JPH0197461A - Sterilizing method - Google Patents

Sterilizing method

Info

Publication number
JPH0197461A
JPH0197461A JP62254604A JP25460487A JPH0197461A JP H0197461 A JPH0197461 A JP H0197461A JP 62254604 A JP62254604 A JP 62254604A JP 25460487 A JP25460487 A JP 25460487A JP H0197461 A JPH0197461 A JP H0197461A
Authority
JP
Japan
Prior art keywords
catalyst
bacteria
ozone
titanium
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62254604A
Other languages
Japanese (ja)
Other versions
JPH0556984B2 (en
Inventor
Sadao Terui
照井 定男
Kunio Sano
邦夫 佐野
Kiichiro Mitsui
三井 紀一郎
Kazuyoshi Nishikawa
和良 西川
Toru Ishii
徹 石井
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62254604A priority Critical patent/JPH0197461A/en
Publication of JPH0197461A publication Critical patent/JPH0197461A/en
Publication of JPH0556984B2 publication Critical patent/JPH0556984B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain efficient sterilizing effect stable over a long period of time and to substantially eliminate the discharge of unreacted ozone, by catching the floating bacteria in a gaseous phase by a catalyst and rapidly oxidizing and decomposing the same by ozone activated by the catalyst and further decomposing unreacted ozone on the catalyst. CONSTITUTION:In a method for introducing a gaseous phase having bacteria floating therein to decompose and sterilize said bacteria, a catalyst is arranged in a gas flow passage to introduce ozone. As the pref. catalyst having the catching capacity of floating bacteria and efficiently decomposing the caught bacteria by ozone and further decomposing unreacted ozone, binary composite oxide consisting of titanium and silicon, binary composite oxide consisting of titanium and zirconium and ternary composite oxide consisting of titanium, silicon and zirconium each being an excellent ozone sterilizing catalyst are designated. In treating the bacteria floating in the gaseous phase, by appropriately selecting a reaction condition, a gaseous phase substantially containing no floating bacteria can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は気相中に浮遊する菌をオゾンにより接触的に酸
化分解し無菌化する殺菌方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a sterilization method in which bacteria floating in a gas phase are catalytically oxidized and decomposed with ozone to render them sterilized.

〈従来技術とその問題点〉 従来から、室内に浮遊する菌を殺菌する方法として、(
1)薬液法、(2)紫外線法、(3)ガス法が上げられ
るが、薬液法においては、薬液の散布により、室内や諸
設備への液滴の付着などの問題があり、又紫外線法にお
いては、紫外線の透過力が弱いので、陰になる箇所の殺
菌ができないという欠点を有する故にガスによる殺菌が
一般的に好ましい。
<Prior art and its problems> Traditionally, as a method of sterilizing bacteria floating indoors, (
1) Chemical liquid method, (2) Ultraviolet light method, and (3) Gas method. However, with chemical liquid method, there are problems such as droplets adhering to rooms and various equipment due to spraying of chemical liquid, and ultraviolet light method , gas sterilization is generally preferable because it has the disadvantage that it is not possible to sterilize shaded areas due to the weak penetrating power of ultraviolet rays.

ガスによる殺菌方法では、各種のガスの使用が可能であ
るが、残留性の問題、発ガン性の問題、排気処理設備の
必要性などを考慮すると、オゾンガスを使用するのが最
も好ましい。
In the gas sterilization method, various gases can be used, but it is most preferable to use ozone gas in consideration of the problem of persistence, carcinogenicity, and the need for exhaust treatment equipment.

オゾンが強力な殺菌力を有していることはよく知られて
いるが、気相で殺菌を実施する場合には、長時間オゾン
と菌を接触させることが必要であるという欠点を有する
Although it is well known that ozone has a strong sterilizing effect, when sterilizing in the gas phase, it has the disadvantage that ozone and bacteria must be brought into contact for a long period of time.

〈発明の目的〉 本発明の目的は、オゾンを導入し、気相中に浮遊する菌
を殺菌するにあたり、長期にわたり安定した効率のよい
殺菌効果が得られ、かつ、未反応オゾンの排出を実質的
になくした殺菌方法を提供することにある。
<Objective of the Invention> The object of the present invention is to introduce ozone to sterilize bacteria floating in the gas phase, to obtain a stable and efficient sterilizing effect over a long period of time, and to substantially eliminate the emission of unreacted ozone. The objective is to provide a sterilization method that eliminates the need for sterilization.

〈問題点を解決するための手段〉 本発明者らは上記目的を達成するために、種々検討した
結果、本発明を完成するに至ったものである。すなわち
、本発明になる殺菌方法は、気相中の浮遊菌を触媒上に
捕捉し、触媒で活性化されたオゾンにより速やかに酸化
分解し、なおかつ未反応オゾンを触媒上で分解すること
を特徴とする。
<Means for Solving the Problems> In order to achieve the above object, the present inventors have conducted various studies and have completed the present invention. That is, the sterilization method of the present invention is characterized in that airborne bacteria in the gas phase are captured on a catalyst, rapidly oxidized and decomposed by ozone activated by the catalyst, and unreacted ozone is decomposed on the catalyst. shall be.

