JPH0196244A - Antimicrobial formed article and production thereof - Google Patents

Antimicrobial formed article and production thereof

Info

Publication number
JPH0196244A
JPH0196244A JP25510487A JP25510487A JPH0196244A JP H0196244 A JPH0196244 A JP H0196244A JP 25510487 A JP25510487 A JP 25510487A JP 25510487 A JP25510487 A JP 25510487A JP H0196244 A JPH0196244 A JP H0196244A
Authority
JP
Japan
Prior art keywords
polymer
antibacterial
metallic copper
polyester
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25510487A
Other languages
Japanese (ja)
Other versions
JP2593890B2 (en
Inventor
Masao Kawamoto
正夫 河本
Seiji Hirakawa
平川 清司
Masami Ota
雅己 太田
Kazuhiko Tanaka
和彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP25510487A priority Critical patent/JP2593890B2/en
Publication of JPH0196244A publication Critical patent/JPH0196244A/en
Application granted granted Critical
Publication of JP2593890B2 publication Critical patent/JP2593890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain an antimicrobial formed article having antimicrobial activity durable to washing, by mixing fine particles of metallic copper and a specific liquid polyester compound and adding the mixture to a molten fluid of a polymer at a time between the polymerization and immediately before the extrusion of the polymer. CONSTITUTION:The objective antimicrobial formed article can be produced by (1) adding (A) a mixture composed of (A1) fine particles of metallic copper having an average particle diameter of <=5mu and (A2) a liquid polyester compound having a melting point of <=10 deg.C and a viscosity of >=10 poise at 25 deg.C at a weight ratio A1/A2 of 5:95-80:20 to (B) a molten fluid of a polymer having a melting point of >=200 deg.C and composed of a polyester (PETF, PBTF or a polyester composed mainly thereof) and/or a polyamide (nylon 6, nylon 66, m-xylene diamide or a polyamide composed mainly thereof) after the completion of the polymerization of the polymer and immediately before the extrusion of the polymer and (2) extruding the mixture through a nozzle after kneading. The formed article contains 0.1-10wt.% of the component A1 and 0.1-10wt.% of the component B2 dispersed in the article.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は抗菌性の成形物に関し、特に洗濯耐久性に優r
した抗菌力を有する抗菌性の合成成形物に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to antibacterial molded products, particularly those with excellent washing durability.
The present invention relates to an antibacterial synthetic molded product having antibacterial properties.

(従来技術) Mリエステル及び/又はポリアミド繊維は、ユニフォー
ム、和装品、スポーツ衣料等の各種衣料、寝装製品、イ
ンテリア製品などに広く使用ざ几ている。
(Prior Art) M polyester and/or polyamide fibers are widely used in various clothing such as uniforms, Japanese clothing, and sports clothing, bedding products, interior products, and the like.

一方、我々の生活環境中には、ざまざまな細菌。On the other hand, there are various types of bacteria in our living environment.

かびか存在しており、媒介物を経て人体や繊維に付着し
て繁殖し、皮膚障害を与えたり、繊維の変質、劣化現象
を起こしたり、悪臭を放って不快感を与えたりする。特
に合成繊維は汗を吸収することか少ないため、該繊維を
身につける場合、汗の付着した皮膚、衣料等に微生物か
繁殖して腐敗現象を起し、汗くさい臭いを生ずる。従っ
て、より清潔で悪臭を漂よりす事がなく、快適で安全な
ポリエステルあるいはポリアミド繊維製品の開発が望ま
几ていた。
Molds exist, and they propagate by adhering to the human body and fibers through vectors, causing skin disorders, deterioration and deterioration of fibers, and emitting a foul odor that causes discomfort. In particular, synthetic fibers do not absorb much sweat, so when wearing such fibers, microorganisms grow on sweaty skin, clothing, etc., causing decomposition and producing a sweaty odor. Therefore, it has been desired to develop polyester or polyamide fiber products that are cleaner, odor-free, comfortable, and safer.

繊維に抗菌性を付与する方法として、繊維に有機錫、有
機水銀化合物を適用する方法が使用されていた時期かあ
るが、これら化合物の毒性が問題視ざ几、現在ではそ几
らのほとんど大部分か使用中止になっている。
There was a time when organic tin and organic mercury compounds were used as a method of imparting antibacterial properties to fibers, but the toxicity of these compounds has been seen as a problem, and most of these methods are now widely used. Some parts have been discontinued.

後加工方法としては、従来より特に安全性の高い抗菌防
かび剤としてシリコーン第4級アンモニウム塩などが用
いらrしている。例えば、特開昭57−51874号に
はオルガノシリコーン第4級アンモニウム塩を吸着させ
たカーペット及びその製造方法か開示されている。しか
しながら、シリコーン系第4級アンモニウム塩はセルロ
ース系繊維に対しては反応性を持ち洗たく耐久性のある
抗菌効果を示すが1合成繊維に対しては一時的な抗菌効
果を示すものしか得らrしていない。
As a post-processing method, silicone quaternary ammonium salts have been used as particularly safe antibacterial and fungicidal agents. For example, Japanese Patent Laid-Open No. 57-51874 discloses a carpet to which an organosilicone quaternary ammonium salt is adsorbed and a method for manufacturing the same. However, silicone-based quaternary ammonium salts are reactive against cellulose fibers and exhibit a durable antibacterial effect that is easy to wash, but they only have a temporary antibacterial effect against synthetic fibers. I haven't.

また、銀イオン、銅イオン、亜鉛イオンを溶出させる銀
、銅、亜鉛等の化合物か抗菌性を有することは古くから
知ら几ており、例えは、硝酸銀の水溶液は消毒剤や殺菌
剤として広く利用ざf’して来た。しかしながら、溶液
状では取り扱いの点で不便であり、又用途の点でも限定
さrしる欠点かある。
In addition, it has been known for a long time that compounds such as silver, copper, and zinc that elute silver ions, copper ions, and zinc ions have antibacterial properties.For example, aqueous solutions of silver nitrate are widely used as disinfectants and disinfectants. I came here for a f'. However, in the form of a solution, it is inconvenient to handle and also has drawbacks that limit its use.

そこで銀、銅、亜鉛等のイオン又は塩を高分子体に保持
させるならば、かかる欠点が少なく広い分野での利用を
期待することかできる。例えは、銀。
Therefore, if ions or salts of silver, copper, zinc, etc. are retained in a polymer, such drawbacks can be avoided and the polymer can be expected to be used in a wide range of fields. An example is silver.

銅、亜鉛等の金属化合物を重合体中に混合し繊維とする
方法が特開昭54−147220号に提案ざ几ている。
A method of mixing metal compounds such as copper and zinc into a polymer to form fibers has been proposed in JP-A-54-147220.

また、銀イオン、銅イオン交換したゼオライト系固体粒
子を有機高分子体に添加混合する方法が特開昭59−1
33235号に提案ざ几ている。
In addition, a method of adding and mixing zeolite solid particles exchanged with silver ions and copper ions to an organic polymer was disclosed in JP-A-59-1.
A proposal has been made in No. 33235.

こ几らの方法では金属化合物が高分子へ及ぼす影響か大
きくて利用できる範囲が著しく限定されたり、繊維化工
程での工程性特に紡糸時の単糸切几、バックフィルター
詰りによるバック寿命が短かくなったり、あるいは延伸
時の毛羽頻発などのトラブルか多くなる問題が発生する
。そうでない場合でも、金属イオンか高分子中に単に含
有されているだけでは、繊維表面への抗菌作用に効果の
ある金属イオンの徐放性が不十分なため、抗菌性の効果
の絶対レベルが低(、十分な効果か期待できない。
In their method, the metal compound has a large effect on the polymer, severely limiting the usable range, and the life of the bag is shortened due to processability in the fiberizing process, especially single thread cutter during spinning, and back filter clogging. Problems such as hardness or frequent fluffing during stretching may occur. Even if this is not the case, the absolute level of the antibacterial effect will be insufficient because the sustained release of the metal ion, which is effective for antibacterial action on the fiber surface, is insufficient if the metal ion is simply contained in the polymer. Low (cannot expect sufficient effect.

又、銅、銀又は亜鉛の化合物とカゼインとの複合物を水
不溶化の状態で繊維表面に付着させる方法か特開昭56
−123474号に提案ざ几ている。
Also, there is a method of attaching a composite of a copper, silver or zinc compound and casein to the fiber surface in a water-insoluble state.
A proposal is being made in No.-123474.

この繊維は複合物を水不溶化させることにより。This fiber is made by making the composite material insoluble in water.

水洗等による複合物の脱落を防ぐことかできるが、カゼ
インを不溶化するためにはホルマリンを用いなければな
らず、織編物とした後、使用中にホルマリンの遊離を生
じることか危惧ざ几る。
Although it is possible to prevent the composite from falling off when washed with water, formalin must be used to insolubilize the casein, and there is a risk that formalin may be liberated during use after being made into a woven or knitted fabric.

(本発明か解決しようとする問題点) 本発明の目的は、使用する合成ポリマーで得らrしる本
来の物性を損なうことなく、又水洗、温水洗たく等の後
でも、抗菌、抗かび性の低下しない。
(Problems to be Solved by the Invention) The purpose of the present invention is to provide antibacterial and antifungal properties even after washing with water or hot water, without impairing the original physical properties of the synthetic polymer used. does not decrease.

洗濯耐久性の極めて優れた抗菌性の合成成形物を提供す
ることにある。
An object of the present invention is to provide an antibacterial synthetic molded product having extremely excellent washing durability.

(問題点を解決するための手段) 本発明の合成成形物は、ポリエステル及び/又はポリア
ミドの如ffM点が200℃以上の熱可塑性成形物中に
、平均粒子径か5ミクμン以下の金属銅微粒子と、融点
か10℃より低くかつ25℃下での粘度か10ポイズ以
上を有する液状ポリエステル系化合物との混合物を、金
属銅微粒子で0.1〜10重量%、ポリエステル系可塑
剤で0.1〜10重景%装置せしめたことを特徴とする
抗菌性成形物である。
(Means for Solving the Problems) The synthetic molded product of the present invention is a thermoplastic molded product having an ffM point of 200°C or higher, such as polyester and/or polyamide, and a metal having an average particle diameter of 5 μm or less. A mixture of copper fine particles and a liquid polyester compound having a melting point lower than 10°C and a viscosity of 10 poise or more at 25°C is prepared by mixing 0.1 to 10% by weight of metallic copper fine particles and 0% by weight of polyester plasticizer. It is an antibacterial molded product characterized by having a 1 to 10% antibacterial content.

また本発明方法は、金属銅微粒子とポリエステル系化合
物の混合物を、ポリマーの重合完了後成形吐出直m1の
間で、該ポリマー溶融流体中へ添加し、その後入タチツ
クミキサー等で混練した後、吐出孔より吐出し、繊維化
等成形物とすることを特徴とするものである。
In addition, in the method of the present invention, a mixture of metallic copper fine particles and a polyester compound is added to the polymer molten fluid immediately after the polymerization is completed, and the mixture is kneaded with a tactile mixer or the like. It is characterized in that it is discharged from a discharge hole and made into a molded product such as fibers.

以下1本発明の成形物及びその製造法を詳細に説明する
The molded article of the present invention and its manufacturing method will be explained in detail below.

本発明において成形物とは、繊維で代表される線状物、
フィルム状物、テープ状物、パイプ状物、各種容器並び
にその他の任意の成形物を包含意味するものであるが、
以下は、便宜上、又厳しい製造条件を必要とする繊維の
場合を例にとって説明する。
In the present invention, a molded article refers to a linear article typified by fibers,
This term includes film-like objects, tape-like objects, pipe-like objects, various containers, and any other molded objects.
For convenience, the following will explain the case of fibers that require strict manufacturing conditions as an example.

本発明に用いる金属銅微粉末は、平均粒子径が5ミクロ
ン以下であることが好ましい。粒径が5ミクロンを超え
ると溶融紡糸時にフィルター詰す。
The fine metallic copper powder used in the present invention preferably has an average particle size of 5 microns or less. If the particle size exceeds 5 microns, it is packed in a filter during melt spinning.

や毛羽断糸を起し易く使用困難である。特に各種衣料素
材、寝装製品等への応用を考えた場合は、単繊維デニー
ルが1デニ一ル前後の細デニール糸も必要とされ、粒径
が大きくなると延伸時の糸切tしか激しくなり好ましく
ない。従って本発明に用いる金属銅微粉末は平均粒径5
ミクロン以下のものが、更に好ましくは】ミクロン以下
のものが望ましい。金属銅微粉末は、例えば三井金属鉱
業株社製のtnFPパウダーのように、純度が高く、か
つ球状粒子であり、粒径分布もシャープなものが、繊維
中へ練込み分散させるには好都合である。
It is difficult to use because it tends to cause fluff and breakage. Especially when considering application to various clothing materials, bedding products, etc., fine denier yarn with a single fiber denier of around 1 denier is also required, and as the particle size increases, thread breakage during drawing becomes more severe. Undesirable. Therefore, the fine metallic copper powder used in the present invention has an average particle size of 5.
It is preferably less than a micron, more preferably less than a micron. Fine metallic copper powder, such as tnFP powder manufactured by Mitsui Kinzoku Mining Co., Ltd., has high purity, spherical particles, and a sharp particle size distribution, which is convenient for kneading and dispersing into fibers. be.

金属銅は結晶構造より極微量の銅イオンを放出し、この
極微量の銅イオンが殺菌効果があることか知ら几ている
。1893年植物学者のネーゲリーか1子方分の1 (
0,1ppm )はどの微量の銅イオンがアオミドロを
死滅させることを発見したことか初めと言わrしており
(工業材料第35巻第3号入原理的には、銅イオンが細
菌の細胞壁を通過し、細胞内部の酵素の一8H裁と化合
することにより酵素活性を減退させ、細胞の代謝作用を
停止させ死滅させると言わ几ている(農技研報告L 1
960 ):豊田栄ン。しかも極く微量の銅イオンです
ぐ几た殺菌効果が発揮ざ几るにもかかわらず、人体に対
しては微量であるなら(よそnはど有害ではないと言わ
rしている。むしろ銅はミネラルの一種として生体にと
って必要欠(ことのできない金属の一つであり、体内の
銅成分か不足すると貧血をおこしたり、骨がもろくなっ
たりすることが報告されている。つまり微量の銅か体の
中にないといくら鉄分があってもヘモダルビンのできが
悪<1.V命の短い赤血球ができて貧血を起すと言わ几
ている。
Metallic copper releases extremely small amounts of copper ions due to its crystal structure, and it is well known that these extremely small amounts of copper ions have a bactericidal effect. In 1893, the botanist Nageli or 1/1 (
0.1 ppm) is said to be the first to discover that trace amounts of copper ions can kill Aomhidoro (In principle, copper ions destroy the cell walls of bacteria. It is said that it passes through the cells and combines with the 18H enzymes inside the cells, reducing the enzyme activity, stopping the metabolic function of the cells and killing them (Agricultural Research Institute Report L 1).
960): Ein Toyota. Moreover, even though a very small amount of copper ions has a strong bactericidal effect, if the amount is small enough for the human body (some say that it is not harmful to the human body), copper ions are As a type of mineral, it is one of the metals that is indispensable for living bodies, and it has been reported that a lack of copper in the body causes anemia and brittle bones. It is said that without it, no matter how much iron there is, hemodalbin production will be poor and red blood cells with a short lifespan (<1.V) will be produced, leading to anemia.

このように、銅金属は微量の銅イオン放出作用により人
体にアマり有害とならず、すぐれた殺菌効果が発揮ざr
しることから1本発明の目的にに最適の物質として選択
された。
In this way, copper metal releases trace amounts of copper ions, so it does not become toxic to the human body and exhibits an excellent bactericidal effect.
Based on the above, it was selected as the most suitable material for the purpose of the present invention.

しかしながら、意外なことに、金属銅を単にポリマー中
に分散させて繊維にされたものについては、十分な抗菌
性能が発揮さtLないことかわかった。
However, surprisingly, it has been found that fibers made by simply dispersing metallic copper in a polymer do not exhibit sufficient antibacterial performance.

抗菌性能を調べる手段としては、−収約には(1)シェ
ークフラスコ法121m数測定法、(3)ハローテスト
法かあり1例えばシェークフラスコ法の場合、滅菌率か
目安として70%以上でjhrシば抗菌性能としては十
分に役目をはたすと言わ几ている。減菌率が70%以下
となると抗菌性能としては不十分になってくるため、微
生物が繁殖して腐敗現象を起し、汗くさい臭が繊維に生
じ、防臭効果があまり認めら几なくなってくる結果とな
り、抗菌繊維製品としては欠陥商品と言わざるを得ない
As a means of examining antibacterial performance, there are (1) shake flask method, (3) halo test method.1 For example, in the case of shake flask method, the sterilization rate is 70% or more as a guideline. It is said that it has sufficient antibacterial properties. If the sterilization rate is less than 70%, the antibacterial performance will be insufficient, and microorganisms will proliferate and putrefaction will occur, producing a sweaty odor on the fibers, and the deodorizing effect will become less noticeable. As a result, it must be said that this product is defective as an antibacterial fiber product.

単に金属銅をポリマー中に分散させてm雑にざrしたも
のは、滅菌率か30〜40%という結果しか得られず、
抗菌性繊維としては不十分なレベルにしか至らないこと
かわかった。こrしの理由としては、繊維か抗菌効果を
発揮させるためには繊維表面に常に微量の銅イオンが存
在していることが必要であると考えられ、単に金属銅を
樹脂中に分散させただけでは、金属銅より放出ざ几る銅
イオンかスムースに繊維表面へ放出さ1ないためと思わ
几る。この推定を裏づけるモデルテストとして、ポリマ
ー中の添加量と同じ量の金属銅パウダーを繊維表面に単
に付着させたものについて抗菌性を調べた所、十分な性
能が認められたことから上記の推定が正しいと思わ几る
。しかし、単に繊維表面へ付着させたものは、当然のこ
とながら使用中に脱落しやすく、本発明の洗濯耐久性を
有する抗菌性繊維にはなりえない。
Simply dispersing metallic copper in a polymer and roughening it would only result in a sterilization rate of 30 to 40%.
It was found that the level of antibacterial properties was insufficient for antibacterial fibers. The reason for this is that a trace amount of copper ions must always be present on the surface of the fiber in order for the fiber to exhibit its antibacterial effect. It seems that this is because copper ions, which are released more slowly than metal copper, are not released smoothly to the fiber surface. As a model test to support this assumption, we investigated the antibacterial properties of a material in which metallic copper powder was simply attached to the fiber surface in the same amount as the amount added in the polymer, and sufficient performance was observed, so the above estimation was confirmed. I think it's right. However, if it is simply attached to the fiber surface, it naturally tends to fall off during use, and cannot be used as the antibacterial fiber having the washing durability of the present invention.

我々はポリエステル及び/又はポリアミドポリマー中に
金属銅を分散させた繊維で、銅イオンのすぐれた殺菌作
用を十分な洗濯耐久性を保持して持続発揮させることが
、いかにしたらできるのか鋭意検討した結果、ある特定
の物質をもつポリエステル系化合物を金属銅と共にポリ
マー中に共存させることにより、実現出来ることをはじ
めて見い出した。
As a result of our intensive study on how to maintain the excellent bactericidal action of copper ions in fibers with metallic copper dispersed in polyester and/or polyamide polymers while maintaining sufficient washing durability, we have developed discovered for the first time that this can be achieved by coexisting a polyester compound containing a certain substance with metallic copper in a polymer.

このポリエステル系化合物は、室温で流動性を示す必要
かあり、そのために融点が10℃より低いことか非常に
重要なポイントであると同時に、25℃下での粘度か1
0ポイズ以上を有するものでなけ11ばならない。ポリ
エステル系化合物は。
It is necessary for this polyester compound to exhibit fluidity at room temperature, so it is very important that the melting point be lower than 10°C, and at the same time, the viscosity at 25°C must be 1.
It must have a poise of 0 poise or higher. Polyester compounds.

ポリエステル又はポリアミドに対してマクロなオーダー
で相溶性が良く均一分散混合しやすいことと、室温で流
動性を示すために、ポリマー中に内在している金属銅か
ら放出ざ几る銅イオンをポリマー中にとじこめておくこ
となく繊維表面へ運搬する役割をはたしていると推定さ
rしる。金属銅と室温で流動性を示すポリエステル系化
合物が共存することによってはじめて、殺菌効果を発揮
する銅イオンか半永久的に繊維表面へ繊維中のポリエス
テル系化合物の一種の通路を流れて徐放されるシステム
かでさあかったわけである。なおかつ。
Copper ions, which are released from the metallic copper contained in the polymer, are added to the polymer in order to have good compatibility with polyester or polyamide on a macroscopic level and to be able to mix them uniformly and easily, and to exhibit fluidity at room temperature. It is presumed that the role of transporting the particles to the fiber surface rather than keeping them trapped. Only when metallic copper and a polyester compound that exhibits fluidity at room temperature coexist, copper ions, which exhibit a bactericidal effect, are semipermanently released to the fiber surface by flowing through a type of passageway in the polyester compound in the fiber. The system was too big. Nakatsu.

ポリエステル系化合物は水に不溶であり耐水性が十分あ
ることから、温水洗濯後でも全く性能か低下することな
く抗菌効果が維持ざ才しることか大きな特徴であり、本
発明の重要な効果の一つである。
Since polyester compounds are insoluble in water and have sufficient water resistance, their antibacterial effect is maintained without any deterioration in performance even after washing in hot water, which is a major feature and one of the important effects of the present invention. It is.

室温で流動性のない、つまり固体で室温以上の融点を持
つポリエステル系化合物を用いた場合には、後に実施例
で詳しく述べるかあまり抗菌性能か発現されない結果が
得らγした。こrしの理由としては繊維中で固体状態で
分散し存在しているために、銅イオンを表面へ運搬させ
る徐放機能か十分に働かないためではないかと推定され
る。
When using a polyester compound that has no fluidity at room temperature, that is, it is solid and has a melting point above room temperature, results in which antibacterial performance was not exhibited were obtained as will be described in detail later in Examples. The reason for this is presumed to be that since copper ions are dispersed in a solid state in the fibers, the sustained release function of transporting copper ions to the surface does not work sufficiently.

ポリエステル系化合物の粘度は10ポイズ以上であるこ
とか望ましい。lOポイズ未満になってくると、温水洗
濯後の抗菌性レベルがやや低下してくる傾向が認めらr
した。このことは今迄知ら几ていなかった新しい事実で
あり、明確な理由は現時点では不明であるが、おそらく
ポリエステル系化合物の粘度があまり低(なってくると
、化合物自身の移行性が発生しやすくなり、温水洗濯時
に繊維中より少し抜は出やす(なるためが、あるいは耐
水性かやや減少して(るためではないかと推定ざrしる
。ポリエステル系化合物としては、例えば7デ力アーガ
ス社製の、商品名ADK 0IZERシリーズとして市
販されているポリエステル系可塑剤、あるいは大日本イ
ンキ化学社製の、商品名1’0LYcIZEBシリーズ
として市販されているポリエステル系可塑剤等が好まし
く用いられる。そのポリエステル化合物のうち、酸成分
としてセバシン酸、アジピン酸、フタル酸を主成分とし
て、グリコール成分を適宜選択したものを用いるのが、
コスト的にも物性的にも適当である。
It is desirable that the viscosity of the polyester compound is 10 poise or more. There is a tendency for the antibacterial level after hot water washing to decrease slightly when the temperature becomes less than 10 poise.
did. This is a new fact that has not been known until now, and the exact reason is unknown at this time, but it is probably due to the fact that the viscosity of polyester compounds is too low (as the viscosity of the polyester compound becomes too low, migration of the compound itself is likely to occur). It is speculated that this may be due to the fact that the fibers are a little easier to pull out when washed in hot water, or because the water resistance is slightly reduced.As a polyester compound, for example, Polyester plasticizers commercially available under the trade name ADK 0IZER series manufactured by Dainippon Ink Chemical Co., Ltd., or polyester plasticizers commercially available under the trade name 1'0LYcIZEB series manufactured by Dainippon Ink Chemical Co., Ltd. are preferably used. Among the compounds, the main components are sebacic acid, adipic acid, and phthalic acid as acid components, and the glycol components are appropriately selected.
It is appropriate in terms of cost and physical properties.

繊維中への添加量としては、金属銅微粒子とポリエステ
ル系可塑剤との重量比が5:95〜80 : 20にあ
る混合物を添加し、繊維に対して金属銅微粒子として0
.1〜10重量%、ポリエステル系化合物として0.1
〜10重量%分散していることが望ましいことかわかっ
た。
As for the amount added to the fiber, a mixture with a weight ratio of 5:95 to 80:20 of metallic copper fine particles and polyester plasticizer is added, and 0 as metallic copper fine particles to the fiber is added.
.. 1 to 10% by weight, 0.1 as a polyester compound
It has been found that a dispersion of ~10% by weight is desirable.

金属銅添加量が少ない場合には、繊維表面への銅イオン
の徐放性を活発にするためポリエステル系化合物の添加
量を多くし、逆に金属銅添加量か多い場合には、ポリエ
ステル系化合物の添加量か少な目でも良い。抗菌性能と
しては添加量が多い程、当然のことながら性能か向上す
るが逆に繊維化工程での毛羽、断糸率か大きくなるので
、所定デニールに応じて、上記範囲内で金属銅微粒子と
ポリエステル系化合物の混合比及び繊維に対する添加量
を調節することが必要である。
When the amount of metallic copper added is small, the amount of polyester compound added is increased to activate the sustained release of copper ions to the fiber surface, and conversely, when the amount of metallic copper added is large, the polyester compound is It is okay to add a small amount. Naturally, the antibacterial performance improves as the amount added increases, but on the other hand, the fuzz and yarn breakage rate increase during the fiberizing process. It is necessary to adjust the mixing ratio of the polyester compound and the amount added to the fiber.

本発明に言うポリエステルとは、ポリエチレンテレフタ
レート又はポリブチレンテレフタレートを主成分とする
ポリエステルであり、テレフタール酸、インフタール酸
、ナフタリン2.6ジカルポン酸、フタール酸、α、β
−(4−カルボキシフェノキシ)エタン、4.4−ジカ
ルボキシジフェニル、5−ナトリウムスルホイソフタル
酸などの芳香族ジカルボン酸もしくはアジピン酸、セバ
シン酸などの脂肪族ジカルボン酸、またはこれらのエス
テル類と、エチレングリコール、ジエチレングリコール
、1,4−ブタンジオール、ネオペンチルグリコール、
シクロヘキサン−1,4−ジメタツール、ポリエチレン
グリコール、ポリテトラメチレングリコールなどのジオ
ール化合物とから合成される繊維形成性ポリエステルで
あり、その構成単位の80モル%以上が、特には90モ
ル%以上かポリエチレンテレフタレート単位又はポリブ
チレンテレフタレート単位であるポリエステルが好まし
く、なおかつ融点か200℃以上であることが望ましい
。融点か低くなると耐熱性不十分等の理由により衣料用
等の繊維素材としての用途かやや限定ざ才してくるため
好ましくない。また、ポリエステル中には、少量の添加
剤、たとえば、酸化チタンなどの艶消し剤、酸化防止剤
、蛍光増白剤、安定剤あるいは紫外線吸収剤などを含ん
でいても良い。
The polyester referred to in the present invention is a polyester whose main component is polyethylene terephthalate or polybutylene terephthalate, including terephthalic acid, inphthalic acid, naphthalene 2.6 dicarboxylic acid, phthalic acid, α, β
Aromatic dicarboxylic acids such as -(4-carboxyphenoxy)ethane, 4,4-dicarboxydiphenyl, 5-sodium sulfoisophthalic acid or aliphatic dicarboxylic acids such as adipic acid, sebacic acid, or esters thereof, and ethylene Glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol,
A fiber-forming polyester synthesized from diol compounds such as cyclohexane-1,4-dimetatool, polyethylene glycol, and polytetramethylene glycol, in which 80 mol% or more of the constituent units are polyethylene terephthalate, especially 90 mol% or more. A polyester having a polybutylene terephthalate unit or a polybutylene terephthalate unit is preferable, and preferably has a melting point of 200° C. or higher. If the melting point is too low, its use as a textile material for clothing etc. will be somewhat limited due to insufficient heat resistance, etc., which is undesirable. The polyester may also contain small amounts of additives, such as matting agents such as titanium oxide, antioxidants, optical brighteners, stabilizers, or ultraviolet absorbers.

よだポリアミドとは、ナイロン6、ナイロン66、又は
メタキシレンジアミンナイロンを主成分とするポリアミ
ドであり、少量の第3成分を含む共重合ポリアミドでも
良いが、融点は200℃以上を維持することか好ましい
Yoda polyamide is a polyamide whose main component is nylon 6, nylon 66, or meta-xylene diamine nylon. It may also be a copolyamide containing a small amount of a third component, but the melting point must be maintained at 200°C or higher. preferable.

本発明の繊維は、仮撚捲縮加工等の高次加工により、5
角、6角に類似した形状になったり、紡糸時の異形断面
ノズルにより、3葉形、T形、4葉形、5葉形、6葉形
、7葉形、8葉形等多葉形や各種の断面形状をとること
かでき、その効果は十分に発現ざ几る。またざらに、い
わゆる芯鞘構造や、背腹構造の複合繊維とすることもで
き、この場合でも、金属銅とポリエステル系化合物の混
合物が添加ざ几ているポリマ一部分が繊維断面占有面積
で20%以上であり、なおかつ望ましくは。
The fibers of the present invention can be obtained by high-order processing such as false twisting and crimp processing.
Shapes resembling squares or hexagons, or multi-lobed shapes such as trilobal, T-shaped, quadrilobal, five-lobal, six-lobal, seven-lobal, and eight-lobal shapes due to the irregular cross-section nozzle during spinning. It can take various cross-sectional shapes, and the effect will be fully realized. In addition, it is also possible to make composite fibers with a so-called core-sheath structure or dorsal-ventral structure, and even in this case, a portion of the polymer to which a mixture of metallic copper and a polyester compound is added accounts for 20% of the cross-sectional area of the fiber. That is all, and preferably.

践ポリマ一部分か一部繊維表面に存在しているならば本
発明の効果は十分に発現される。
The effects of the present invention can be fully exerted if the polymer is partially or partially present on the fiber surface.

次に本発明の抗菌性繊維の製造例について説明する。金
属銅微粉末とポリエステル系化合物の混合物をポリエス
テルポリマーの重合完了後紡糸直前までに添加し、その
後混練した後ノズル孔より押出し繊糺化する方法がポリ
マーの粘度低下、副反応、可塑剤の分解等の問題を発生
させないことから、好ましい。重合完了後−旦ベレット
の形状に成形する工程を経る場合は1重合完了後重合釜
中へ金属銅とポリエステル系化合物の混合物を添加し、
混練撹拌後ペレット化しても良いが、好ましくは紡糸時
にポリマー溶融流体流1中に、該混合物を所定量供給し
、その後スタチックミキサーにより混練した後、紡糸ノ
ズル孔より押出し、繊維化する方が望ましい。なぜなら
ば、重合釜へ該混合物を添加しその後混練撹拌してペレ
ット化する場合には、ポリマー粘度低下が発生したり、
該混合物の均一分散が難しかったり、更には重合釜のコ
ンタミネーションの問題等が生ずるからである。重合前
に七ツマ−と共に該混合物を添加するのは、副反応等の
問題が発生し好ましくない。
Next, an example of manufacturing the antibacterial fiber of the present invention will be explained. A method in which a mixture of metallic copper fine powder and a polyester compound is added after polymerization of the polyester polymer is completed and immediately before spinning, and then kneaded and then extruded through a nozzle hole to form a sliver, reduces the viscosity of the polymer, causes side reactions, and decomposes the plasticizer. This is preferable because it does not cause such problems. After the completion of polymerization - If the step of forming into a pellet shape is carried out, a mixture of metallic copper and a polyester compound is added to the polymerization pot after the completion of the first polymerization.
Although the mixture may be pelletized after kneading and stirring, it is preferable to supply a predetermined amount of the mixture into the polymer molten fluid stream 1 during spinning, then knead it with a static mixer, and then extrude it from the spinning nozzle hole to form fibers. desirable. This is because when the mixture is added to a polymerization pot and then kneaded and stirred to form pellets, the viscosity of the polymer may decrease, or
This is because it is difficult to uniformly disperse the mixture, and furthermore, problems such as contamination of the polymerization vessel arise. It is not preferable to add the mixture together with the sulfuric acid before polymerization because problems such as side reactions may occur.

重合完了後ペレット化する工程を経ず連続的に溶融ポリ
マーを紡糸ノズルへ供給して吐出させるような連続プロ
セスにおいては、紡糸直前までの段階で溶融ポリマー流
中へ金属銅とポリエステル系化合物の混合物を定量供給
し、その後スタチックミキサーで混練した後紡糸ノズル
孔より吐出させるとよい。
In a continuous process in which molten polymer is continuously supplied to a spinning nozzle and discharged without going through the step of pelletizing after completion of polymerization, a mixture of metallic copper and a polyester compound is added to the molten polymer stream immediately before spinning. It is preferable to supply a fixed amount of the mixture, then knead it with a static mixer, and then discharge it from the spinning nozzle hole.

スタチックミキサーを用いて混練する場合に大切なこと
は、ある一定エレメント敬以上のスタチックミキサーを
用いて混練する必要があることである。現在、実用化さ
れている静止型混合器は数種類あるが、例えば、ケーニ
クス(Kenics )社の180°左右にねじった羽
根を90°ずらして配列したnエレメント通過ぎせると
2n層分割するタイプのスタチックミキサーを用いた場
合は、エレメント数が最低15工レメント以上のものを
用いる必要かある。15エレメントより少なくなると、
添加物とポリマーとの均一混練が十分でないため、紡糸
時の断糸、毛羽捲付の発生か多くなると同時に延伸性も
低下し、工程性上好ましくない。工程性を向上させる点
からもエレメント数は15工レメント以上、すなわち2
15層分割以上は最低実施するのが好よしく、更に好ま
しくは20工レメント以上、すなわち220層分割以上
することか好ましい。
What is important when kneading using a static mixer is that it is necessary to knead using a static mixer with a certain number of elements or more. Currently, there are several types of static mixers in practical use. For example, there is a type made by Kenics that splits into 2n layers when passed through n elements, which have blades twisted 180 degrees left and right and arranged 90 degrees apart. When using a static mixer, it is necessary to use one with at least 15 elements. When there are fewer than 15 elements,
Since uniform kneading of the additive and the polymer is not sufficient, the occurrence of yarn breakage and fluffing during spinning increases, and at the same time, the drawability decreases, which is unfavorable in terms of process efficiency. From the point of view of improving process efficiency, the number of elements should be 15 or more, that is, 2.
It is preferable to perform at least 15 layer divisions, more preferably 20 layers or more, that is, 220 layers or more.

ケーニクス社以外の静止型混合器を用いる場合も、21
5層分割以上に相当するエレメント数に設定した混合器
を使用する必要がある。東し株製ハイミソサーや千ヤー
ルスアンドロス(C!1+ば1ess &Boss )
社製ロスエSGミキサーなどは、nエレメント通過する
時の層分割数は4n層分割であるので、エレメント数は
8工レメント以上、更に好ましくは10エレメント以上
が必要である。
21 when using a static mixer other than Koenix
It is necessary to use a mixer set to the number of elements equivalent to five or more layer divisions. Higashi Stock High Miscer Ya Thousand Jarls Andros (C!1+Ba1ess &Boss)
In the Rosse SG mixer manufactured by Co., Ltd., the number of layer divisions when passing through n elements is 4n layers, so the number of elements must be 8 or more, more preferably 10 or more.

本発明の製造工程の一例を第1図に示す。溶融押出機1
により押出ざ几たポリマー溶融流は、計量機2により所
定量計量ざ几る。一方、金属銅とポリエステル系化合物
は、添加剤供給機4により供給ざ几、計量@3により所
定量計量ざrした後、計量機2により計量ざγしたポリ
マー溶融ライン中へ添加ざrしる。その後、所定エレメ
ント数を設置したスタチックミキサー中で、該混合物と
ポリマーか混練ざit 、紡糸口金パック6より吐出ざ
2して繊維化ざtしる。スタチックミキサーは、ポリマ
ー流うイン中に設置しても良いし、あるいは紡糸口Q 
パック円に設置してもよい。あるいはポリマー流うイン
中と紡糸口金バック中に分割して設71 してもざしつ
かえはない。
An example of the manufacturing process of the present invention is shown in FIG. Melt extruder 1
The extruded polymer molten stream is measured by a measuring machine 2 in a predetermined amount. On the other hand, metallic copper and a polyester compound are supplied by an additive feeder 4, measured in a predetermined amount by a metering unit 3, and then added to the polymer melting line by a metering unit 2. . Thereafter, the mixture and polymer are kneaded in a static mixer equipped with a predetermined number of elements, and then discharged from a spinneret pack 6 to form fibers. The static mixer may be installed in the polymer flowing in or at the spinneret Q.
It may be placed in the pack circle. Alternatively, there is no problem in installing it separately in the inside where the polymer flows and in the back of the spinneret.

(発明の効果) 本発明の成形物は、金属銅微粉末とポリエステル系化合
物の混合物を成形物中に分散させることにより、金属銅
より放出ざ几る殺菌効果を有する微量の銅イオンを有効
に徐放し、優れた抗菌性を保持するものである。しかも
本発明の成形法は、そ11か繊維の場合、頻繁な洗濯を
行なっても抗菌。
(Effects of the Invention) The molded product of the present invention effectively releases trace amounts of copper ions, which have a bactericidal effect and are emitted from metallic copper, by dispersing a mixture of fine metallic copper powder and a polyester compound in the molded product. It releases slowly and maintains excellent antibacterial properties. Moreover, the molding method of the present invention is effective against antibacterial properties even after frequent washing in the case of fibers.

防かび性が低下しないので、例えば耐洗7M性を高度に
要求されるソックス等の衣料分野に用いても、十分に菌
の繁殖を抑えかつ防臭効果を発揮させることが可能であ
る。
Since the anti-mildew property does not deteriorate, it is possible to sufficiently suppress the propagation of bacteria and exhibit the deodorizing effect even when used in the field of clothing such as socks that require a high level of wash resistance of 7M.

(実 施 例) 以下実施例をあげて本発明を具体的に説明する。(Example) The present invention will be specifically explained below with reference to Examples.

実施例中の殺菌効果の評価及び洗たく条件は、以下の試
験方法によって行なった。
The evaluation of the bactericidal effect and the washing conditions in the examples were carried out by the following test method.

く菌の滅菌率の測定〉 シェークフラスコ法により実旭。醍用菌種は黄色ブドウ
状球菌(8taphylococcus aureus
 F DA 209p)を用い、三角フラスコ中に試験
菌液を所定盆加えざらに測定試料片1.5gを加え、8
手振とう、80 rpmX 1 hr、25℃で振とう
を実施した後、フラスコ中の生菌数を培養計測した後、
滅菌率を算出した。
Measurement of sterilization rate of bacteria> Measured by shake flask method. The bacterial species used is Staphylococcus aureus (8taphylococcus aureus).
Using FDA 209p), add the test bacterial solution to the specified tray in an Erlenmeyer flask, add 1.5 g of the measurement sample piece to a colander, and
After shaking by hand at 80 rpm x 1 hr at 25°C, the number of viable bacteria in the flask was cultured and counted.
Sterilization rate was calculated.

滅菌率圀=lテ尤×100 A;振とう後の三角フラスコ内1ml当りの菌数 B;振とう前の三角フラスコ円17n1当りの菌数 く洗濯試験法〉 JIIS  LO217−103法に従って実施。液温
40℃の水11!に2gの割合で衣料用合成洗剤を添加
溶解し、洗たく液とする。この洗たく液に浴比か1対3
0になるように試料及び必要に応じて負荷布を投入して
運転を開始する。5分間処理した後、運転を止め、試料
及び負荷布を脱水機で脱水し、次に洗た(液を常温の新
しい水に替えて同一の浴比で2分間すすぎ洗いをした後
脱水し、再び2分間すすぎ洗いを行い風乾させる。以上
の操作を10回くりかえし10回後の測定サンプルとし
た。
Sterilization rate = 1 × 100 A; Number of bacteria per ml in the Erlenmeyer flask after shaking B; Number of bacteria per 17n of Erlenmeyer flask before shaking Washing test method> Conducted according to JIIS LO217-103 method. Water with a liquid temperature of 40℃ 11! Add and dissolve 2g of synthetic detergent for clothing to make a washing liquid. This washing liquid has a bath ratio of 1:3.
Insert the sample and load cloth as necessary so that the value becomes 0, and start operation. After processing for 5 minutes, the operation was stopped, and the sample and load cloth were dehydrated using a dehydrator, and then washed (replaced the liquid with fresh water at room temperature, rinsed for 2 minutes at the same bath ratio, and then dehydrated. The sample was rinsed again for 2 minutes and air-dried.The above operation was repeated 10 times, and a measurement sample was obtained after 10 times.

〔実施例1〕 〔η) = 0.6 s dl!/g (フェノールと
テトラクロルエタンの等温混合溶媒を用い30℃恒温槽
中でウーベローデ型粘度計を用い測定した極限粘度)で
TlO2を0.5 wt%添加したポリエチレンテレフ
タレートを40φ押出機にて押出し、該ポリマーの溶融
ポリマーラインに、平均粒径O,3ミクロンの金属銅微
粉末と25℃下での流動性を示す粘度が約100ポイズ
のポリエステル化合物(アデカ・アーガス化学社裂のポ
リエステル可塑剤:商品名PN−350)を重量比1:
1に混合し、120℃であらかじめ絶乾したものを、ポ
リマー流に対して該混合物が2重盆%、つまり金属銅微
粉末が1重量%、ポリエステル化合物か1重量%になる
ように注入し、その後ケー二クス社製の40エレメント
スタチツクミキサーで混練し、丸孔ノズルより吐出し紡
糸した。該紡糸原糸をローラープレート方式で通常の条
件により延伸し、75デニール36フイラメントのマル
チフィラメントを得た。
[Example 1] [η) = 0.6 s dl! /g (intrinsic viscosity measured using an Uebelohde viscometer in a 30°C constant temperature bath using an isothermal mixed solvent of phenol and tetrachloroethane) Polyethylene terephthalate to which 0.5 wt% of TlO2 was added was extruded using a 40φ extruder. In the molten polymer line of the polymer, fine metallic copper powder with an average particle size of 0.3 microns and a polyester compound (polyester plasticizer manufactured by Adeka Argus Chemical Co., Ltd. :Product name PN-350) at a weight ratio of 1:
1 and completely dried at 120°C in advance, and injected the mixture so that the amount of the mixture was 1% by weight relative to the polymer flow, that is, 1% by weight of the fine metal copper powder and 1% by weight of the polyester compound. Thereafter, the mixture was kneaded using a 40-element static mixer manufactured by Kenix Co., Ltd., and spun using a round hole nozzle. The spun yarn was drawn using a roller plate method under normal conditions to obtain a multifilament of 75 denier and 36 filaments.

編地を作成し、洗濯前と洗濯1o回後の抗菌性を測定し
たところ、滅菌率が洗たく前85.1%、洗濯後98.
2%といず几もすばらしい抗菌性が認めら 才した。
When the knitted fabric was prepared and its antibacterial properties were measured before and after washing 10 times, the sterilization rate was 85.1% before washing and 98% after washing.
2% and 100% water was also found to have excellent antibacterial properties.

また同一の方法により、延伸後20デニール4フイラメ
ントの延伸糸を採取した。該延伸糸をナイロン6延伸糸
に対して約5%の割合で混繊し靴下を編製した。得らr
した靴下について実際の抗菌性能を測定した結果、初期
性能は滅菌率85.1%、10回洗濯後減菌率98.2
%と十分に満足のいく抗菌性能を保持していることか確
認ざ几た。
In addition, a drawn yarn of 4 filaments of 20 denier was collected by the same method. The drawn yarn was mixed with the drawn yarn of nylon 6 at a ratio of about 5% to knit socks. Got r
As a result of measuring the actual antibacterial performance of the socks, the initial performance was 85.1% sterilization rate and 98.2% sterilization rate after 10 washes.
%, it was confirmed that the antibacterial performance was sufficiently satisfactory.

〔比較例1〕 ポリエステル系化合物として、アジピン酸と1゜4−ブ
タンジオールを主成分とする融点65℃の室温で固体状
のものを用い、100℃下で金属銅微粉末と重量比1:
1で混合したものを溶融ポリマー中へ混入し、実施例1
と同様の方法で繊維化した。抗菌性能は低いレベルであ
った。紡糸時口金汚几か赦しく発生し、単糸切几か頻発
した。延伸性もやや不良であった。
[Comparative Example 1] A polyester compound containing adipic acid and 1゜4-butanediol as main components and solid at room temperature with a melting point of 65°C was used at 100°C in a weight ratio of 1:1 with fine metallic copper powder.
The mixture in Example 1 was mixed into the molten polymer.
It was made into fibers using the same method. Antibacterial performance was at a low level. During spinning, fouling of the spinneret frequently occurred, and single thread breakage frequently occurred. Stretchability was also somewhat poor.

〔比較例2〕 分散媒としてレゾルシンとフェニルフォスフェートの化
合物である室温で液体、粘度か35ポイズの有機リン系
化合物を用い、金属銅微粉末と重量比1:1で混合した
ものを溶融ポリマー中へ混入し、実施例1と同様の方法
で繊維化した。抗菌性能は、低いレベルであった。特に
洗濯後の性能低下が激しかった。
[Comparative Example 2] An organic phosphorus compound, which is a compound of resorcinol and phenyl phosphate, which is liquid at room temperature and has a viscosity of about 35 poise, was used as a dispersion medium, and mixed with fine metallic copper powder at a weight ratio of 1:1 to form a molten polymer. The mixture was mixed into the powder and made into fibers in the same manner as in Example 1. Antibacterial performance was at a low level. The performance deterioration was particularly severe after washing.

〔比較例3〕 実施例1と同一の金属銅微粉末とエチレングリコールに
均一分散させ、テレフタル酸と常法によりエステル化反
応を行った俊、常法により重縮合反応を行い、〔η)(
1,70で、金属銅微粉末を1重量バーセント含有して
いるポリエチレンテレフタレートペレットを得た。該ペ
レットを押出様に供給し、孔径0.2 mmの紡糸孔3
6ホール有する口金により紡糸温度300℃、紡−系速
度1000 in/fninで紡糸を行った。得ら几た
紡糸原糸を通常の条件により延伸し、75デニール36
フイラメントのマルチフィラメントを得た。編地を作成
し、洗濯前と洗濯10回後の抗菌性を測定したところい
ずrしも30%の滅菌率でレベルとしては低い性能しか
得ら几なかった。紡糸性、延伸性が単糸切れ頻発し不良
であった。
[Comparative Example 3] The same fine metallic copper powder as in Example 1 was uniformly dispersed in ethylene glycol, and an esterification reaction was performed with terephthalic acid in a conventional manner. A polycondensation reaction was conducted in a conventional manner to obtain [η)(
1.70, polyethylene terephthalate pellets containing 1% by weight of fine metallic copper powder were obtained. The pellets were fed in an extrusion manner, and a spinning hole 3 with a hole diameter of 0.2 mm was formed.
Spinning was carried out using a spinneret having 6 holes at a spinning temperature of 300° C. and a spinning system speed of 1000 in/fnin. The obtained refined spun yarn was drawn under normal conditions to a 75 denier 36
A multifilament of filament was obtained. When a knitted fabric was prepared and its antibacterial properties were measured before and after washing 10 times, the sterilization rate was 30%, which was a low level of performance. Spinnability and drawability were poor due to frequent single yarn breakage.

〔比較例4〕 分散媒として、室温で液体で粘度が5ポイズの、アジピ
ン酸と1,3ブタンジオールの縮合物であるポリエステ
ル化合物を用い、実施例1と同様の方法で繊維化した。
[Comparative Example 4] A polyester compound, which is a condensation product of adipic acid and 1,3-butanediol and is liquid at room temperature and has a viscosity of 5 poise, was used as a dispersion medium, and fibers were formed in the same manner as in Example 1.

抗菌性能は低いレベルであった。Antibacterial performance was at a low level.

特に洗濯後の性能低下が認めらnだ。In particular, no deterioration in performance was observed after washing.

〔比較例5〕 分散媒としてプロピレンオキサイドとエチレンオキサイ
ドが25ニア50ランダム共重合体(PO・EO共重合
体)で室温で流動性のある粘度約200ポイズの粘稠液
体を用い、金属銅微粉末と重合比l:1で混合したもの
を溶融ポリマー中へ混入し、実施例1と同様の方法によ
り繊維化した。抗菌性能は、初期性能としては満足のい
くレベルであったが、洗濯後の性能低下か激しく洗濯耐
久性か認めら几なかった。
[Comparative Example 5] A viscous liquid with a viscosity of about 200 poise that is fluid at room temperature and is a 25 near 50 random copolymer (PO/EO copolymer) of propylene oxide and ethylene oxide as a dispersion medium was used. A mixture of the powder and the polymerization ratio of 1:1 was mixed into a molten polymer, and the mixture was made into fibers in the same manner as in Example 1. The antibacterial performance was at a satisfactory level as an initial performance, but it was not clear whether the performance deteriorated after washing or the washing durability was severe.

〔実施例2〜6〕 実施例1と同一の方法により金属銅微粉末とポリエステ
ル化合物含有ポリエステル繊維を得た。
[Examples 2 to 6] Metallic copper fine powder and polyester fiber containing a polyester compound were obtained by the same method as in Example 1.

実施例2では、実施例1と同様のポリエステル化合物を
用い、金属銅微粉末とポリエステル化合物の重合比1:
9に混合しちものをポリエステル中へ30重量%、つま
り金属銅微粉末が0.3重量%、ポリエステル化合物か
2.7重量%になるように添加した。実施例3では、金
属銅微粉末とポリエステル化合物の重量比7:3に混合
したものをポリエステル中へ3.6重量%、つまり金属
銅微粉末か2.5重量%、ポリエステル化合物か1.1
重量%になるように添加した。実施例4では、実施例3
と同一の混合物をポリエステル中へ1.0重量%、゛っ
甲り金属銅微粉末が0.7重量%、ポリエステル化合物
か0.3重盆%になるように添加した。実施例5では、
金属銅微粉末とポリエステル化合物の重量比5:95に
混合したものをポリエステル中へ4.2重量%、つまり
金属銅微粉末が0.2重量%、ポリエステル化合物が3
.8重量%になるように添加した。実施例6では、ポリ
エステル化合物の粘度が室温で45ポイズのものを用い
、実施例1と同一の添加量の繊維を得た。いずftも抗
菌性能としては満足のいくものであった。
In Example 2, the same polyester compound as in Example 1 was used, and the polymerization ratio of metallic copper fine powder and polyester compound was 1:
9 was added to the polyester in an amount of 30% by weight, that is, the fine metal copper powder was 0.3% by weight and the polyester compound was 2.7% by weight. In Example 3, a mixture of fine metallic copper powder and a polyester compound at a weight ratio of 7:3 was added to polyester in an amount of 3.6% by weight, that is, 2.5% by weight of fine metallic copper powder and 1.1% by weight of polyester compound.
It was added in an amount of % by weight. In Example 4, Example 3
The same mixture was added to polyester in an amount of 1.0% by weight, 0.7% by weight of copper fine powder, and 0.3% by weight of polyester compound. In Example 5,
A mixture of fine metallic copper powder and a polyester compound at a weight ratio of 5:95 was added to polyester in an amount of 4.2% by weight, that is, 0.2% by weight of fine metallic copper powder and 3% by weight of the polyester compound.
.. It was added at a concentration of 8% by weight. In Example 6, a polyester compound having a viscosity of 45 poise at room temperature was used, and fibers were obtained in the same amount as in Example 1. All ft had satisfactory antibacterial performance.

〔実施例7〕 〔η)=0.68のポリエチレンテレフタレートを押出
機にて押出し、該ポリマーの溶融ポリマーラインに、平
均粒径0.3ミクロンの金属銅微粉末と25℃下で流動
性を示す粘度約100ポイズのポリエステル化合物を重
量比1:1に混合したものを、ポリマーに対して2重社
%になるように注入し、その後、ケーニクス社製の30
エレメントスタチツクミキサーで混練したポリマーを鞘
成分とし、別の押出機より押出した、〔η)=O,6S
のポリエチレンテレフタレートを芯成分とし、芯/鞘=
50150重量比で1./L)=2.0の丸孔ノズルよ
り芯鞘複合紡糸を行った。通常の方法により延伸し、7
5デニール36フイラメントのマルチフィラメント延伸
糸を作製した。抗菌性能としては十分なレベルを維持し
ていることが確認された。
[Example 7] Polyethylene terephthalate with [η) = 0.68 was extruded using an extruder, and a fine metal copper powder with an average particle size of 0.3 microns was added to the molten polymer line to improve fluidity at 25°C. A mixture of polyester compounds having a viscosity of approximately 100 poise at a weight ratio of 1:1 was injected at a ratio of 20% to the polymer.
A polymer kneaded with an element static mixer was used as a sheath component and extruded from a separate extruder, [η)=O,6S
The core component is polyethylene terephthalate, and the core/sheath =
50150 weight ratio 1. Core-sheath composite spinning was performed using a round hole nozzle with a diameter of /L)=2.0. Stretched by normal method, 7
A multifilament drawn yarn of 5 denier and 36 filaments was produced. It was confirmed that a sufficient level of antibacterial performance was maintained.

〔実施例8〕 宇部興産vf?J製ナイロン6(銘柄1013B )ポ
リマーを用い押出機にて溶融押出し、該ポリマーの溶融
ポリマーラインに、平均粒径0.3ミクロンの金属銅微
粉末と、25℃下で流動性を示す粘度か約100ポイズ
のポリエステル化合物を重量比に1に混合し、120℃
であらかじめ絶乾したものを、ポリマー扼に対して該混
合物か2重ffi%、つまり金属銅微粉末か1重量%、
ポリエステル化合物が1重量%になるように注入し、そ
の後ケー二りス社の40エレメントスタチツクミキサー
で混線し、丸孔ノズルより吐出し紡糸し、ひきつづき連
続して延伸した後捲取った。得らfした50デニール3
6フイラメントのマルチフィラメントの抗菌性能は良好
な結果であった。
[Example 8] Ube Industries vf? A nylon 6 (brand 1013B) polymer made by J.D. was melt-extruded using an extruder, and fine metal copper powder with an average particle size of 0.3 microns was added to the molten polymer line, and a viscosity that showed fluidity at 25°C was added to the molten polymer line. About 100 poise polyester compound was mixed at a weight ratio of 1, and heated at 120°C.
The mixture was completely dried in advance, and the mixture was added to the polymer at 2% by weight, that is, 1% by weight of fine metallic copper powder.
The polyester compound was injected to a concentration of 1% by weight, mixed with a 40-element static mixer manufactured by Könis, spun through a round hole nozzle, continuously stretched, and then wound up. Obtained 50 denier 3
The antibacterial performance of the 6-filament multifilament showed good results.

〔比較例6〕 ポリエチレンテレフタレート50デニール36フイラメ
ント延伸糸を用い、タックの織物を作製した。金属銅微
粉末とウレタン樹脂とを混合し、混合したものをタフタ
織物に金属銅が1重社%となるようにコーティング処理
した。織物の風合としてはやや硬くなり風合が悪いもの
となった。抗菌性能を測定した結果、初期性能は滅菌率
95.0%と十分にあったが、洗曜10回後はコーティ
ングした金属銅の脱落か激しく、滅菌率か50%と性能
が低下した。
[Comparative Example 6] A tucked fabric was produced using polyethylene terephthalate 50 denier 36 filament drawn yarn. Fine metallic copper powder and urethane resin were mixed, and the mixture was coated on a taffeta fabric so that the metallic copper content was 1%. The texture of the fabric became slightly stiff and poor in texture. As a result of measuring the antibacterial performance, the initial performance was sufficient with a sterilization rate of 95.0%, but after 10 washes, the coated metal copper fell off severely and the performance decreased to a sterilization rate of 50%.

〔比較例7〕 ポリエチレンテレフタレート50デニール36フイラメ
ント延伸糸を用い、タックの織物を作製した。一般に市
販の抗菌加工繊維処理剤ろH3 50%メタノール溶液を用い、該加工剤をI Q/11
の水溶液に希釈した後ポリエステル織物を100℃×3
0分間浸漬処理した。ポリエステル織物表面への抗菌加
工剤は純分で1%owfとなるようにした。抗菌性能を
測定した結果初期性能は滅菌率83.0%と十分にあっ
たが、洗濯後減菌率5.0%と性能がほとんどなくなる
ことか認められた。
[Comparative Example 7] A tucked fabric was produced using polyethylene terephthalate 50 denier 36 filament drawn yarn. Generally, using a commercially available antibacterial processing agent filter H3 50% methanol solution, the processing agent is IQ/11
After diluting the polyester fabric in an aqueous solution of
It was immersed for 0 minutes. The antibacterial finishing agent applied to the surface of the polyester fabric was adjusted to have a pure content of 1% owf. As a result of measuring the antibacterial performance, the initial performance was sufficient with a sterilization rate of 83.0%, but the sterilization rate after washing was 5.0%, indicating that the performance had almost disappeared.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造工程の一例を示す概略図、1;溶
融押出機、2,3;計量機、4;添加剤供給機、51ス
タチツクミギサー、6;紡糸口金パック
FIG. 1 is a schematic diagram showing an example of the manufacturing process of the present invention, 1: Melt extruder, 2, 3: Weighing machine, 4: Additive feeder, 51 Static mixer, 6: Spinneret pack

Claims (6)

【特許請求の範囲】[Claims] (1)平均粒子径が5ミクロン以下の金属銅微粒子と、
融点が10℃より低くかつ25℃下での粘度が10ポイ
ズ以上を有する液状ポリエステル系化合物との混合物が
、融点200℃以上の熱可塑性成形物中に分散している
ことを特徴とする抗菌性成形物。
(1) Metallic copper fine particles with an average particle diameter of 5 microns or less,
Antibacterial properties, characterized in that a mixture with a liquid polyester compound having a melting point lower than 10°C and a viscosity at 25°C of 10 poise or higher is dispersed in a thermoplastic molded product having a melting point of 200°C or higher. Molded object.
(2)成形物中に金属銅微粒子が0.1〜10重量%、
ポリエステル系化合物が0.1〜10重量%分散してい
る特許請求の範囲第1項記載の抗菌性成形物。
(2) 0.1 to 10% by weight of metallic copper fine particles in the molded product,
The antibacterial molded article according to claim 1, wherein the polyester compound is dispersed in an amount of 0.1 to 10% by weight.
(3)金属銅微粒子と液状ポリエステル可塑剤との重量
比が5:95〜80:20である特許請求の範囲第1項
記載の抗菌性成形物。
(3) The antibacterial molded article according to claim 1, wherein the weight ratio of metallic copper fine particles to liquid polyester plasticizer is 5:95 to 80:20.
(4)熱可塑性樹脂がポリエチレンテレフタレート、ポ
リブチレンテレフタレート又はこれを主成分とするポリ
エステルである特許請求の範囲第1項記載の抗菌性成形
物。
(4) The antibacterial molded article according to claim 1, wherein the thermoplastic resin is polyethylene terephthalate, polybutylene terephthalate, or a polyester containing these as a main component.
(5)熱可塑性樹脂がナイロン6、ナイロン66、メタ
キシレンジアミンナイロン又はこれを主成分とするポリ
アミドである特許請求の範囲第1項記載の抗菌性成形物
(5) The antibacterial molded article according to claim 1, wherein the thermoplastic resin is nylon 6, nylon 66, metaxylene diamine nylon, or a polyamide containing these as a main component.
(6)平均粒径が5ミクロン以下の金属銅微粒子と、融
点か10℃より低くかつ25℃下での粘度が10ポイズ
以上を有する液状ポリエステル系可塑剤との混合物を、
ポリマーの重合完了後成形吐出直前の間で該ポリマー溶
融流体中へ添加し、混練した後吐出孔より吐出し、成形
物とすることを特徴とする抗菌性成形物の製造法。
(6) A mixture of metallic copper fine particles with an average particle size of 5 microns or less and a liquid polyester plasticizer having a melting point lower than 10°C and a viscosity of 10 poise or more at 25°C,
1. A method for producing an antibacterial molded article, which comprises adding the polymer to a molten fluid after completion of polymerization and immediately before molding and discharging, kneading, and then discharging from a discharge hole to form a molded article.
JP25510487A 1987-10-08 1987-10-08 Antibacterial molded article and method for producing the same Expired - Lifetime JP2593890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25510487A JP2593890B2 (en) 1987-10-08 1987-10-08 Antibacterial molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25510487A JP2593890B2 (en) 1987-10-08 1987-10-08 Antibacterial molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0196244A true JPH0196244A (en) 1989-04-14
JP2593890B2 JP2593890B2 (en) 1997-03-26

Family

ID=17274165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25510487A Expired - Lifetime JP2593890B2 (en) 1987-10-08 1987-10-08 Antibacterial molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP2593890B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505801A (en) * 2010-12-23 2014-03-06 ダブリュー. フォス,ステファンス Fiber with improved antibacterial performance
CN106087099A (en) * 2016-06-12 2016-11-09 福建百宏聚纤科技实业有限公司 A kind of polyester FDY mother's silk and the preparation method of monofilament thereof
US9878480B1 (en) 2014-06-24 2018-01-30 PurThread Technologies, Inc. Method for making polymer feedstock usable for generation of fiber having anti-microbial properties
US9908987B2 (en) 2013-08-12 2018-03-06 PurThread Technologies, Inc. Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof
US10080363B2 (en) 2010-10-18 2018-09-25 PurThread Technologies, Inc. Method for generating a halogen-stable anti-microbial synthetic fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10080363B2 (en) 2010-10-18 2018-09-25 PurThread Technologies, Inc. Method for generating a halogen-stable anti-microbial synthetic fiber
US10506805B2 (en) 2010-10-18 2019-12-17 PurThread Technologies, Inc. Method for generating a halogen-stable anti-microbial synthetic fiber
JP2014505801A (en) * 2010-12-23 2014-03-06 ダブリュー. フォス,ステファンス Fiber with improved antibacterial performance
US9908987B2 (en) 2013-08-12 2018-03-06 PurThread Technologies, Inc. Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof
US10508188B2 (en) 2013-08-12 2019-12-17 PurThread Technologies, Inc. Antimicrobial and antifungal polymer fibers, fabrics, and methods of manufacture thereof
US9878480B1 (en) 2014-06-24 2018-01-30 PurThread Technologies, Inc. Method for making polymer feedstock usable for generation of fiber having anti-microbial properties
CN106087099A (en) * 2016-06-12 2016-11-09 福建百宏聚纤科技实业有限公司 A kind of polyester FDY mother's silk and the preparation method of monofilament thereof

Also Published As

Publication number Publication date
JP2593890B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
JP2503057B2 (en) Antibacterial molded article and method for producing the same
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
CN110409012A (en) A kind of antibiotic polyester fiber and preparation method thereof
WO2009072144A2 (en) Antimicrobial materials and preparation thereof
JP2566610B2 (en) Antibacterial molded article and method for producing the same
JPH01246204A (en) Antimicrobial formed products and their production
JPH0196244A (en) Antimicrobial formed article and production thereof
JPH0299606A (en) Fiber having deodorant and antimicrobial performance and production thereof
JP2003268628A (en) Antibacterial polyester fiber
JPH01250411A (en) Antifungal formed product and production thereof
JPH03113011A (en) Synthetic yarn and production thereof
JPH02169662A (en) Antifungal molded article and production thereof
JPH02264069A (en) Production of antimicrobial molded product
WO1997046748A1 (en) Elastic polyurethane yarn and method of manufacturing the same
JPH01242666A (en) Durable antibacterial molding and its production
JPH01108259A (en) Antibacterial molding and its production
JPH0551816A (en) Antimicrobial fiber and its production
JPH02264066A (en) Production of antimicrobial molded product
JP2004360091A (en) Antimicrobial polyester yarn and method for producing the same
JP4214071B2 (en) Polyester fiber
JPH0291209A (en) Synthetic fibers having deodorant properties
JPH02269141A (en) Antimicrobial molded product and production thereof
JP2905629B2 (en) Deodorant and deodorant fiber
JP2004169206A (en) Antibacterial polyester fiber
RU2422565C2 (en) Non-combustible antimicrobial thread or yarn and textile material based thereon