JPH0196011A - Production of zeolite containing copper - Google Patents

Production of zeolite containing copper

Info

Publication number
JPH0196011A
JPH0196011A JP62251616A JP25161687A JPH0196011A JP H0196011 A JPH0196011 A JP H0196011A JP 62251616 A JP62251616 A JP 62251616A JP 25161687 A JP25161687 A JP 25161687A JP H0196011 A JPH0196011 A JP H0196011A
Authority
JP
Japan
Prior art keywords
zeolite
copper
tsz
ammonia
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62251616A
Other languages
Japanese (ja)
Other versions
JP2555637B2 (en
Inventor
Katsumi Kamiyama
上山 克巳
Kazunari Igawa
井川 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP62251616A priority Critical patent/JP2555637B2/en
Priority to DE8888116539T priority patent/DE3872478T2/en
Priority to EP88116539A priority patent/EP0311066B1/en
Priority to US07/255,018 priority patent/US4999173A/en
Publication of JPH0196011A publication Critical patent/JPH0196011A/en
Priority to US07/537,824 priority patent/US5110777A/en
Application granted granted Critical
Publication of JP2555637B2 publication Critical patent/JP2555637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain steadily stable catalyst without decreasing activity by carrying out the exchange for copper ion in zeolite having fixed lattice spacing in an aq. soln. contg. water-soluble copper salt and ammonia. CONSTITUTION:The zeolite having the lattice spacing obtd. by power X-ray diffraction and shown in the table, is prepd. Then, the exchange for copper ion in the zeolite above-mentioned is carried out in the aq. soln. contg. water-soluble copper salt and ammonia. Thereby, the stable catalyst, the activity of which is not decreased even when moisture, oxygen and sulfur dioxide are present in the gas to be treated, is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、石油化学1石油精製、公害防止分野における
触媒、吸着剤の製造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the production of catalysts and adsorbents in the field of petrochemistry, petroleum refining, and pollution prevention.

その中でも特に工業プラント、自動車等から排出される
排ガス中のNOxを分解する公害防止用触媒に関する。
Among these, the present invention particularly relates to a pollution prevention catalyst that decomposes NOx in exhaust gas emitted from industrial plants, automobiles, and the like.

[従来の技術] 公害防止用触媒として、今まで市販触媒を含めた広範な
分解触媒の探索が行なわれているが見るべき成果は得ら
れていない、これは排ガスの主成分であるNOの分解速
度が非常に遅い為である。
[Prior art] A wide range of decomposition catalysts, including commercially available catalysts, have been searched for as catalysts for pollution prevention, but no significant results have been obtained. This is because the speed is very slow.

現状では、N H3などの還元剤を触媒と併用する還元
脱硝プロセスが企業化されている。しかしこのプロセス
では、還元剤が必要であり、プロセスも複雑となり、更
に未反応還元剤を回収、あるいは分解する為の装置が必
要となる。その点No直接接触分解は最も単純で経済的
なプロセスである。
Currently, reductive denitrification processes that use reducing agents such as NH3 in combination with catalysts have been commercialized. However, this process requires a reducing agent, making the process complicated, and also requires a device to recover or decompose the unreacted reducing agent. In that respect, direct catalytic cracking is the simplest and economical process.

今までにもNo直接接触分解反応において、Pt。Until now, Pt has been used in the direct catalytic cracking reaction of No.

Cu O、Co 304などにNO分解活性が認められ
たが、何れも分解生成物である酸素の被毒作用により充
分な活性が得られず、実用触媒とはなり得なかった。
Although NO decomposition activity was observed in CuO, Co304, etc., sufficient activity could not be obtained due to the poisoning effect of oxygen, which is a decomposition product, and neither could be used as a practical catalyst.

