the amplitude of torsional vibration can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野)    ゛ 本発明は免震梢遺物に係わり、特に、地震時等に水平方
向力と共に捩じれ力が働いたときに、弾性体の適当な配
置により、上部構造物の捩じれ変形を可及的に抑制でき
るようにした免震構造物に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to base-isolated treetop relics, and in particular, when horizontal force and torsional force are applied during an earthquake, , relates to a seismic isolation structure capable of suppressing torsional deformation of a superstructure as much as possible.

(従来の技術) 従来より、上部構造物と基礎との間にその上部構造物の
鉛直荷重を支持する多数の弾性積層体(積層ゴム等)を
介装して、地震時等に水平方向の外力が働いた際に、そ
の水平外力を弾性積層体の水平方向への変位で[jする
ようにした免震装置が公知になっている。
(Prior art) Conventionally, a large number of elastic laminates (laminated rubber, etc.) are interposed between the superstructure and the foundation to support the vertical load of the superstructure, and the horizontal A seismic isolation device is known in which, when an external force is applied, the horizontal external force is reduced by horizontal displacement of an elastic laminate.

一般にこのような免震装置では、各弾性積層体は上部構
造物の各社の下部に配置されており、その各弾性積層体
は各社がそれぞれに負担する上部#!構造物重量に対応
して、その負担荷重に耐えられる支持荷重能力を有する
ものが配設されている。
Generally, in such a seismic isolation device, each elastic laminate is placed at the bottom of each company of the superstructure, and each elastic laminate is placed at the upper part #! Depending on the weight of the structure, a support load capable of withstanding the load is provided.

なお、一般に弾性積層体は、その支持荷重能力が大きい
ほど、水平方向の剛性も大きくなる。
Note that, in general, the greater the supporting load capacity of the elastic laminate, the greater the rigidity in the horizontal direction.

つまり、第3図に示すように、従来の#構造物1の中央
部の中柱2aではその負担重量が大きいので、それらの
中柱2a下には支持能力が大きく、従って水平剛性の高
い弾性積層体3aが配置され、負担重量が小さい側柱2
b下には支持能力が小さく水平剛性の低い弾性積層体3
bが配置されている。
In other words, as shown in Fig. 3, since the weight borne by the middle pillars 2a at the center of the conventional # structure 1 is large, the support capacity is large under these middle pillars 2a, and therefore the elasticity with high horizontal rigidity is The side column 2 has a laminate 3a arranged thereon and has a small burden load.
b Underneath is an elastic laminate 3 with low supporting capacity and low horizontal rigidity.
b is placed.

(発明が解決しようとする問題点) ところで、構造物1は特殊な例を除いて殆どの場合、屋
上階のベントハウスや耐震壁の配設位置等の影響によっ
て多少の剛性及び重量偏心を有しており、このため地震
時等には上部構造物各階における水平力作用点(重心)
と抵抗力中心点(重心)のずれによる捩じり力、及び各
階の重心の水平位置のずれによる捩じり力が構造物1に
作用することになる。
(Problems to be Solved by the Invention) By the way, in most cases, except for special cases, the structure 1 has some degree of rigidity and weight eccentricity due to the influence of the location of the vent house on the roof floor and the seismic wall. Therefore, in the event of an earthquake, the horizontal force application point (center of gravity) on each floor of the upper structure
A torsional force due to a shift in the center of the resistance force (center of gravity) and a torsional force due to a shift in the horizontal position of the center of gravity of each floor act on the structure 1.

しかしながら、中柱2a下の弾性積層体3aの水平剛性
が高く、側柱2b下の弾性積層体3bの水平剛性が低い
従来の免震装置であると、その捩り力に対して免震製置
部全体としての捩じれ剛性が不足し、このため、免震装
置部でその捩じり力に充分に抵抗して構造物1の捩じれ
変形を抑制することが困難であった。
However, in the case of a conventional seismic isolation device in which the horizontal rigidity of the elastic laminate 3a under the middle column 2a is high and the horizontal rigidity of the elastic laminate 3b under the side column 2b is low, the seismic isolation device cannot withstand the torsional force. The torsional rigidity of the entire structure is insufficient, and therefore, it is difficult for the seismic isolation device to sufficiently resist the torsional force and suppress the torsional deformation of the structure 1.