上記触媒としては、浮遊菌を効率よく吸着捕集する能力
と捕集された菌をオゾン導入により効率よく酸化分解す
る能力と、未反応オゾンを分解する能力を兼ね備えるこ
とが必要である。
The catalyst needs to have the ability to efficiently adsorb and collect airborne bacteria, the ability to efficiently oxidize and decompose the collected bacteria by introducing ozone, and the ability to decompose unreacted ozone.

本発明者らは、浮遊菌の捕捉能力を有し、かつ、捕捉さ
れた菌がオゾンにより効率よく分解し、なおかつ、未反
応オゾンを分解する好ましい触媒として、チタンおよび
ケイ素からなる二元系複合酸化物、チタンおよびジルコ
ニウムからなる二元系複合酸化物、またはチタン、ケイ
素およびジルコニウムからなる三元系複合酸化物が優れ
たオゾン殺菌用触媒であることを見い出し、さらに、上
記二元系複合酸化物または三元系複合酸化物にマンガン
(Mn ) 、鉄(Fe)、コバルト(CO)、ニッケ
ル(Ni)、亜鉛(Z n)、銀(Ag)、白金(Pt
)、パラジウム(Pd)およびロジウム(Rh)よりな
る群から選ばれた少なくとも一種の元素またはその化合
物を添加してなるものは、より優れたオゾン殺菌用触媒
であることを見い出した。
The present inventors have developed a binary composite consisting of titanium and silicon as a preferred catalyst that has the ability to capture airborne bacteria, efficiently decomposes the trapped bacteria by ozone, and decomposes unreacted ozone. It has been discovered that a binary composite oxide consisting of oxide, titanium and zirconium, or a ternary composite oxide consisting of titanium, silicon and zirconium is an excellent catalyst for ozone sterilization. manganese (Mn), iron (Fe), cobalt (CO), nickel (Ni), zinc (Zn), silver (Ag), platinum (Pt),
), palladium (Pd), and rhodium (Rh), or a compound thereof, has been found to be a more excellent ozone sterilization catalyst.

すなわち、本発明は菌の浮遊する気相中にオゾンを導入
し、菌を分解殺菌する方法において、該ガス流路に触媒
を設置し、オゾンを導入することを特徴とする殺菌方法
であり、また実施の態様として好ましい触媒がチタンお
よびケイ素からなる二元系複合酸化物、チタンおよびジ
ルコニウムからなる二元系複合酸化物および/またはチ
タン、ケイ素およびジルコニウムからなる三元系複合酸
化物をA成分とし、マンガン(Mn)、鉄(Fe)、コ
バルト(Co)、ニッケル(Ni)、亜鉛(Z n)、
銀(Ag)、白金(Pt)、パラジウム(Pd)および
ロジウム(Rh )よりなる群から選ばれた少なくとも
一種の元素を8成分としてなるものであって、かつ該触
媒の組成がA成分が酸化物の重量%で40〜100重量
%、B成分はMnXFe、Co、Ni 1ZnおよびA
gにツイテは酸化物としての重量%で0〜60重量%、
Pt1pd 、 Rhについては金属元素として0〜1
0重量%の範囲よりなることを特徴とするものである。
That is, the present invention is a sterilization method for decomposing and sterilizing bacteria by introducing ozone into a gas phase in which bacteria are suspended, which is characterized by installing a catalyst in the gas flow path and introducing ozone, In addition, as a preferred embodiment, a preferred catalyst is a binary composite oxide consisting of titanium and silicon, a binary composite oxide consisting of titanium and zirconium, and/or a ternary composite oxide consisting of titanium, silicon, and zirconium as the component A. Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn),
The catalyst is composed of eight components consisting of at least one element selected from the group consisting of silver (Ag), platinum (Pt), palladium (Pd) and rhodium (Rh), and the composition of the catalyst is such that component A is oxidized. 40 to 100% by weight, component B is MnXFe, Co, Ni 1Zn and A
g is 0 to 60% by weight as an oxide,
For Pt1pd and Rh, the metal element is 0 to 1.
It is characterized by being in the range of 0% by weight.

〈作  用〉 本発明にかかる前記の好適な触媒の特徴はチタンおよび
ケイ素からなる二元系複合酸化物(以下、TiO2−8
iO2とする)、チタンおよびジルコニウムからなる二
元系複合酸化物(以下、T i 02−Zr 02とす
る)、チタン、ケイ素およびジルコニウムからなる三元
系複合酸化物(以下、T 1o2−81o2−ZrO2
とする)を触媒成分として用いている点にある。
<Function> The above-mentioned preferred catalyst according to the present invention is characterized by a binary composite oxide (hereinafter referred to as TiO2-8) consisting of titanium and silicon.
iO2), a binary composite oxide consisting of titanium and zirconium (hereinafter referred to as T i 02-Zr 02), and a ternary composite oxide consisting of titanium, silicon and zirconium (hereinafter referred to as T 1o2-81o2- ZrO2
) is used as a catalyst component.

一般に、チタンおよびケイ素からなる二元系複合酸化物
は例えば田部浩三(触媒、第17巻、ぬ3.72頁(1
975年))によっても周知のように、固体酸として知
られ、構成するおのおの単独の酸化物には見られない顕
著な酸性を示し、また高表面積を有する。
In general, binary composite oxides consisting of titanium and silicon are used, for example, by Kozo Tabe (Catalysts, Vol. 17, p. 3.72 (1)
975)), it is known as a solid acid, exhibits remarkable acidity that is not found in the constituent oxides alone, and has a high surface area.

すなわち、TiO2−8iO2は酸化チタンおよび酸化
ケイ素を単に混合したものではなく、チタンおよびケイ
素がいわゆる二元系複合酸化物を形成することによりそ
の特異な物性が発現するものと認めることのできるもの
である。また、チタン、ジルコニウムからなる二元系複
合酸化物およびチタン、ジルコニウムおよびケイ素から
なる三元系複合酸化物もTiO2−8+02と同じよう
な性質を有する複合酸化物として特定される。
In other words, TiO2-8iO2 is not simply a mixture of titanium oxide and silicon oxide, but it can be recognized that titanium and silicon form a so-called binary composite oxide, resulting in its unique physical properties. be. Furthermore, binary composite oxides consisting of titanium and zirconium and ternary composite oxides consisting of titanium, zirconium and silicon are also specified as composite oxides having properties similar to TiO2-8+02.

さらに、上記複合酸化物はX線回折による分析の結果、
非晶質もしくはほぼ非晶質に近い微細構造を有している
Furthermore, as a result of analysis by X-ray diffraction, the above composite oxide
It has an amorphous or almost amorphous microstructure.

本発明になる殺菌方法において、前記触媒の特異な性能
、すなわち、菌をオゾンによって分解除去する機構につ
いては確かではないが、上記複合酸化物の諸性質が菌の
吸着及び吸着された物質とオゾンとの酸化反応に対して
好ましい影響を与えるものと考えられ、さらに、上記複
合酸化物にマンガン、鉄、ニッケル、コバルト、亜鉛、
銀、白金、パラジウム、ロジウム等の元素またはその化
合物の添加が、より一層効果的に作用しオゾン殺菌反応
を速める役割を果していると考えられる。
In the sterilization method of the present invention, although the unique performance of the catalyst, that is, the mechanism for decomposing and removing bacteria by ozone, is not certain, the various properties of the composite oxide are such that the adsorption of bacteria and the adsorbed substances and ozone It is thought to have a favorable effect on the oxidation reaction with manganese, iron, nickel, cobalt, zinc,
It is believed that the addition of elements such as silver, platinum, palladium, and rhodium or their compounds acts more effectively and plays a role in accelerating the ozone sterilization reaction.

触mAtt分テアルT i 02−8 i 02 、T
iO2−ZrO2およびT i 02−8 i 02−
ZrO2はいずれもその表面積が307yL27g以上
であることが好ましい。
T i 02-8 i 02 , T
iO2-ZrO2 and T i 02-8 i 02-
It is preferable that the surface area of ZrO2 is 307yL27g or more.

触mA成分の組成は酸化物に換算してTiO2が20〜
95モル%、5iOzもしくはZJ’02またはS i
 02とZrO2の和が5〜80モル%(いずれもTi
O2+ZrO2+S 1o2=100モル%に対して)
の範囲にあることが好ましい結果を与える。
The composition of the contact mA component is TiO2 of 20~20 in terms of oxide.
95 mol%, 5iOz or ZJ'02 or Si
The sum of 02 and ZrO2 is 5 to 80 mol% (both Ti
O2 + ZrO2 + S 1o2 = 100 mol%)
range gives preferable results.

本発明にかかる触媒の組成は酸化物としての重量百分率
でA成分が40〜100%、B成分はマンガン(Mn)
、銀(A!I+)、鉄(Fe )、コバルト(Go)、
亜鉛(Zn )およびニッケル(Ni )については酸
化物としての重量百分率で0〜60%、白金(Pt)、
パラジウム(Pd )およびロジウム(Rh )につい
ては金属元素として0〜10重量%の範囲よりなること
が好ましい。
The composition of the catalyst according to the present invention is that component A is 40 to 100% by weight as an oxide, and component B is manganese (Mn).
, silver (A!I+), iron (Fe), cobalt (Go),
Zinc (Zn) and nickel (Ni) have a weight percentage of 0 to 60% as oxides, platinum (Pt),
Palladium (Pd) and rhodium (Rh) are preferably contained in a range of 0 to 10% by weight as metal elements.

B成分が上記範囲外ではオゾンによる殺菌能力が不十分
であり、また、白金、パラジウムおよびロジウムの場合
、原料コストが高くなり十分な効果が発揮できない。
If the B component is outside the above range, the bactericidal ability of ozone will be insufficient, and in the case of platinum, palladium, and rhodium, the raw material cost will be high and sufficient effects will not be exhibited.

本発明において用いられるTiO2−8iO+を調製す
るには、まずチタン源として塩化チタン類、硫酸チタン
などの無機性チタン化合物および修酸チタン、テトライ
ソプロピルチタネートなどの有機性チタン化合物などか
ら選ぶことができ、またケイ素源としてはコロイド状シ
リカ、水ガラス、四塩化ケイ素など無機性のケイ素化合
物およびテトラエチルシリケートなど有機ケイ素化合物
などから選ぶことができる。そしてこれら原料中には、
微量の不純物、混入物のあるものがあるが、えられるT
iO2−3iO2の物性に大きく影響を与えるものでな
い限り問題とならない。
To prepare TiO2-8iO+ used in the present invention, first, a titanium source can be selected from inorganic titanium compounds such as titanium chlorides and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. The silicon source can be selected from inorganic silicon compounds such as colloidal silica, water glass, silicon tetrachloride, and organic silicon compounds such as tetraethyl silicate. And among these raw materials,
Although there may be trace amounts of impurities and contaminants, the T obtained
There is no problem as long as it does not significantly affect the physical properties of iO2-3iO2.

好ましいTiO+−8iO2の調製法としては、以下の
方法が挙げられる。
A preferred method for preparing TiO+-8iO2 includes the following method.

■ 四塩化チタンをシリカゾルと共に混合し、アンモニ
アを添加して沈殿を生成せしめ、この沈殿を洗浄、乾燥
後300〜650℃で焼成せしめる方法。
(2) A method in which titanium tetrachloride is mixed with silica sol, ammonia is added to form a precipitate, the precipitate is washed, dried, and then calcined at 300 to 650°C.

■ 四塩化チタンにケイ酸ナトリウム水溶液を添加し、
反応せしめて沈殿を生成させ、これを洗浄、乾燥後30
0〜650℃で焼成せしめる方法。
■ Add sodium silicate aqueous solution to titanium tetrachloride,
The reaction was carried out to form a precipitate, which was washed and dried for 30 minutes.
A method of firing at 0 to 650°C.

■ 四塩化チタンの水−アルコール溶液にエチルシリケ
ート((Cz)−1sO>48i)を添加し加水分解反
応せしめ沈殿を形成させ、これを洗浄、乾燥後300〜
650℃で焼成せしめる方法。
■ Add ethyl silicate ((Cz)-1sO>48i) to a water-alcohol solution of titanium tetrachloride to cause a hydrolysis reaction to form a precipitate, which is washed and dried for 300~
A method of firing at 650℃.

■ 酸化塩化チタン(T i 0CJ2 )とエチルシ
リケートの水−アルコール溶液にアンモニアを加えて沈
殿を形成せしめ、これを洗浄、乾燥後300〜650℃
で焼成せしめる方法。
■ Ammonia is added to a water-alcohol solution of titanium oxide chloride (T i 0CJ2 ) and ethyl silicate to form a precipitate, which is washed and dried at 300-650°C.
A method of firing.

以上の好ましい方法のうちでもとくに■の方法が好まし
く、この方法は具体的には以下のごと〈実施される。す
なわち、上記チタン源およびケイ素源の化合物をTiO
2とSiO2のモル比が所定量になるようにとり、酸性
の水溶液状態またはゾル状態でチタンおよびケイ素を酸
化物換算して1〜1 ooo /1の濃度として10〜
100℃に保つ。その中へ撹拌上中和剤としてアンモニ
ア水を滴下し、10分間ないし3時間pt−12〜10
にてチタンおよびケイ素よりなる共沈化合物を生成せし
め、濾別しよく洗浄したのち80〜140℃で1〜10
時間乾燥し、300〜650℃で1〜10時間焼成して
TiO2−8iO+をえることができる。
Among the above preferred methods, method (2) is particularly preferred, and this method is specifically carried out as follows. That is, the titanium source and silicon source compounds are replaced by TiO
The molar ratio of 2 and SiO2 is set to a predetermined amount, and the concentration of titanium and silicon in terms of oxides is 10 to 100/1 in an acidic aqueous solution or sol state.
Keep at 100℃. Aqueous ammonia was added dropwise as a neutralizing agent into the solution while stirring, and the mixture was stirred for 10 minutes to 3 hours at pt-12 to 10.
A coprecipitated compound consisting of titanium and silicon was produced at 80-140°C after being filtered and thoroughly washed.
TiO2-8iO+ can be obtained by drying for hours and firing at 300-650°C for 1-10 hours.

また、TiO2−8iO2−Zr02にツいテは、Ti
O2−8iO2同様の方法で調製されるものであり、ジ
ルコニウム源として、塩化ジルコニウム、硫酸ジルコニ
ウムなどの無機性ジルコニウム化合物および修酸ジルコ
ニウムなど有機性ジルコニウム化合物のなかから選ぶこ
とができる。
Also, regarding TiO2-8iO2-Zr02, Ti
It is prepared in the same manner as O2-8iO2, and the zirconium source can be selected from inorganic zirconium compounds such as zirconium chloride and zirconium sulfate, and organic zirconium compounds such as zirconium oxalate.

すなわち、ジルコニウム化合物をチタン化合物と共に上
述の方法と同様に扱うことによりTiO2−8i 02
−Z r02は容易に調製しうるものである。そして、
このジルコニウムの存在量は、TiO2+S i02+
ZrO2の合計量に対しZrO2に換算して30重量%
までの範囲内にあるのが好ましい。TiO2−ZrO2
の調製法も同様にして行なうことができる。
That is, by treating the zirconium compound together with the titanium compound in the same manner as described above, TiO2-8i 02
-Z r02 can be easily prepared. and,
The amount of zirconium present is TiO2+S i02+
30% by weight converted to ZrO2 based on the total amount of ZrO2
It is preferable that it be within the range of . TiO2-ZrO2
can be prepared in the same manner.

上記の方法で調製されたTiO2−8i02、T i 
02−Z ro2およびTiO2−81o2−7rO2
を用いて、以下に示す方法により完成触媒がえられる。
TiO2-8i02 prepared by the above method, Ti
02-Z ro2 and TiO2-81o2-7rO2
A finished catalyst can be obtained by the method shown below.

−例を示せばTiO+−8iO2粉体を成型助剤と共に
加え、適量の水を添加しつつ混合、混練し、押し出し成
型機でペレット状またはハニカム状等に成型する。
- For example, TiO+-8iO2 powder is added together with a molding aid, mixed and kneaded while adding an appropriate amount of water, and molded into a pellet or honeycomb shape using an extrusion molding machine.

成型物を50〜120℃で乾燥後300〜800℃、好
ましくは350〜600℃で1〜10時間、好ましくは
2〜6時間空気流通下で焼成して触媒を得ることができ
る。
The catalyst can be obtained by drying the molded product at 50 to 120°C and then calcining it at 300 to 800°C, preferably 350 to 600°C, for 1 to 10 hours, preferably 2 to 6 hours under air circulation.

また、TiO2−8iO2にマンガン、鉄、ニッケル、
コバルト、亜鉛、銀、白金、パラジウム、ロジウムを添
加して触媒化する場合、上記金属塩の水溶液をTiO2
−8iO2成型体に含浸させて担持した後、乾燥、焼成
することにより触媒とすることができる。
In addition, manganese, iron, nickel,
When catalyzing by adding cobalt, zinc, silver, platinum, palladium, or rhodium, the aqueous solution of the above metal salt is TiO2
A catalyst can be obtained by impregnating and supporting a -8iO2 molded body, followed by drying and firing.

一方、別法としてTiO2−8iO2粉体に上記金属塩
の水溶液を成型助剤と共に加え、混練成型する方法も採
用できる。
On the other hand, as an alternative method, an aqueous solution of the above metal salt may be added to the TiO2-8iO2 powder together with a molding aid, and the mixture may be kneaded and molded.

形状としては上記のペレット状およびハニカム状にとど
まらず円柱状、円筒状、板状、リボン状、波板状、パイ
プ状、ドーナツ状、格子状、その他一体化成型されたも
のが適宜選ばれる。
The shape is not limited to the above-mentioned pellet shape and honeycomb shape, but may be suitably selected from columnar, cylindrical, plate, ribbon, corrugated, pipe, donut, lattice, and other integrally molded shapes.

次に、触媒にA成分と共に用いられているB成分の出発
原料としては、酸化物、水酸化物、無機酸塩、有機酸塩
など、特にアンモニウム塩、修酸塩、硝ms、硫M塩ま
たはハロゲン化物などから適宜選ばれる。
Next, the starting materials for component B used together with component A in the catalyst include oxides, hydroxides, inorganic acid salts, organic acid salts, etc., especially ammonium salts, oxalates, nitric acid salts, and sulfuric acid salts. or halides, etc., as appropriate.

本発明の方法において、気相中に浮遊する菌を処理する
際、反応条件を適宜選択することにより、実質的に菌の
浮遊しない気相をえることができる。
In the method of the present invention, when treating bacteria floating in the gas phase, by appropriately selecting reaction conditions, it is possible to obtain a gas phase in which substantially no bacteria are suspended.

本発明の殺菌方法は、反応温度−10°〜160℃、空
間速度1000〜100,000Hr−1、オゾン濃度
0.011)Ellll 〜10.0001)l)II
Iという条件で実施されるのが好ましい。
The sterilization method of the present invention includes a reaction temperature of -10° to 160°C, a space velocity of 1000 to 100,000 Hr-1, and an ozone concentration of 0.011) to 10.0001) l) II
It is preferable to carry out under the conditions of I.

本発明による殺菌方法は、対象として広汎に使用できる
が、例えば食品工場、製薬工場、給食センター、調理室
、病院等の空気中の浮遊菌の処理に使用できるとともに
、一般家庭、ビルディングのあらゆる空間の空気清浄に
有効である。
The sterilization method according to the present invention can be used in a wide range of applications, including for treating airborne bacteria in food factories, pharmaceutical factories, school lunch centers, kitchens, hospitals, etc. It is effective for air purification.

本発明方法を用いれば空気中に浮遊する菌であればいず
れも殺菌することができる。具体的に示せば、シュード
モナス属(Pseudomonas)、クサントモナス
属(Xanthomonas)、アセトバクター属(^
CetObaCter)等のダラム陰性好気性桿菌また
は球菌;エシェリキア属(Escherichia) 
、サルモネラ属(SallOnella) 、ビブリオ
属(Vibrio)等のダラム陰性通性嫌気性桿菌:ミ
クロコツカス属(肛旺虹並図貝、スタヒロコツカス属(
5taphyl。
Using the method of the present invention, any bacteria floating in the air can be sterilized. Specifically, the genus Pseudomonas, the genus Xanthomonas, and the genus Acetobacter (^
Durham-negative aerobic bacilli or cocci such as CetObaCter; Escherichia spp.
Durham-negative facultative anaerobic bacilli such as , Salmonella , Vibrio , Micrococcus spp.
5taphyl.

coccus) 、ストレプトコツカス属(5trep
t。
coccus), Streptococcus (5trep
t.

occus)等のグラム陽性球菌;バチルス属(Bac
illus) 、クロストリブラム属(Cl08tri
虹す)等の内生胞子形成桿菌:ラクトバチルス属(La
ctobac i I 1us)等のダラム陽性内生胞
子非形成桿菌:アクチノマイセスjI(ACtinol
yCeS)、ストレプトマイセス属(Streptom
yces)等の放線菌:カンディダ属(Candida
)、アスペルジルス属(Aspergillus)、ベ
ニシリウス属(Penicillius)等の真菌;ア
デノウィルス属(^denovirus) 、ロタウィ
ルス属(ROtaV+rU3)、インフルエンザウィル
スilj (Influenzavirus) 、レト
ロウィルス科(Retrovirus)等のウィルスが
挙げられる。
Gram-positive cocci such as Bacillus occus;
illus), Clostribram (Cl08tri
Endospore-forming bacilli such as Lactobacillus (La
Durum-positive non-endospore-forming bacilli such as ctobac i I 1us): Actinomyces jI (ACtinol
yCeS), Streptomyces spp.
yces) and other actinomycetes: Candida spp.
), fungi such as Aspergillus and Penicillius; adenovirus, rotavirus (ROtaV+rU3), influenza virus, and Retrovirus. Viruses such as .

〈実 施 例〉 以下に実施例を用いて本発明をさらに詳細に説明するが
、本発明はこれらの実施例のみに限定されるものではな
い。
<Examples> The present invention will be explained in more detail using Examples below, but the present invention is not limited to these Examples.

実施例 1 チタンおよびケイ素からなる複合酸化物を以下に述べる
方法で調製した。チタン源として以下の組成を有する硫
酸チタニルの硫酸水溶液を用いた。
Example 1 A composite oxide consisting of titanium and silicon was prepared by the method described below. A sulfuric acid aqueous solution of titanyl sulfate having the following composition was used as a titanium source.

T t 0804 (TiO2換算)   250u/
j!全H2SO41100o/j! 別に水40Jにアンモニア水<NHs 、25%)28
j!を添加し、これにスノーテックス−NC8−30(
1産化学製シリカゾル、5i02として約30重量%含
有>2.4Kgを加えた。得られた溶液中に、上記硫酸
チタニルの硫酸水溶液15.3j!を水301に添加し
て稀釈したチタン含硫酸水溶液を撹拌下体々に滴下し、
共沈ゲルを生成した。
T t 0804 (TiO2 conversion) 250u/
j! All H2SO41100o/j! Separately, add 40 J of water to ammonia water <NHs, 25%) 28
j! and Snowtex-NC8-30 (
Silica sol manufactured by Ichisan Kagaku Co., Ltd., containing approximately 30% by weight of 5i02 (>2.4 kg) was added. In the obtained solution, 15.3j of the above sulfuric acid aqueous solution of titanyl sulfate was added! A titanium-containing sulfuric acid aqueous solution diluted by adding 301% of water was added dropwise to the body while stirring,
A coprecipitated gel was produced.

さらにそのまま15時間放置して静置した。かくして得
られたTiO2−8iO2ゲルを濾過、水洗後200℃
で10時間乾燥した。
Further, it was left as it was for 15 hours. The thus obtained TiO2-8iO2 gel was filtered and washed with water at 200°C.
It was dried for 10 hours.

次いで550℃で6時間空気雰囲気下で焼成した。得ら
れた粉体の組成はTiO2:S 1o2=4=1(モル
比)で、BET表面積は185TrL2/gであった。
Then, it was fired at 550° C. for 6 hours in an air atmosphere. The composition of the obtained powder was TiO2:S 1o2=4=1 (molar ratio), and the BET surface area was 185TrL2/g.

ここで得られた粉体を以降TS−1と呼び、この粉体を
用いて以下に述べる方法で触媒を調製した。
The powder thus obtained was hereinafter referred to as TS-1, and a catalyst was prepared using this powder by the method described below.

上記TS−1粉体1.OKsに微結晶性セルロース(旭
化成工業■製、商品名:アビセル)20gを適当量の水
と共に加え、ニーダ−でよく混合、混練した後、押し出
し成型機で直径3.0 ttm 1長さ3、01111
のベレットに成型し、100℃で10時間乾燥後500
℃で6時間空気雰囲気下で焼成し、TiO2−8iO2
からなる触媒を得た。
Above TS-1 powder 1. Add 20 g of microcrystalline cellulose (manufactured by Asahi Kasei Kogyo ■, trade name: Avicel) to the OKs along with an appropriate amount of water, mix and knead well with a kneader, and then use an extrusion molding machine to form a mold with a diameter of 3.0 ttm and a length of 3. 01111
After molding into pellets and drying at 100℃ for 10 hours,
℃ under air atmosphere for 6 hours to obtain TiO2-8iO2
A catalyst consisting of

実施例 2 T i 02−ZrO2を以下に述べる方法で調製した
Example 2 T i 02-ZrO2 was prepared by the method described below.

水100j!にオキシ塩化ジルコニウム(ZrOCJ1
2 ・8H20)1.93Kyを溶解させ、実施例1で
用いたのと同じ組成の硫酸チタニルの硫酸水溶液7.8
j!を添加しつつよく混合する。これを温度的30℃に
維持しつつよく撹拌しながらアンモニア水を徐々に滴下
し、pHが7になるまで加え、さらにそのまま放置して
15時間静置した。
Water 100j! Zirconium oxychloride (ZrOCJ1
2 ・8H20) 1.93Ky was dissolved in a sulfuric acid aqueous solution of titanyl sulfate having the same composition as used in Example 1.
j! Add and mix well. While maintaining the temperature at 30°C and stirring well, aqueous ammonia was gradually added dropwise to the mixture until the pH reached 7, and the mixture was left to stand still for 15 hours.

かくして得られたT i 02−Z ro2グルを濾過
し水洗後200℃で10時間乾燥した。次いで空気雰囲
気下で550℃で6時間焼成した。得られた粉体の組成
はTiO2:Zr02=4:1(モル比)であり、BE
T表面積は140m  /gであった。ここで得られた
粉体を以降TZ−1と呼ぶ。
The T i 02-Z ro2 gel thus obtained was filtered, washed with water, and then dried at 200° C. for 10 hours. Then, it was fired at 550° C. for 6 hours in an air atmosphere. The composition of the obtained powder was TiO2:Zr02=4:1 (molar ratio), and BE
The T surface area was 140 m /g. The powder obtained here is hereinafter referred to as TZ-1.

TZ−1を用いて実施例1の記載の方法に準じてT i
 02−Z ro2からなる触媒を調製した。
T i according to the method described in Example 1 using TZ-1
A catalyst consisting of 02-Z ro2 was prepared.

実施例 3 実施例1及び2の方法に準じてTiO2−8i02−Z
r02を調製した。得られた粉体の組成はTiO2:5
i02:Zr02=80:16:4(モル比)で、BE
T表面積は180m  /(+であった。これで得られ
た粉体を以降TSZ−1と呼ぶ。
Example 3 TiO2-8i02-Z according to the method of Examples 1 and 2
r02 was prepared. The composition of the obtained powder was TiO2:5
i02:Zr02=80:16:4 (molar ratio), BE
The T surface area was 180 m 2 /(+). The powder thus obtained was hereinafter referred to as TSZ-1.

TSZ−1を用いて実施例1の記載の方法に準じrT 
i 02−8 i 02−Z ro2からなる触媒を調
製した。
rT according to the method described in Example 1 using TSZ-1
A catalyst consisting of i 02-8 i 02-Z ro2 was prepared.

実施例 4 実施例1で用いたのと同じTS−1粉体1.OKgに硝
硫マンガンMn (NO3)2−68200、366 
K9を含む水溶液を加え、ニーダ−で適当量の水を添加
しつつよく混合、混練した後、実施例1と同様にしてペ
レット状に成型し、乾燥、焼成して、酸化物としての重
量比でTS−1:Mn02=90:10の組成を有する
触媒を得た。
Example 4 The same TS-1 powder 1 as used in Example 1. Manganese nitrate sulfate Mn (NO3)2-68200, 366 in OKg
After adding an aqueous solution containing K9 and thoroughly mixing and kneading it with a kneader while adding an appropriate amount of water, it was formed into pellets in the same manner as in Example 1, dried and fired, and the weight ratio as an oxide was determined. A catalyst having a composition of TS-1:Mn02=90:10 was obtained.

実施例 5 実施例1で得られたTiO2−8iOs+からなる触媒
(3sφX3sL)500zにパラジウム(Pd )と
して3.5gを含む硝酸パラジウム水溶液140a:を
蒸発皿にとり充分混合して含浸させ湯浴上で濃縮乾固し
120℃で5時間乾燥した。
Example 5 A palladium nitrate aqueous solution 140a containing 3.5 g of palladium (Pd) was placed in an evaporating dish and thoroughly mixed to impregnate the catalyst (3sφX3sL) 500z made of TiO2-8iOs+ obtained in Example 1, and then heated on a hot water bath. It was concentrated to dryness and dried at 120°C for 5 hours.

次いで空気雰囲気下で400℃、3時間電気炉で焼成し
た。
Then, it was fired in an electric furnace at 400° C. for 3 hours in an air atmosphere.

得られた触媒の組成はTS−1:pd =99 :1、
O(重量比)であった。
The composition of the obtained catalyst was TS-1:pd =99:1,
O (weight ratio).

実施例 6 実施例1〜5で得られた各触媒について次のような方法
で殺菌率を求めた。
Example 6 The sterilization rate was determined for each catalyst obtained in Examples 1 to 5 using the following method.

内径20履の反応管に直径3.0 am、長さ3.0M
のベレット状触媒10.5 a:を充填し、大腸菌を3
620個/j!含有する空気を0.10105N/Hr
の流速(空間速度10.000Hr−1)で触媒層に導
入した。触媒層入口側にオゾンを30 ppm導入し、
反応温度25℃での殺菌率を求めた。
A reaction tube with an inner diameter of 20 mm has a diameter of 3.0 am and a length of 3.0 m.
of pellet-shaped catalyst 10.5 a: and E. coli 3
620 pieces/j! Containing air 0.10105N/Hr
was introduced into the catalyst layer at a flow rate of (space velocity 10.000 Hr-1). Introducing 30 ppm of ozone to the inlet side of the catalyst layer,
The sterilization rate was determined at a reaction temperature of 25°C.

殺菌率は次式により求めた。The sterilization rate was calculated using the following formula.

殺菌率(X)= 但し生菌数の測定はコロニー形成数で行った。Sterilization rate (X) = However, the number of viable bacteria was measured by the number of colonies formed.

得られた結果を表−1に示す。The results obtained are shown in Table-1.

表  −1 19一 実施例 7 実施例6において大腸菌を含有する空気の代わりに、ア
スベルジルス・ニガーの胞子を3500個/1含有する
空気を用いた以外は実施例6におけると同様にして殺菌
率を求めた。得られた結果を表−2に示す。
Table 1 19-Example 7 The sterilization rate was determined in the same manner as in Example 6 except that air containing 3500 Asbergilus niger spores/1 was used instead of the air containing Escherichia coli in Example 6. I asked for it. The results obtained are shown in Table-2.

表  −2Table-2

Claims (1)

【特許請求の範囲】[Claims] (1)菌の浮遊する気相中にオゾンを導入し、菌を分解
殺菌する方法において、該ガス流路に触媒を設置し、オ
ゾンを導入すること を特徴とする殺菌方法。
(1) A sterilization method for decomposing and sterilizing bacteria by introducing ozone into a gas phase in which bacteria are suspended, which is characterized by installing a catalyst in the gas flow path and introducing ozone.
JP62254604A 1987-10-12 1987-10-12 Sterilizing method Granted JPH0197461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254604A JPH0197461A (en) 1987-10-12 1987-10-12 Sterilizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254604A JPH0197461A (en) 1987-10-12 1987-10-12 Sterilizing method

Publications (2)

Publication Number Publication Date
JPH0197461A true JPH0197461A (en) 1989-04-14
JPH0556984B2 JPH0556984B2 (en) 1993-08-20

Family

ID=17267341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254604A Granted JPH0197461A (en) 1987-10-12 1987-10-12 Sterilizing method

Country Status (1)

Country Link
JP (1) JPH0197461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485546A (en) * 2010-11-17 2012-05-23 Steritrox Ltd Catalyst for use in a sterilisation and/or decontamination process
US8867258B2 (en) 2010-03-22 2014-10-21 Qualcomm Incorporated Memory cell that includes multiple non-volatile memories

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113327A (en) * 1980-02-14 1981-09-07 Mitsubishi Electric Corp Odorous gas treatment apparatus
JPS56130209A (en) * 1980-03-17 1981-10-13 Mitsubishi Heavy Ind Ltd Malodor removing method
JPS60155503A (en) * 1984-01-20 1985-08-15 Shinryo Air Conditioning Co Ltd Decomposition of ozone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113327A (en) * 1980-02-14 1981-09-07 Mitsubishi Electric Corp Odorous gas treatment apparatus
JPS56130209A (en) * 1980-03-17 1981-10-13 Mitsubishi Heavy Ind Ltd Malodor removing method
JPS60155503A (en) * 1984-01-20 1985-08-15 Shinryo Air Conditioning Co Ltd Decomposition of ozone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8867258B2 (en) 2010-03-22 2014-10-21 Qualcomm Incorporated Memory cell that includes multiple non-volatile memories
GB2485546A (en) * 2010-11-17 2012-05-23 Steritrox Ltd Catalyst for use in a sterilisation and/or decontamination process

Also Published As

Publication number Publication date
JPH0556984B2 (en) 1993-08-20

Similar Documents

Publication Publication Date Title
EP0275620B1 (en) Method and catalyst for purification of gas
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JP2020534993A (en) Ozonolysis catalyst structure
JP5441380B2 (en) Formaldehyde oxidation catalyst and method for producing the same
JP3230427B2 (en) Catalyst for purifying fumigation exhaust gas and method for purifying fumigation exhaust gas
JPH10305230A (en) Photocatalyst, its production and decomposing and removing method of harmful substance
JP2012511422A (en) Improvement of catalyst
JPS6297643A (en) Ozone decomposing catalyst
JPH0197461A (en) Sterilizing method
JPH01218634A (en) Water-resistant catalyst support, its manufacturing method, water-treatable catalyst deposited on said support and water treating method using said catalyst
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPS63182032A (en) Deodorizing catalyst
JP3470496B2 (en) Deodorization treatment method using ozone
JPH0523590A (en) Catalyst for decomposing ozone
JPH11179211A (en) Titanium dioxide-base photocatalyst, its production, multifunctional member and method for using same
JPH0585218B2 (en)
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JPH057776A (en) Catalyst and its manufacture
JPH0586252B2 (en)
JPH07121361B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH02298317A (en) Decomposing method for ozone
JPH0616849B2 (en) Catalyst for treating gas containing harmful and odorous components
JPH02253848A (en) Catalyst for decomposition of ozone
JPH038820B2 (en)
JPH03217234A (en) Production of catalyst for decomposition of ozone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees