JPH0195877A - Method for welding austenitic alloy or the like - Google Patents

Method for welding austenitic alloy or the like

Info

Publication number
JPH0195877A
JPH0195877A JP25312087A JP25312087A JPH0195877A JP H0195877 A JPH0195877 A JP H0195877A JP 25312087 A JP25312087 A JP 25312087A JP 25312087 A JP25312087 A JP 25312087A JP H0195877 A JPH0195877 A JP H0195877A
Authority
JP
Japan
Prior art keywords
welding
permanent magnet
magnetic
alternately
welding current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25312087A
Other languages
Japanese (ja)
Inventor
Yukio Tomizawa
冨澤 幸雄
Shigeyoshi Sugiyama
茂嘉 杉山
Takahiro Arakawa
敬弘 荒川
Mitsuru Kamisaka
上坂 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP25312087A priority Critical patent/JPH0195877A/en
Publication of JPH0195877A publication Critical patent/JPH0195877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To efficiently stir welding molten metal by a small-sized device with the long service life by supplying a welding current while the magnetic line of force formed on the tip part of a welding torch by a permanent magnet moves parallel magnetic fields formed reversely alternately. CONSTITUTION:A permanent magnetic unit 4 is arranged in the periphery of the tip part of a ceramic nozzle 2 of the TIG torch 1 having a W electrode 6 via a magnetic shield 5. Said permanent magnet unit 4 is constituted by arranging cylindrically plural permanent magnet pieces 3 with the N pole and the S pole arranged alternately. Moreover, the tip part of the magnetic shield 5 is projected from said permanent magnetic unit 4. By this method, the magnetic fields 8 with different polarity mutually are formed cylindrically up to the inside of base metal 7 with the W electrodes 6 as a center. While moving said reversely parallel magnetic fields 8 in the arrow directions, the welding current is supplied. By this method, the Lorentz's forces in the different directions are generated alternately between said welding current and magnetic fields 8 with the different polarity and the molten metal 9 is efficiently stirred. By the above-mentioned constitution, the stirring device with the small size, high performance and long service life can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はオーステナイト系合金等の溶接方法の改善に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a welding method for austenitic alloys and the like.

[従来の技術] 例えば、原子力機器、化学プラント、LNGプラント等
においては、耐食性、耐熱性、低温靭性の要求される溶
接構造物が多く存在する。
[Prior Art] For example, in nuclear equipment, chemical plants, LNG plants, etc., there are many welded structures that require corrosion resistance, heat resistance, and low-temperature toughness.

そのため、オーステナイト系ステンレス鋼や高Ni合金
のインコネル、ハステロイ等の材料が溶接金属として用
いられている。
Therefore, materials such as austenitic stainless steel, high Ni alloy Inconel, and Hastelloy are used as weld metals.

これらの合金溶接材料を使用すると、溶接時に形成され
る溶融金属プールが冷却する際、粗大柱状晶等が生成す
ると、溶接部の超音波探傷検査時にノイズエコーが発生
し微小欠陥を検出することが困難となり、又高温側れが
発生し易い。
When these alloy welding materials are used, when the molten metal pool formed during welding cools, if coarse columnar crystals are generated, noise echoes will occur during ultrasonic inspection of welds, making it difficult to detect minute defects. It becomes difficult and high-temperature side slippage is likely to occur.

そのため、従来は第5図に示すように溶接トーチaの先
端に励磁コイルbを配設し、励磁コイルbに交流励磁電
流を流すことにより磁場Cを形成し、該磁場Cと溶接電
流とによるローレンツ力により溶融金属を撹拌して結晶
粒を微細化するようにしている。
Therefore, conventionally, as shown in Fig. 5, an excitation coil b is disposed at the tip of a welding torch a, and an alternating current excitation current is passed through the excitation coil b to form a magnetic field C. The Lorentz force is used to stir the molten metal to refine the crystal grains.