本発明は、上記のような事情に鑑みてなされたものであ
り、その目的は、高剛性に形成した弾性体を構造物の外
周に配設す−ることにより、#!J造物遺物用する捩れ
力及び捩じれ変形を可及的に抑制することができる免震
構造物を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide #! It is an object of the present invention to provide a seismic isolation structure capable of suppressing torsional force and torsional deformation as much as possible for use in J-shaped artifacts.

(問題点を解決するための手段) 本発明は上記の問題点を解決するために、上部IfII
J遺物と基礎との間に、上記上部#I構造物鉛直荷重を
支持するとともに水平方向の荷重に対して弾性変形して
それら上部構造物と基礎との水平方向への相対変位を許
容する多数の弾性体を介装した免震構造物において、上
記上部m遺物の外周側に沿わせて配設する弾性体を高剛
性に形成し、かつそれらは上部1rI4造物の重量中心
により近接するものをより高剛性に形成した。
(Means for Solving the Problems) In order to solve the above problems, the present invention solves the above problems by
Between the J relic and the foundation, there is a large number of structures that support the vertical load of the upper #I structure and elastically deform in response to horizontal loads to allow relative displacement in the horizontal direction between the upper structure and the foundation. In a seismic isolation structure in which elastic bodies are interposed, the elastic bodies disposed along the outer periphery of the upper m relic are formed to have high rigidity, and they are closer to the center of gravity of the upper 1rI4 structure. Made with higher rigidity.

(作 用) 上記構成の免震構造物においては、剛性の高い弾性体が
上部構造物の外側に沿ってこの上部!遺物と基礎との間
に配置され、かつそれら弾性体は上部構造物のxXM中
心により近接するものがより高剛性に形成されるので、
免震構造物全体としての捩れ剛性が大きくなる。更に、
重量偏心等のある構造物に地震等の水平方向の外力が働
いても、その構造物に対して作用する捩れ力を可及的に
抑制できるようになる。
(Function) In the seismic isolation structure with the above configuration, a highly rigid elastic body runs along the outside of the upper structure. The elastic bodies placed between the relic and the foundation and closer to the xXM center of the superstructure are formed to have higher rigidity;
The torsional rigidity of the entire seismic isolation structure increases. Furthermore,
Even if a horizontal external force such as an earthquake acts on a structure with weight eccentricity, the torsional force acting on the structure can be suppressed as much as possible.

(実施例) 以下に、本発明の好適な一実施例を添附図面に基づき詳
述する。
(Example) Hereinafter, a preferred example of the present invention will be described in detail based on the accompanying drawings.

第2図に示すように、上部構造物12と基礎14との間
には弾性積層体16が介装される。この弾性積層体16
は、平板状のゴム板18と同形状の鋼板20とを交互に
積層して、上下端にエンドプレート22a・22bを取
付けたものであって、それらのエンドプレート22a・
22bが上部構造物12と基礎14とに対してボルト等
で締結固定される。
As shown in FIG. 2, an elastic laminate 16 is interposed between the upper structure 12 and the foundation 14. This elastic laminate 16
, flat rubber plates 18 and steel plates 20 of the same shape are alternately stacked, and end plates 22a and 22b are attached to the upper and lower ends.
22b is fastened and fixed to the upper structure 12 and the foundation 14 with bolts or the like.

ゴム板18には天然ゴム、合成ゴム、鉛入りゴム、及び
高減衰ゴム等が使用されて、弾性積層体16が任意の支
持荷重能力を有するように形成される。
Natural rubber, synthetic rubber, lead-containing rubber, high-damping rubber, or the like is used for the rubber plate 18, and the elastic laminate 16 is formed to have an arbitrary supporting load capacity.

ところで、第1図に示すように、免am遺物10は、上
記の弾性積層体16が上部構造物12の各柱24下に配
置されて構成されるが、本発明では少くとも上部構造物
12の外周部の側柱24a下には水平剛性を高く形成し
た高荷重用の弾性積層体16aを配設する。この場合、
最下層の床部な剛に形成するとかの構造的な配慮が必要
である。
By the way, as shown in FIG. 1, the amended relic 10 is constructed by disposing the above-mentioned elastic laminate 16 under each column 24 of the upper structure 12, but in the present invention, at least the upper structure 12 An elastic laminate 16a for high loads with high horizontal rigidity is disposed below the side pillars 24a on the outer periphery. in this case,
Structural consideration is required, such as making the bottom floor part rigid.