最近、銅イオンを含有し、かつ特定の結晶構造を有する
ゼオライトが、No直接接触分解触媒として、処理ガス
中に水分や酸素が共存しても被毒されないNo分解触t
Ji、(特開昭60−125250号)となる事が見出
されている。
Recently, zeolite containing copper ions and having a specific crystal structure has been developed as a No direct catalytic cracking catalyst that is not poisoned even when moisture and oxygen coexist in the treated gas.
Ji, (Japanese Unexamined Patent Publication No. 125250/1982).

本発明は、特開昭60−125250号公報の改良法を
提供するものでもある。
The present invention also provides an improved method of JP-A-60-125250.

[本発明が解決しようとする問題点] 本発明の目的は、水分、酸素、二酸化イオウの共存によ
る被毒を受けず、更に低温においても、高活性な、定常
安定性の良い、従来にない特性を持つ触媒の製造方法を
提供することにある。
[Problems to be Solved by the Present Invention] The object of the present invention is to provide a novel material that is not poisoned by the coexistence of moisture, oxygen, and sulfur dioxide, and has high activity and good steady-state stability even at low temperatures. The object of the present invention is to provide a method for producing a catalyst having specific characteristics.

[問題点を解決する為の手段および作用]本発明は、ゼ
オライトが本明細書第1表に示した粉末X線回折により
求めた格子面間隔(d値)を持ち、該ゼオライトを銅イ
オン交換する際に水溶性銅塩及びアンモニアを含む水溶
液中で行うことにより、処理ガス中に水分、酸素、二酸
化イオウが共存しても、活性低下を起すことなく、定常
安定性を示す銅含有ゼオライトを製造する方法を提供す
るものである。
[Means and effects for solving the problems] The present invention provides that the zeolite has a lattice spacing (d value) determined by powder X-ray diffraction shown in Table 1 of the present specification, and that the zeolite is subjected to copper ion exchange. By conducting the process in an aqueous solution containing a water-soluble copper salt and ammonia, we can produce a copper-containing zeolite that exhibits steady-state stability without decreasing activity even when moisture, oxygen, and sulfur dioxide coexist in the process gas. The present invention provides a method for manufacturing.

第  1  表 以下、本発明の詳細な説明する。Table 1 The present invention will be explained in detail below.

本発明で触媒の基剤として用い得るゼオライトは、第1
表に示した格子面間隔(d値)を持つ事か必須であるが
、その製造法は限定されるものではない。好ましくは、
本発明で使用されるゼオライトのSiO/A!203モ
ル比は20〜200である。触媒の基剤として第1表に
示した格子面間隔(d値)を持つゼオライトそのままで
はNoの触媒分解活性はほとんどない。
The zeolite that can be used as a catalyst base in the present invention is
Although it is essential to have the lattice spacing (d value) shown in the table, the manufacturing method is not limited. Preferably,
SiO/A of the zeolite used in the present invention! The 203 molar ratio is 20-200. When zeolite having the lattice spacing (d value) shown in Table 1 is used as a catalyst base, it has almost no catalytic decomposition activity for No.

本発明の銅含有ゼオライトは、第1表に示した格子面間
隔(d値)を持つゼオライト中の陽イオンを別イオンで
交換する際に、水溶性銅塩及びアンモニアを含む水溶液
を用いて、製造する事が、必須である。水溶性銅塩とし
ては、硫酸銅、塩化j11 、酢酸銅、硝酸銅などが使
用でき、またアンモニアとしては、アンモニア水、アン
モニア含水化合物またはアンモニアガスを溶解した水溶
液などが使用できる。アンモニアの添加量は特に限定さ
れないが、ゼオライトを含むスラリー溶液中のpHが4
〜12の範囲になるように添加する事が好ましい。水溶
液中の銅イオンの濃度は、目的とするゼオライトの銅イ
オン交換率によって任意に設定することが出初る。
The copper-containing zeolite of the present invention uses an aqueous solution containing a water-soluble copper salt and ammonia when exchanging the cations in the zeolite having the lattice spacing (d value) shown in Table 1 with another ion. Manufacturing is essential. As the water-soluble copper salt, copper sulfate, j11 chloride, copper acetate, copper nitrate, etc. can be used, and as the ammonia, aqueous ammonia, an ammonia-containing compound, or an aqueous solution of ammonia gas can be used. The amount of ammonia added is not particularly limited, but if the pH of the slurry solution containing zeolite is 4.
It is preferable to add the amount in the range of 12 to 12. The concentration of copper ions in the aqueous solution can be arbitrarily set depending on the copper ion exchange rate of the target zeolite.