[発明が解決しようとする問題点コ しかしながら、斯かる従来の装置では以下のような問題
点があり、実用性に欠けていた。
[Problems to be Solved by the Invention] However, such conventional devices had the following problems and lacked practicality.

(1)  励磁コイルbは約100℃以上の温度に耐え
られず、耐熱性、耐久性が非常に悪い。そのため、特別
な冷却装置が必要となる。
(1) Excitation coil b cannot withstand temperatures of about 100° C. or higher, and has very poor heat resistance and durability. Therefore, special cooling equipment is required.

■ 励磁コイルbは構成上外径が約50mmφ以上とな
るために、溶接トーチaの先端及びアークの状況、プー
ルの様子を見る場合に邪魔になる。
(2) Because the excitation coil b has an outer diameter of approximately 50 mm or more due to its configuration, it becomes an obstacle when viewing the tip of the welding torch a, the state of the arc, and the state of the pool.

0 交流励磁電流を励磁コイルbに流すための特別な電
源dが必要となる。
0 A special power supply d is required to flow the AC excitation current to the excitation coil b.

[問題点を解決するための手段] 本発明は斯かる従来の問題点を解決し、小型化及び高性
能化すると共に長寿命とすることを目的とするもので、
溶接用トーチの先端部に、磁極を交互に配列した永久磁
石ユニットにより、溶接アークの方向に対して平行で且
つ磁力線が交互に正逆となる平行磁場を形成し、該正逆
平行磁場を移動しながら溶接電流を供給し、該溶接電流
と極性の変化する磁場との間で方向の異なるローレンツ
力を交互に発生させて溶融金属を撹拌することを特徴と
するオーステナイト系合金等の溶接方法にかかるもので
ある。
[Means for Solving the Problems] The present invention aims to solve the conventional problems and to achieve miniaturization, high performance, and long life.
At the tip of the welding torch, a permanent magnet unit with alternating magnetic poles forms a parallel magnetic field that is parallel to the welding arc direction and whose lines of magnetic force are alternately positive and negative, and moves the positive and negative parallel magnetic fields. A welding method for austenitic alloys, etc., characterized by supplying a welding current while stirring the molten metal by alternately generating Lorentz forces in different directions between the welding current and a magnetic field whose polarity changes. Such is the case.

[作   用] 磁極が交互になるよう配列した永久磁石を移動すること
により、磁性の変化する強力な磁場が容易に形成され、
該磁場の中を流れる電流により、方向の異なるローレン
ツ力が交互に生じ、溶融金属が磁場の極性の変化量に比
例して撹拌され、結晶粒が微細化される。
[Function] By moving permanent magnets with alternating magnetic poles, a strong magnetic field with changing magnetism is easily created.
The current flowing through the magnetic field causes Lorentz forces in different directions to occur alternately, stirring the molten metal in proportion to the amount of change in the polarity of the magnetic field, and refining the crystal grains.

永久磁石は小型で強力なものが安価に得られ、しかも熱
に強く、耐久性にも優れている。
Permanent magnets are small, strong, and inexpensive, and are resistant to heat and have excellent durability.

〔実 施 例] 以下、本発明の実施例を図面を参照しつつ説明する。〔Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の方法の実施に使用する装置
の第1の例であり、ティグトーチlのセラミックノズル
2の先端部周囲に、円筒状の永久磁石を放射方向に偶数
の倍数に分割した永久磁石片3を、N極とS極が交互に
なるよう円筒状に配列して永久磁石ユニット4を形成し
、該永久磁石ユニット4とセラミックノズル2との間に
磁気シールド8を挿入し、該磁気シールドロの先端部を
前記永久磁石ユニット4から突出させである。
1 and 2 show a first example of a device used to carry out the method of the present invention, in which cylindrical permanent magnets are arranged in even multiples in the radial direction around the tip of the ceramic nozzle 2 of the Tigtorch l. A permanent magnet unit 4 is formed by arranging the divided permanent magnet pieces 3 in a cylindrical shape so that the N pole and the S pole alternate, and a magnetic shield 8 is provided between the permanent magnet unit 4 and the ceramic nozzle 2. The permanent magnet unit 4 is inserted, and the tip of the magnetic shield drawer is made to protrude from the permanent magnet unit 4.