従って、上部構造物12の総荷重を側柱24a下の弾性
積層体16aだけで支持できれば、中柱24b下には特
に弾性積層体16を配設する必要はなく、必要になる場
合でも低荷重用のゴムを使用した比較的柔かい低剛性の
弾性Mi層体16bを配置すればよい。
Therefore, if the total load of the upper structure 12 can be supported only by the elastic laminates 16a under the side columns 24a, there is no need to provide the elastic laminates 16 under the middle columns 24b, and even if necessary, the load will be low. A relatively soft and low-rigidity elastic Mi layer body 16b made of rubber may be disposed.

また、複数の弾性積層体16からなる免震装置部の全体
としての捩じれ力に対する重心G”は、上部構造物12
の最下層階の重心位TIOに合せるよりも、それより上
方の重量偏心部の重心方向にずらして、上部構造物12
の全体の重心位置G(もしくは重心位置)に一致させる
ようにすることが振動バランス上望ましい、このため、
側柱24下に配設される高水平剛性の各弾性積層体16
は、更に上部構造物12の全体としての重心位置Gによ
り近接する側柱24a−下の弾性積層体16a−の水平
剛性をより高く形成して、その免震製置部全体としての
重心G−の位置を上部構造物12全体としての重心位置
(もしくは重心位置)に可及的に一致させるようにして
いる。
In addition, the center of gravity G'' for the torsional force of the seismic isolation device section consisting of a plurality of elastic laminates 16 as a whole is
Rather than aligning with the center of gravity TIO of the lowest floor, the upper structure 12 is shifted in the direction of the center of gravity of the weight eccentric part above it.
It is desirable for vibration balance to match the overall center of gravity position G (or center of gravity position) of
Each elastic laminate 16 with high horizontal rigidity is arranged under the side column 24
In addition, the horizontal rigidity of the lower elastic laminate 16a of the side column 24a, which is closer to the center of gravity G of the upper structure 12 as a whole, is made higher, so that the center of gravity G of the entire seismically isolated installation part is increased. The position of the upper structure 12 is made to match the center of gravity (or center of gravity) of the entire upper structure 12 as much as possible.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

第1図に示すように、上部tM 造物12にはその屋上
階にベントハウス26が設けられたり、外側壁の一部等
にi!Il震壁28が設けられたりするので、見た目に
は平面的にほぼ点対称のように上部構造物12を横築し
た場合でも、その上部構造物12の全体としての重心G
は、必ずしも最下M l’Jの幾何学的中心(重心)0
上に位置するとは限らず、若干の重量偏心がある。
As shown in FIG. 1, the upper tM structure 12 is provided with a vent house 26 on its roof floor, and a part of the outer wall is provided with an i! Since the Il quake wall 28 is provided, even if the superstructure 12 is built horizontally so that it appears to be approximately point symmetrical in plan, the center of gravity G of the superstructure 12 as a whole is
is not necessarily the geometric center (center of gravity) of the lowest M l'J
It is not necessarily located at the top, and there is a slight weight eccentricity.

このため、地震等が発生したときには、上部構造物12
には水平方向力と共に捩じれ力が作用することになる。
Therefore, when an earthquake etc. occurs, the upper structure 12
A torsional force acts together with a horizontal force.

従って、こうした場合に、第3図に示したように中柱2
a下に高水平剛性の弾性積層体3aを配置し、側柱2b
下に低水平剛性の弾性積層体3bを配置した従来の免震
構造物では、その免震製置部全体としての捩じれ剛性が
不足し、上部構造物1の捩じれ振動の振幅が大きくなっ
てしまう。
Therefore, in such a case, as shown in FIG.
An elastic laminate 3a with high horizontal rigidity is placed under the side column 2b.
In the conventional seismic isolation structure in which the elastic laminate 3b with low horizontal rigidity is placed below, the torsional rigidity of the seismic isolation structure as a whole is insufficient, and the amplitude of torsional vibration of the upper structure 1 becomes large. .

しかしながら、第1図に示すように上部構造物12の側
柱24a下に高水平剛性の弾性積層体16aを配置した
本実施例では、上部構造物12に作用することになる捩
じれ力の中心に対して、これより離間した最外側の弾性
積層体16aが高剛性を有しているので、その免震構造
物10全体としての捩じれ剛性が、同じ支持荷重能力を
有する従来の免震構造物1に比べて、可及的に増大され
て高められている。
However, in this embodiment in which the elastic laminate 16a with high horizontal rigidity is arranged under the side column 24a of the upper structure 12 as shown in FIG. On the other hand, since the outermost elastic laminate 16a that is spaced apart from this has high rigidity, the torsional rigidity of the entire seismic isolation structure 10 is lower than that of the conventional seismic isolation structure 1 having the same supporting load capacity. Compared to , it has been increased and raised as much as possible.