2十 銅イオンはCu” 、Cu  、Cu0H。twenty Copper ions are Cu”, Cu, and Cu0H.

[Cu(NH3)4]2+のいずれかの形態でゼオライ
ト中の陽イオンと交換している。またゼオライトの一部
は大過剰のNH3分子が存在する為に、NH4型にもな
っている。
[Cu(NH3)4]2+ is exchanged with the cation in the zeolite in any form. In addition, some of the zeolites are also in the NH4 type due to the presence of a large excess of NH3 molecules.

本発明では、1回の交換で銅イオン交換率が100%以
上のものが得られる。
In the present invention, a copper ion exchange rate of 100% or more can be obtained by one exchange.

イオン交換終了後、水洗、乾燥して銅含有ゼオライトが
得られる。銅含有量は高い程よいが、望ましくは0.0
3wt%以上で、さらに望ましくは1 w t%以上で
ある。銅含有量は高い程、NO分解活性が高い。
After the ion exchange is completed, the copper-containing zeolite is obtained by washing with water and drying. The higher the copper content, the better, but preferably 0.0
The content is 3 wt% or more, more preferably 1 wt% or more. The higher the copper content, the higher the NO decomposition activity.

銅含有量ゼオライトのS i O2/ A!203上2
0は、使用したゼオライトのS i O2/AJ220
3モル比と実質的に変わらない、銅含有ゼオライトの結
晶構造もイオン交換前後で異なるものではなく、第1表
に示した格子面間隔(d値)で特徴づけることができる
S i O2/A of copper content zeolite! 203 top 2
0 is the zeolite used S i O2/AJ220
The crystal structure of the copper-containing zeolite, which has a molar ratio of 3, does not differ substantially before and after ion exchange, and can be characterized by the lattice spacing (d value) shown in Table 1.

本発明法による、銅含有ゼオライトがNOx接触分解反
応に極めて高い活性を示す理由については、明らかでな
いが、銅イオンとともにゼオライトにとりこまれたアン
モニア分子がNOx接触分解反応の前処理段階で脱離し
、部分的還元が起り、このNOx接触分解反応の活性サ
イトであるCu+が出来、Cu ” コCu ”f) 
p化還元サイクルがスムーズに行われ、高活性を持続さ
れるものと考えられる。
Although it is not clear why the copper-containing zeolite produced by the method of the present invention exhibits extremely high activity in the NOx catalytic decomposition reaction, ammonia molecules incorporated into the zeolite together with copper ions are desorbed during the pretreatment stage of the NOx catalytic decomposition reaction. Partial reduction occurs and Cu+, which is the active site for this NOx catalytic decomposition reaction, is created, and Cu ``CoCu ''f)
It is thought that the p-oxidation reduction cycle is carried out smoothly and high activity is maintained.

本発明法による銅含有ゼオライトの持つ特異的結晶構造
とその構造安定性および耐熱性等が複合的に作用して酸
素、水分、二酸化イオウの共存下でも高い活性を示して
いると考えられる。
It is thought that the specific crystal structure of the copper-containing zeolite produced by the method of the present invention, its structural stability, heat resistance, etc. act in a complex manner to exhibit high activity even in the coexistence of oxygen, moisture, and sulfur dioxide.