前記円筒状の永久磁石ユニット4は、例えば永久磁石ユ
ニット4の外周に設けた環状ギヤに減速機を介してモー
タのビニオンを噛合せしめて一方向へ速度可変に回転又
は所要のピッチで正逆方向に速度可変に回転し得るよう
にしである。
The cylindrical permanent magnet unit 4 is rotated at a variable speed in one direction or in forward and reverse directions at a required pitch by, for example, meshing a pinion of a motor with an annular gear provided on the outer periphery of the permanent magnet unit 4 via a reducer. This allows it to rotate at variable speeds.

前記ティグトーチ1のタングステン電極6と母材7と直
流溶接電源又は交流溶接電源からのパワーケーブルを接
続し、直流溶接電流等を供給し得るようにしである。図
示してないが、溶接用ワイヤ及びシールドガス等を供給
し得るようにしである。
A power cable from a DC welding power source or an AC welding power source is connected to the tungsten electrode 6 and base metal 7 of the TIG torch 1, so that DC welding current and the like can be supplied. Although not shown, welding wire, shielding gas, etc. can be supplied thereto.

上記装置により溶接する場合、円筒状の永久磁石ユニッ
ト4の各永久磁石片3から出た夫々の極性の磁力線が、
磁気シールド5により下方に真直進み、磁束によりタン
グステン電極6を中心とし交互に極性の異なる磁場8が
円筒状に形成され、該磁場8は母材7の内部まで達する
When welding with the above device, the lines of magnetic force of each polarity coming out of each permanent magnet piece 3 of the cylindrical permanent magnet unit 4 are
The magnetic field 8 travels straight downward by the magnetic shield 5, and the magnetic flux forms a cylindrical magnetic field 8 with alternating polarities around the tungsten electrode 6, and the magnetic field 8 reaches the inside of the base material 7.

タングステン電極Bに例えば直流電流を供給すると、直
流電流はタングステン電極6から母材7側へ放射状に、
前記円筒状の磁場8を貫いて流れ、該磁場8の極性に応
じて交互に相反する方向のローレンツ力が発生する。
For example, when a direct current is supplied to the tungsten electrode B, the direct current radiates from the tungsten electrode 6 to the base material 7 side.
The flow passes through the cylindrical magnetic field 8, and Lorentz forces are generated in alternating opposite directions depending on the polarity of the magnetic field 8.

このとき、前記永久磁石ユニット4を所要の速度で一方
向に回転させると、アーク点付近の各点の磁場8の極性
は正、負交互に変わり、当該各点において流れる直流電
流との作用により発生するローレンツ力の方向も磁場8
の極性の変化と同じく変化し、該方向の変化するローレ
ンツ力により溶融金属9に振動が与えられ、該溶融金属
9が撹拌されて結晶粒が微細化される。
At this time, when the permanent magnet unit 4 is rotated in one direction at a required speed, the polarity of the magnetic field 8 at each point near the arc point changes alternately between positive and negative, due to the interaction with the DC current flowing at each point. The direction of the Lorentz force generated also depends on the magnetic field 8
The molten metal 9 is vibrated by the Lorentz force whose direction changes in the same way as the polarity of the molten metal 9 changes, and the molten metal 9 is stirred to refine the crystal grains.

永久磁石片3は例えば希土類鉄磁石等により10KG以
上の強力な磁場を形成することができ、著しく小型にす
ることができ、操作性が著しく向上する。熱に弱いコイ
ルが存在しないため耐熱性に優れ、耐久性も著しく向上
する。
The permanent magnet piece 3 can form a strong magnetic field of 10 KG or more using, for example, a rare earth iron magnet, can be made extremely compact, and has significantly improved operability. Since there is no coil that is sensitive to heat, it has excellent heat resistance and significantly improves durability.

第3図は本発明の方法の実施に使用する装置の第2の例
であり、前記装置例と略同様の構成= 6− において、永久磁石ユニット4をティグトーチ1のセラ
ミックノズル2に装着することなく、母材7を挟んでタ
ングステン電極6と対向するよう、永久磁石ユニット4
を一方向又は正逆方向に回転可能に配設した例である。
FIG. 3 shows a second example of an apparatus used to carry out the method of the present invention, in which the permanent magnet unit 4 is attached to the ceramic nozzle 2 of the TIG torch 1 in substantially the same configuration as the above-mentioned apparatus example. The permanent magnet unit 4 is placed so that it faces the tungsten electrode 6 with the base material 7 in between.
This is an example in which the holder is rotatably arranged in one direction or in forward and reverse directions.

本装置を用いた場合でも、前述と同様にローレンツ力の
方向を交互に変えることができ、溶融金属9に撹拌効果
が与えられ、結晶粒が微細化される。
Even when this device is used, the direction of the Lorentz force can be alternately changed as described above, giving a stirring effect to the molten metal 9 and making the crystal grains finer.

第4図は本発明の方法の実施に使用する装置の第3の例
であり、前記第1の例と略同様の構成において、棒状の
永久磁石片3°を磁極が交互になるよう板状に配列した
永久磁石ユニット4゜を、セラミックノズル2の両側方
近傍に平行に対峙させ、該各永久磁石ユニット4°を平
行状態を維持したまま少なくとも1ピッチ以上のストロ
ークで永久磁石片3°の配列方向に、往復移動し得るよ
うにしである。
FIG. 4 shows a third example of an apparatus used to carry out the method of the present invention, in which rod-shaped permanent magnet pieces of 3° are arranged in a plate shape with alternating magnetic poles, in a configuration substantially similar to that of the first example. Permanent magnet units 4° arranged in the same direction are arranged parallel to each other in the vicinity of both sides of the ceramic nozzle 2, and each permanent magnet unit 4° is parallel to the permanent magnet piece 3° with a stroke of at least one pitch or more. It is designed to be able to move back and forth in the arrangement direction.

本装置を用いる場合は、平板状の永久磁石ユニット4°
を夫々同一方向若しくは反対方向になるよう往復移動さ
せると、アーク点付近の各点における磁場8の極性が交
互に変わり、タングステン電極6から供給した直流電流
との作用により発生するローレンツ力の方向も磁場の極
性の変化と同じく変化し、該方向の変化するローレンツ
力により溶融金属9に振動が与えられ、該溶融金属9が
撹拌されて結晶粒が微細化される。
When using this device, a flat permanent magnet unit of 4°
When they are moved back and forth in the same direction or in opposite directions, the polarity of the magnetic field 8 at each point near the arc point changes alternately, and the direction of the Lorentz force generated by the interaction with the DC current supplied from the tungsten electrode 6 also changes. The Lorentz force, which changes in the same way as the polarity of the magnetic field changes, gives vibration to the molten metal 9, and the molten metal 9 is stirred to refine the crystal grains.

なお、本発明の溶融方法は上述の実施例のみに限定され
るものではなく、溶接用トーチはティグトーチばかりで
なく、消耗電極式、プラズマトーチ等、直流、交流を問
わず使用可能なこと、直流溶接電流の極性は電極をマイ
ナス極にしてもよいこと、永久磁石ユニットはトーチ側
でも反トーチ側のいずれでもよいこと、第2の装置によ
り狭開先厚板の底部を溶接し、次いで第1の装置により
同上部を溶接するようにしてもよいこと、オーステナイ
ト系合金ばかりでなく、あらゆる合金の溶接に適用し得
ること等本発明の要旨を逸脱しない範囲内において種々
変更を加え得ることは勿論である。
The melting method of the present invention is not limited to the above-mentioned embodiments, and the welding torch is not only a TIG torch, but also a consumable electrode type, plasma torch, etc., and can be used regardless of direct current or alternating current. The polarity of the welding current is that the electrode may be negative, and that the permanent magnet unit may be on either the torch side or the opposite side. It goes without saying that various modifications can be made without departing from the gist of the present invention, such as the fact that the same upper part may be welded using the above-mentioned apparatus, and that it can be applied to welding not only austenitic alloys but also all alloys. It is.

[発明の効果コ 以上述べたように本発明の溶接方法によれば、下記の如
き種々の優れた効果を発揮する。
[Effects of the Invention] As described above, the welding method of the present invention exhibits various excellent effects as described below.

(D 従来使用されていた励磁コイルを永久磁石に変え
ることにより、励磁コイルが100℃程度の耐熱性であ
ったのに対し、永久磁石では約300℃の耐熱性が得ら
れ、耐熱性及び耐久性が飛躍的に向上する。
(D) By changing the conventionally used excitation coil to a permanent magnet, the excitation coil had a heat resistance of about 100℃, whereas the permanent magnet has a heat resistance of about 300℃, improving heat resistance and durability. Sexuality improves dramatically.

(If)  従来使用されていた励磁コイルでは700
G程度の磁場しか得られなかったのに対し、永久磁石で
は約10KGの磁場が与えられ、小型化及び高性能化で
きる。
(If) The excitation coil used conventionally is 700
Whereas it was possible to obtain a magnetic field of only about G, permanent magnets can provide a magnetic field of about 10 KG, allowing for smaller size and higher performance.

■ トーチ先端部に永久磁石を装着する場合でも、励磁
コイルタイプより小型で高性能となるため、溶接時にア
ークの状況や溶融金属プールの状態を観察し易く、操作
性が著しく向上する。
■ Even when a permanent magnet is attached to the tip of the torch, it is smaller and has higher performance than the excitation coil type, making it easier to observe the arc and molten metal pool conditions during welding, significantly improving operability.

[有] 永久磁石を使用するので、従来のようなコイル
励磁用の励磁電源が不要である。
[Yes] Since permanent magnets are used, there is no need for a conventional excitation power source for coil excitation.

■ 永久磁石ユニットを移動するようにしたので、アー
ク点付近の磁場の極性を交互に変えることができ、直流
、交流を問わず溶接電流として使用することができる。
■ Since the permanent magnet unit is movable, the polarity of the magnetic field near the arc point can be alternately changed, and it can be used as a welding current regardless of whether it is direct current or alternating current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に使用する溶接装置の第1
の例を示す図、第2図は第1図の■−n方向矢視図、第
3図は本発明の方法の実施に使用する溶接装置の第2の
例を示す図、第4図は本発明の方法の実施に使用する溶
接装置の第3の例を示す図、第5図は従来のオーステナ
イト系合金の溶接装置の一例を示す図である。 lはティグトーチ、2はセラミックノズル、3.3゛は
永久磁石片、4,4°は永久磁石ユニット、5は磁気シ
ールド、6はタングステン電極、7は母材を示す。 第1図 第2図 第3図
FIG. 1 shows a first welding device used to carry out the method of the present invention.
FIG. 2 is a view taken from the ■-n direction in FIG. FIG. 5 is a diagram showing a third example of a welding device used to carry out the method of the present invention, and FIG. 5 is a diagram showing an example of a conventional austenitic alloy welding device. 1 is a TIG torch, 2 is a ceramic nozzle, 3.3゛ is a permanent magnet piece, 4 and 4 degrees are permanent magnet units, 5 is a magnetic shield, 6 is a tungsten electrode, and 7 is a base material. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)溶接用トーチの先端部に、磁極を交互に配列した永
久磁石ユニットにより、溶接アークの方向に対して平行
で且つ磁力線が交互に正逆となる平行磁場を形成し、該
正逆平行磁場を移動しながら溶接電流を供給し、該溶接
電流と極性の変化する磁場との間で方向の異なるローレ
ンツ力を交互に発生させて溶融金属を撹拌することを特
徴とするオーステナイト系合金等の溶接方法。
1) At the tip of the welding torch, a permanent magnet unit with magnetic poles arranged alternately forms a parallel magnetic field that is parallel to the direction of the welding arc and whose lines of magnetic force are alternately positive and negative, and the positive and negative parallel magnetic fields are Welding of austenitic alloys, etc., characterized by supplying a welding current while moving the welding current, and stirring the molten metal by alternately generating Lorentz forces in different directions between the welding current and a magnetic field of changing polarity. Method.
JP25312087A 1987-10-07 1987-10-07 Method for welding austenitic alloy or the like Pending JPH0195877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25312087A JPH0195877A (en) 1987-10-07 1987-10-07 Method for welding austenitic alloy or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25312087A JPH0195877A (en) 1987-10-07 1987-10-07 Method for welding austenitic alloy or the like

Publications (1)

Publication Number Publication Date
JPH0195877A true JPH0195877A (en) 1989-04-13

Family

ID=17246776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25312087A Pending JPH0195877A (en) 1987-10-07 1987-10-07 Method for welding austenitic alloy or the like

Country Status (1)

Country Link
JP (1) JPH0195877A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055461A (en) * 2006-08-31 2008-03-13 Hitachi-Ge Nuclear Energy Ltd Welding method for nuclear power generation plant structural material
CN102632325A (en) * 2011-02-09 2012-08-15 株式会社电装 Tig welding method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055461A (en) * 2006-08-31 2008-03-13 Hitachi-Ge Nuclear Energy Ltd Welding method for nuclear power generation plant structural material
CN102632325A (en) * 2011-02-09 2012-08-15 株式会社电装 Tig welding method and apparatus
JP2012161836A (en) * 2011-02-09 2012-08-30 Denso Corp Tig welding method and apparatus therefor
US9061364B2 (en) 2011-02-09 2015-06-23 Denso Corporation TIG welding method and apparatus

Similar Documents

Publication Publication Date Title
Chern et al. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds
Shyu et al. Study of the performance of stainless steel A-TIG welds
Gatzen et al. Effect of electromagnetic stirring on the element distribution in laser beam welding of aluminium with filler wire
CN102848058B (en) The method and apparatus of pulsed magnetic field refinement seam organization is used in welding process
GB1151873A (en) Improvements in Metal Deposition.
JP2005205497A (en) Laser/arc hybrid welding method of ferritic steel
US4190760A (en) Welding apparatus with shifting magnetic field
CN101844259B (en) Method and device for performing electric magnetization arc welding-braze welding compounding on dissimilar materials
Guan et al. Effect of magnetic field frequency on the shape of GMAW welding arc and weld microstructure properties
Deyev Surface phenomena in fusion welding processes
Baghel Effect of SMAW process parameters on similar and dissimilar metal welds: An overview
JPH0233956B2 (en)
JPH0195877A (en) Method for welding austenitic alloy or the like
Chao et al. Understanding the changing mechanism of arc characteristics in ultrasound-magnetic field coaxial hybrid gas tungsten arc welding
Gao et al. Microstructure and mechanical properties of 9Cr martensitic heat-resistant steel fabricated by wire and arc additive manufacture technology
JP2018024019A (en) Process and apparatus for welding workpiece having heat sensitive material
Wang et al. Ultrasonic vibration induced the improvement of mechanical properties and fracture behavior of Inconel 690 alloy joint during laser welding
JPH0195876A (en) Method for welding austenitic alloy or the like
Guo et al. Effects of axial magnetic field on Fe-Ni interface macrosegregation of 9% Ni steel welds filled with Ni-based alloy
EP1281467A2 (en) Apparatus and method for forming a body
SU1310146A1 (en) Method of gas-shielded two-arc welding
Yu et al. Characteristics of magnetic field assisting plasma GMAW-P
CN102000904A (en) Device and method for improving hardness of submerged-arc surfacing layer
JPH0329505B2 (en)
KR100217855B1 (en) Arc welding method and device for electromagnetic power