このため、従来に比べ、同じ大きさの水平方向の外力が
基礎14側に対して働いた際の上部構造物12に作用す
る捩じれ振動の振幅を、可及的に小さくすることができ
、もって上部構造物12の捩じれを可及的に抑制できる
ようになる。
Therefore, compared to the conventional method, the amplitude of torsional vibration acting on the upper structure 12 when the same magnitude of horizontal external force is applied to the foundation 14 side can be made as small as possible. Twisting of the upper structure 12 can be suppressed as much as possible.

また、複数の弾性積層体16からなる免震製置部全体と
しての捩じれ力に対する重心G″の位置が、上部S遺物
12の全体としての重心位置Gに可及的に一致させられ
ているので、屋上階のベントハウスや耐震壁の配設位置
等の影響によって上部構造物12が多少の剛性及び重量
偏心を有していても、各階における水平力作用点(重心
)と免震製置部全体としての抵抗力中心点(重心)との
位置ずれは可及的に小さくなっており、この位置ずれに
基因して上部構造物12に作用する捩じれ力を可及的に
低減できるようになる。
In addition, the position of the center of gravity G'' of the entire seismic isolation installation made of the plurality of elastic laminates 16 against torsional force is made to match the center of gravity G of the upper S relic 12 as a whole as much as possible. Even if the upper structure 12 has some rigidity and weight eccentricity due to the location of the vent house on the roof floor and the seismic walls, the horizontal force application point (center of gravity) and the seismic isolation installation part on each floor The overall positional deviation from the center of resistance force (center of gravity) is as small as possible, and the torsional force acting on the upper structure 12 due to this positional deviation can be reduced as much as possible. .

なお、耐震壁28や各社24の配置等によって上部構造
物12に剛性偏心がある場合でも、上部構造物12の側
柱24a下等の外周側に高剛性の弾性積層体16aを配
置するという基本的な構成で、その上部構造物12の捩
じれを可及的に抑制することができる。
Note that even if there is rigidity eccentricity in the upper structure 12 due to the arrangement of the seismic walls 28 and the companies 24, etc., the basic principle is to arrange the highly rigid elastic laminate 16a on the outer peripheral side of the upper structure 12, such as below the side columns 24a. With this configuration, twisting of the upper structure 12 can be suppressed as much as possible.

(効 果) 以上要するに本発明によれば、上部構造物の外周側に沿
わせてこれとその基礎との間に、水平剛性の高い弾性体
を配設するようにしたので、免震梢遺物全体としての捩
じれ剛性を従来のものより増大させて可及的に高くする
ことができる。
(Effects) In summary, according to the present invention, an elastic body with high horizontal rigidity is disposed along the outer periphery of the superstructure and between this and its foundation. The torsional rigidity as a whole can be increased as much as possible compared to the conventional one.

また、それらの各弾性体は上部構造物の重量中心により
近接するものをより高剛性に形成して、弾性体の水平抵
抗中心(重心)を上部槽遺物全体の重量中心に可及的に
一致させるようにしたので、免振装置部に作用する捩じ
れ力を可及的に低減できる。
In addition, the elastic bodies closer to the weight center of the upper structure are made to have higher rigidity, so that the horizontal resistance center (center of gravity) of the elastic body is aligned as much as possible with the weight center of the entire upper tank relic. Therefore, the torsional force acting on the vibration isolator section can be reduced as much as possible.

このため、地震等によって水平方向の外力が働いた際に
、その上部構造物に重量偏心等があっても、その上部構
造物に対して作用する捩じれ力及びその捩じれ変形を可
及的に抑制できるようになる。
Therefore, even if the superstructure has weight eccentricity when an external force in the horizontal direction is applied due to an earthquake, etc., the torsional force acting on the superstructure and its torsional deformation can be suppressed as much as possible. become able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る免震構造物の好適な一実施例を示
すもので、弾性体の配設m遺を示す平面図、第2図は免
震装置を形成する弾性体の側面図、第3図は従来の免震
構造物における弾性体の配設構造を示す平面図である。
Fig. 1 shows a preferred embodiment of the seismic isolation structure according to the present invention, and is a plan view showing the arrangement of the elastic bodies, and Fig. 2 is a side view of the elastic bodies forming the seismic isolation device. , FIG. 3 is a plan view showing the arrangement structure of elastic bodies in a conventional seismic isolation structure.

Claims (1)

【特許請求の範囲】[Claims] 上部構造物と基礎との間に、上記上部構造物の鉛直荷重
を支持するとともに水平方向の荷重に対して弾性変形し
てそれら上部構造物と基礎との水平方向への相対変位を
許容する多数の弾性体を介装した免震構造物において、
上記上部構造物の外周側に沿わせて配設する弾性体を高
剛性に形成し、かつそれらは上部構造物の重量中心によ
り近接するものをより高剛性に形成したことを特徴とす
る免震構造物。
Between the superstructure and the foundation, there is a large number of structures that support the vertical load of the superstructure and elastically deform in response to horizontal loads to allow relative displacement between the superstructure and the foundation in the horizontal direction. In a seismic isolation structure with an elastic body interposed in it,
The seismic isolation is characterized in that the elastic bodies disposed along the outer circumference of the upper structure are formed to be highly rigid, and those closer to the weight center of the upper structure are formed to be more rigid. Structure.
JP25236787A 1987-10-08 1987-10-08 Earthquakeproof structure Granted JPH0197767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25236787A JPH0197767A (en) 1987-10-08 1987-10-08 Earthquakeproof structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25236787A JPH0197767A (en) 1987-10-08 1987-10-08 Earthquakeproof structure

Publications (2)

Publication Number Publication Date
JPH0197767A true JPH0197767A (en) 1989-04-17
JPH0464391B2 JPH0464391B2 (en) 1992-10-14

Family

ID=17236312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25236787A Granted JPH0197767A (en) 1987-10-08 1987-10-08 Earthquakeproof structure

Country Status (1)

Country Link
JP (1) JPH0197767A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121043A (en) * 2007-11-12 2009-06-04 Takenaka Komuten Co Ltd Base-isolated building
JP2013014911A (en) * 2011-07-01 2013-01-24 Akira Wada Base-isolated structure
JP2013053407A (en) * 2011-09-01 2013-03-21 Takenaka Komuten Co Ltd Seismic isolation method for existing building
JP2016011508A (en) * 2014-06-27 2016-01-21 株式会社竹中工務店 Method for changing horizontal rigidity of base isolation member for supporting building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121043A (en) * 2007-11-12 2009-06-04 Takenaka Komuten Co Ltd Base-isolated building
JP2013014911A (en) * 2011-07-01 2013-01-24 Akira Wada Base-isolated structure
JP2013053407A (en) * 2011-09-01 2013-03-21 Takenaka Komuten Co Ltd Seismic isolation method for existing building
JP2016011508A (en) * 2014-06-27 2016-01-21 株式会社竹中工務店 Method for changing horizontal rigidity of base isolation member for supporting building

Also Published As

Publication number Publication date
JPH0464391B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
US5386671A (en) Stiffness decoupler for base isolation of structures
US20170260767A1 (en) Support structure
JPH0197767A (en) Earthquakeproof structure
JP2011099544A (en) Base isolation device
US5660007A (en) Stiffness decoupler for base isolation of structures
JPH0549846B2 (en)
JPH11141180A (en) Laminated rubber type vibration isolation device
JPH01203541A (en) Earthquake proof structure supporting method of building and its supporting device
JP6846219B2 (en) Building seismic isolation structure
JPH09196116A (en) Base isolator of structure
JPH0346123Y2 (en)
JP2001295494A (en) Terraced building
JP2544672Y2 (en) Multi-layer vibration damper
JPH0344920Y2 (en)
KR102604411B1 (en) Anti-vibration table system using precast concrete base pad
JPS6241874A (en) Multistage earthquake damping support apparatus
TWI835230B (en) Supporting energy dissipation structure
JP3028081B2 (en) Dynamic rigid structure
JP2575204Y2 (en) Seismic isolation elastic rubber bearing for structures
JP2509619Y2 (en) Seismic isolation support device
JPH08260755A (en) Base isolation foundation for building
JPH0450366Y2 (en)
Evany Nithya et al. Moment resisting frame with rubber base isolation for development of earthquake resisting structures
JPH039268B2 (en)
JPH10280731A (en) Vibration isolation device