さらに、銅含有ゼオライトをNOx分解用触媒として使
用する場合の使用温度範囲は200〜1000℃の範囲
で、好ましくは300〜700°Cの範囲である。触媒
と処理ガスとの接触時間は特に限定されるものではない
Further, when using the copper-containing zeolite as a catalyst for NOx decomposition, the operating temperature range is from 200 to 1000°C, preferably from 300 to 700°C. The contact time between the catalyst and the processing gas is not particularly limited.

[発明の効果] 本発明で得られる銅含有ゼオライトは、石油化学9石油
精製、公害防止分野における触媒、吸着剤として、その
中でもNOx分解除去触媒として、特に優れたNOx分
解活性を示す。
[Effects of the Invention] The copper-containing zeolite obtained in the present invention exhibits particularly excellent NOx decomposition activity as a catalyst and adsorbent in the field of petrochemical oil refining and pollution prevention, and among them, as a NOx decomposition and removal catalyst.

本発明で得られた銅含有ゼオライトは、粘土鉱物等のバ
インダーを用いて成形して用いることもできる。
The copper-containing zeolite obtained in the present invention can also be used by being shaped using a binder such as clay mineral.

また、本発明は、あらかじめゼオライトを成形し、その
成形体を水溶性銅塩及びアンモニアを含む水溶液で銅イ
オン交換してもよい。成形体の大きさは特に限定される
ものではない。
Furthermore, in the present invention, zeolite may be shaped in advance, and the shaped body may be subjected to copper ion exchange with an aqueous solution containing a water-soluble copper salt and ammonia. The size of the molded body is not particularly limited.

以下、実施例及び比較例においてさらに詳細に説明する
Hereinafter, it will be explained in more detail in Examples and Comparative Examples.

[実施例] 実施例1(ゼオライトの合成) 撹拌状態にある実容積21のオーバーフロータイプ反応
槽に、珪酸ソーダ水溶液(SiO□153.4 g /
 1 ; N a 20 ; 49.9 g / fl
 。
[Example] Example 1 (Synthesis of zeolite) A sodium silicate aqueous solution (SiO□153.4 g /
1; Na20; 49.9 g/fl
.

Al1203 ; 0.8 g/β)と硫酸を添加した
硫酸アルミニウム水溶液(Af  O;38.4sr/
1.H2304; 275.4t/1)をそれぞれ3.
242/hr、0.842/hrの速度で連続的に供給
した0反応温度は30〜32℃、スラリーのpHは6.
4〜6.6であった。排出スラリーを遠心分離機で固液
分離し、十分水洗後、N a20 ; 1 、72 v
v t%、 A I2203 ;2.58wt%、5i
02  ;39.3wt%。
Al1203; 0.8 g/β) and aluminum sulfate aqueous solution to which sulfuric acid was added (AfO; 38.4sr/
1. H2304; 275.4t/1) respectively.
The reaction temperature was 30-32°C, and the pH of the slurry was 6.242/hr, and the slurry was continuously supplied at a rate of 0.842/hr.
It was 4-6.6. The discharged slurry was separated into solid and liquid using a centrifuge, and after thorough washing with water, Na20; 1,72 V
vt%, AI2203; 2.58wt%, 5i
02; 39.3wt%.

I20 ; 56−4 vv t%の微粒状無定形アル
ミノ珪酸塩均一化合物を得た。該均一化合物2840g
と1.39wt%のNaOH水溶液5160gとを10
1のオートクレーブに仕込み、160°Cで72時間撹
拌下で結晶化した。生成物を固液分離後、水洗、乾燥し
て本触媒の基剤となるゼオライトTSZ−821を得た
。化学分析の結果、その組成は無水ベースにおける酸化
物のモル比で表わして次の組成を有していた。
A finely divided amorphous aluminosilicate homogeneous compound having a I20 of 56-4 vvt% was obtained. 2840g of the homogeneous compound
and 5160 g of 1.39 wt% NaOH aqueous solution at 10
The mixture was placed in an autoclave No. 1 and crystallized under stirring at 160°C for 72 hours. After solid-liquid separation of the product, it was washed with water and dried to obtain zeolite TSZ-821, which will serve as the base of the present catalyst. As a result of chemical analysis, its composition, expressed as molar ratio of oxides on an anhydrous basis, was as follows:

1.05Na  0−AI2203−23.3SiO2
まな、その粉末X線図から求めたd値は基本的に第1表
に示した数値と同じであった。
1.05Na 0-AI2203-23.3SiO2
The d value determined from the powder X-ray diagram was basically the same as the values shown in Table 1.

次にTSZ−821を合成した時と同様の方法で、まず
5102及びAρ203含有量の異なる微粒状無定形ア
ルミノ珪酸塩均一化合物を遺り、これを苛性ソーダ水溶
液中、撹拌下で加熱して結晶化し、本触媒の基剤となる
ゼオライト、TSZ−841,TSZ−851を得な。
Next, using the same method as when TSZ-821 was synthesized, first leave a homogeneous fine-grain amorphous aluminosilicate compound with different contents of 5102 and Aρ203, and crystallize it by heating it in an aqueous solution of caustic soda with stirring. , to obtain zeolites TSZ-841 and TSZ-851, which are the base materials of the present catalyst.

その化学組成は無水ベースにおける酸化物のモル比で表
わして次の組成を有していた。
Its chemical composition, expressed as the molar ratio of oxides on an anhydrous basis, had the following composition:

TSZ−841:1.41Na  0−Ai+203−
40、4 S i O2 ”I’5Z−851: 1.65Na20− AR20
3・49.8Si02 また、これらのゼオライトの粉末X線回折図から求めた
、d値は基本的に第1表に示した数値と同じであった。
TSZ-841: 1.41Na 0-Ai+203-
40, 4 S i O2 ”I'5Z-851: 1.65Na20- AR20
3.49.8Si02 Furthermore, the d values determined from the powder X-ray diffraction patterns of these zeolites were basically the same as the values shown in Table 1.

実施例2(銅含有ゼオライトの調製) 実施例1で得られたTSZ−821、TSZ−841、
TSZ−851をそれぞれ10g採取して、ゼオライト
中のA1原子数に対し等しい銅原子数になるようにO,
1moρ/β酢酸鋼水溶酢酸入水溶液温にて撹拌し、2
.5%NH3水を添加し、スラリーpH10,5になる
ように調整した。
Example 2 (Preparation of copper-containing zeolite) TSZ-821, TSZ-841 obtained in Example 1,
10g of each TSZ-851 was collected, and O,
Stir at 1moρ/β acetic acid steel aqueous solution temperature, 2
.. 5% NH3 water was added to adjust the slurry pH to 10.5.

その後、目的とするゼオライトの銅イオン交換率になる
まで、室温で撹拌した。固液分離後、十分水洗し100
’Cで10時間乾燥した。得られた銅含有ゼオライトを
それぞれTSZ−821−A。
Thereafter, the mixture was stirred at room temperature until the desired copper ion exchange rate of the zeolite was reached. After solid-liquid separation, wash thoroughly with water
'C for 10 hours. The obtained copper-containing zeolites were respectively designated as TSZ-821-A.

TSZ−821−B、’r’5Z−841−C。TSZ-821-B, 'r'5Z-841-C.

TSZ−851−Dとする。化学分析によって求めた銅
含有ゼオライトの銅イオン交換率を第2表に示す、銅イ
オン交換率は、二価の銅として交換していると仮定して
求めた。
It is designated as TSZ-851-D. The copper ion exchange rate of the copper-containing zeolite determined by chemical analysis is shown in Table 2. The copper ion exchange rate was determined on the assumption that the copper ion exchange rate was exchanged as divalent copper.

第  2  表 実施例3(銅含有ゼオライトの調製) 実施例1で得られたTSZ−821を10+r採取して
、ゼオライト中のAffi原子数に対し等しい銅原子数
になるように0.1moβ/β酢酸銅水溶液を入れ、室
温にて撹拌し、2.5%NH3水を添加し、スラリーp
H6,0になるように調整した。
Table 2 Example 3 (Preparation of copper-containing zeolite) 10+r samples of TSZ-821 obtained in Example 1 were added to 0.1 moβ/β so that the number of copper atoms was equal to the number of Affi atoms in the zeolite. Add copper acetate aqueous solution, stir at room temperature, add 2.5% NH3 water, and slurry p
Adjusted to H6.0.

その後、室温にて12時間撹拌しな。固液分雅後十分水
洗し、100℃で10時間乾燥した。得られた銅含有ゼ
オライトをTSZ−821−Eとする。化学分析によっ
て求めた銅含有ゼオライトの銅イオン交換率を第3表に
示す。
Then stir at room temperature for 12 hours. After solid-liquid separation, it was thoroughly washed with water and dried at 100°C for 10 hours. The obtained copper-containing zeolite is designated as TSZ-821-E. Table 3 shows the copper ion exchange rate of the copper-containing zeolite determined by chemical analysis.

第  3  表 実施例4(銅含有ゼオライトのNO分解活性試験)実施
例2.3で調製した銅含有ゼオライトをプレス成形した
後、破砕して42〜80メツシユに整粒し、その1gを
常圧固定床流通式反応管に充填した。反応前に銅含有ゼ
オライトをヘリウムガス流通下で5°C/minの昇温
速度で500℃まで昇温し、昇温後2時間その温度を維
持して前処理を行った。NOを5000PPm含有する
ヘリウムガスを15cc/minの流量で本触媒充填層
を通して反応させ、反応開始50分後の各反応温度にお
けるNO転化率を求めた。その結果を第4表に示す。
Table 3 Example 4 (NO decomposition activity test of copper-containing zeolite) After the copper-containing zeolite prepared in Example 2.3 was press-molded, it was crushed and sized to 42 to 80 meshes, and 1 g of it was heated under normal pressure. It was filled into a fixed bed flow reaction tube. Before the reaction, the copper-containing zeolite was heated to 500° C. at a heating rate of 5° C./min under helium gas flow, and after heating, the temperature was maintained for 2 hours for pretreatment. Helium gas containing 5000 PPm of NO was reacted at a flow rate of 15 cc/min through this catalyst packed bed, and the NO conversion rate at each reaction temperature was determined 50 minutes after the start of the reaction. The results are shown in Table 4.

実施例5(銅含有ゼオライトの活性の安定性)銅含有ゼ
オライトTSZ−821−B (銅イオン交換率123
%)を用いてNo分解活性の持続安定性を試験した。実
施例4と同じ装置を用いて同様の方法で行い、反応温度
500℃とした。転化率の経時変化を第1図に示す。
Example 5 (Stability of activity of copper-containing zeolite) Copper-containing zeolite TSZ-821-B (copper ion exchange rate 123
%) was used to test the sustained stability of No decomposition activity. The reaction was carried out in the same manner as in Example 4 using the same apparatus, and the reaction temperature was 500°C. Figure 1 shows the change in conversion rate over time.

比較例1(比較ゼオライトの調製) 実施例1で得られた’T”5I−821、TSZ−84
1、TSZ−851をそれぞれ10g採取して、ゼオラ
イト中のA!2原子数に対し等しい銅原子数になるよう
にOll m o 1 / (l酢酸銅水溶:夜を入れ
、室温にて12時間撹拌しな。固液弁M後、洗浄しこの
操作を3回繰り返した後、100°Cで10時間乾燥し
た。得られた比較ゼオライトをそれぞれTSZ−821
−F、TSZ〜841−G。
Comparative Example 1 (Preparation of Comparative Zeolite) 'T''5I-821 and TSZ-84 obtained in Example 1
1. Collect 10g of each TSZ-851, A! in zeolite! Oll m o 1 / (l copper acetate aqueous solution: Stir overnight at room temperature for 12 hours. After solid-liquid valve M, wash and repeat this operation 3 times. After repeating, it was dried at 100°C for 10 hours.The obtained comparative zeolites were each TSZ-821
-F, TSZ~841-G.

TSZ−851−Hとする。化学分析によって求めた比
較触媒の別イオン交換率を第5表に示す。
It is called TSZ-851-H. Table 5 shows the different ion exchange rates of the comparative catalysts determined by chemical analysis.

第  5  表 比較例2(比較ゼオライトのNo分解活性試験)比較例
1で調製した比較ゼオライトを、実施例4の方法に従っ
てNO転化率を求めた。結果を第6表に示す。
Table 5 Comparative Example 2 (No decomposition activity test of comparative zeolite) The NO conversion rate of the comparative zeolite prepared in Comparative Example 1 was determined according to the method of Example 4. The results are shown in Table 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例5におけるNO転化率の経時変化を示
す図である。
FIG. 1 is a diagram showing the change in NO conversion rate over time in Example 5.

Claims (3)

【特許請求の範囲】[Claims] (1)ゼオライトが本明細書第1表に示した粉末X線回
折により求めた格子面間隔(d値)を持ち、該ゼオライ
トの銅イオン交換を水溶性銅塩及びアンモニアを含む水
溶液で行うことを特徴とする銅含有ゼオライトの製造方
法。 第1表
(1) The zeolite has a lattice spacing (d value) determined by powder X-ray diffraction as shown in Table 1 of this specification, and the zeolite is subjected to copper ion exchange with an aqueous solution containing a water-soluble copper salt and ammonia. A method for producing a copper-containing zeolite, characterized by: Table 1
(2)該ゼオライトのSiO_2/Al_2O_3モル
比が20〜200である特許請求の範囲第1項記載の方
法。
(2) The method according to claim 1, wherein the zeolite has a SiO_2/Al_2O_3 molar ratio of 20 to 200.
(3)銅イオン交換するときのゼオライトを含むスラリ
ーのpHが4〜12である特許請求の範囲第1項または
第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the pH of the slurry containing zeolite during copper ion exchange is 4 to 12.
JP62251616A 1987-10-07 1987-10-07 Method for producing copper-containing zeolite Expired - Fee Related JP2555637B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62251616A JP2555637B2 (en) 1987-10-07 1987-10-07 Method for producing copper-containing zeolite
DE8888116539T DE3872478T2 (en) 1987-10-07 1988-10-06 METHOD FOR PRODUCING A ZEOLITH CONTAINING COPPER AND METHOD FOR ITS APPLICATION.
EP88116539A EP0311066B1 (en) 1987-10-07 1988-10-06 Process for the production of copper-containing zeolite and the method of application thereof
US07/255,018 US4999173A (en) 1987-10-07 1988-10-07 Removal of nitric oxides by copper-containing zeolites
US07/537,824 US5110777A (en) 1987-10-07 1990-06-14 Copper-containing zeolites and their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251616A JP2555637B2 (en) 1987-10-07 1987-10-07 Method for producing copper-containing zeolite

Publications (2)

Publication Number Publication Date
JPH0196011A true JPH0196011A (en) 1989-04-14
JP2555637B2 JP2555637B2 (en) 1996-11-20

Family

ID=17225473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251616A Expired - Fee Related JP2555637B2 (en) 1987-10-07 1987-10-07 Method for producing copper-containing zeolite

Country Status (1)

Country Link
JP (1) JP2555637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359302A (en) * 1989-07-28 1991-03-14 Takuma Co Ltd Low-nox burner
WO1991006508A1 (en) * 1989-10-31 1991-05-16 Mitsubishi Jukogyo Kabushiki Kaisha Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas
JPH03127629A (en) * 1989-10-12 1991-05-30 Mitsubishi Heavy Ind Ltd Direct catalytic cracking catalyst for nitrogen oxides
JP2009046372A (en) * 2007-08-23 2009-03-05 Tochigi Prefecture Metal nanoparticle, zeolite with dispersed metal nanoparticle and method for producing zeolite with dispersed metal nanoparticle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
JPS5711926A (en) * 1980-05-27 1982-01-21 Mobil Oil Corp Conversion of organic compound using periodic table ib group element denatured zeolite catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3702886A (en) * 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
JPS5711926A (en) * 1980-05-27 1982-01-21 Mobil Oil Corp Conversion of organic compound using periodic table ib group element denatured zeolite catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359302A (en) * 1989-07-28 1991-03-14 Takuma Co Ltd Low-nox burner
JPH03127629A (en) * 1989-10-12 1991-05-30 Mitsubishi Heavy Ind Ltd Direct catalytic cracking catalyst for nitrogen oxides
WO1991006508A1 (en) * 1989-10-31 1991-05-16 Mitsubishi Jukogyo Kabushiki Kaisha Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas
EP0451291A1 (en) * 1989-10-31 1991-10-16 Mitsubishi Jukogyo Kabushiki Kaisha Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas
EP0451291B1 (en) * 1989-10-31 1995-06-28 Mitsubishi Jukogyo Kabushiki Kaisha Catalyst for nitrogen oxide decomposition and method of cleaning nitrogen oxide-containing exhaust gas
JP2009046372A (en) * 2007-08-23 2009-03-05 Tochigi Prefecture Metal nanoparticle, zeolite with dispersed metal nanoparticle and method for producing zeolite with dispersed metal nanoparticle

Also Published As

Publication number Publication date
JP2555637B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JPH0417097B2 (en)
US2283172A (en) Zeolites and their treatment
US4999173A (en) Removal of nitric oxides by copper-containing zeolites
US3373109A (en) Crystalline aluminosilicate catalyst
KR20180023890A (en) Direct synthesis of CU-CHA by combination of CU complex and tetraethylammonium and its application to catalyst
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
JP2928853B2 (en) Nitrogen oxide catalytic cracking catalyst and catalytic cracking method
CN108097304A (en) The preparation method of Cu-SAPO-34 molecular sieve catalysts
JPH01231943A (en) Method and catalyst for selective reduction of nitrogen oxide
JPH0196011A (en) Production of zeolite containing copper
JP2928852B2 (en) Catalyst for catalytic cracking of nitrogen oxides and catalytic cracking method
JP2555636B2 (en) Method for producing copper-containing zeolite compact
JP2512959B2 (en) Highly active nitrogen oxide decomposition catalyst and catalytic decomposition method of nitrogen oxide
JP2734476B2 (en) Catalyst for direct catalytic cracking of nitrogen oxides
JPH03101837A (en) Production of catalyst for decomposition of nitrogen oxide
JP2737188B2 (en) Nitrogen oxide catalytic cracking catalyst, its production method and its use
JPH0478444A (en) Catalyst for purification of exhaust gas and its using method
JPH0796175A (en) Adsorbent
JPH03127628A (en) Direct catalytic cracking catalyst for nitrogen oxides
JPH05269386A (en) Catalyst for reduction removing nitrogen oxide and method for reduction removing
JPH0417096B2 (en)
JPH03258345A (en) Catalyst for cracking of nitrogen oxide and method of catalytic cracking
JPH03143547A (en) Catalyst for decomposition of nitrogen oxide
KR20240030476A (en) method for manufacturing of metal ion-exchanged synthetic zeolite for adsorption of Ammonia gas from coal fly ash
JPH03213149A (en) Manufacture of nitrogen oxide decomposing catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees