JPH0195203A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPH0195203A
JPH0195203A JP62249843A JP24984387A JPH0195203A JP H0195203 A JPH0195203 A JP H0195203A JP 62249843 A JP62249843 A JP 62249843A JP 24984387 A JP24984387 A JP 24984387A JP H0195203 A JPH0195203 A JP H0195203A
Authority
JP
Japan
Prior art keywords
steam
control valve
temperature
temperature control
flash tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62249843A
Other languages
Japanese (ja)
Inventor
Toshio Aoki
俊夫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62249843A priority Critical patent/JPH0195203A/en
Publication of JPH0195203A publication Critical patent/JPH0195203A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE: To prevent high-temperature steam from flowing into a steam condenser by providing a circuit for retaining a damp steam temperature control valve at a constant opening for a fixed period of time in advance when the change rate of the operation output of a flush tank pressure control valve reaches a specified value or higher. CONSTITUTION: A damp steam temperature control valve 18 constitutes a circuit for performing a switching operation via a selector 25 with a signal that is obtained by performing an operation, using a PI operator 23, to a deviation being obtained by performing an operation to a signal from a temperature detector 17 and that from temperature-setting equipment 21 using a subtractor 22 and a setting value from a control output setting equipment 24. Not only when a flush tank pressure control valve 15 opens from a completely closed state but also when pressure control is made and at the same time when an opening operation is started from a current opening, the opening operation of the flush tank pressure control valve 15 is detected from the change rate of operation output, the damp steam temperature control valve 18 is retained at a constant opening before detecting temperature increase due to the increase in the amount of steams flowing into a steam condenser, thus supplying a constant amount of water to temperature-reducing equipment and hence preventing a high-temperature steam from flowing to the steam condenser.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、フラッシュタンクから、主蒸気の1部をフラ
ッシュさせてフラッシュタンク器内圧カ一定制御の結果
発生した余剰蒸気を復水器へ流入させる際、フラッシュ
タンクから発生して復水器へ流入する蒸気の減温用とし
て使用する給水ラインからの給水量をダンプ蒸気温度調
節弁により調節し復水器へ流入する蒸気の温度を減温さ
せ一定温度に保持する温度制御装置に係り、フラッシュ
タンクから復水器へ流入する蒸気量が急増した場合に生
りる温度検出の遅れに起因した復水器への高温蒸気の流
入を防止することを可能にした温度制御装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is a method for flashing a part of main steam from a flash tank to remove excess steam generated as a result of constant control of the internal pressure of the flash tank. When flowing into the condenser, the amount of water supplied from the water supply line, which is used to reduce the temperature of the steam generated from the flash tank and flowing into the condenser, is adjusted by the dump steam temperature control valve, and the steam flowing into the condenser is High-temperature steam flows into the condenser due to a delay in temperature detection that occurs when the amount of steam flowing from the flash tank to the condenser increases rapidly. The present invention relates to a temperature control device that makes it possible to prevent the inflow of water.

(従来の技術) 本発明に係る発電プラントの系統構成をFBRプラント
を例にとって第2図に従い説明する。
(Prior Art) The system configuration of a power generation plant according to the present invention will be explained with reference to FIG. 2, taking an FBR plant as an example.

プラントの定格運転時は、給水は蒸発器1により図示し
ていない2次主冷却系と熱交換して蒸気となり気水分離
器2により水分を分離し、さらに過熱器3で再び2次主
冷却系と熱交換し高温の過熱蒸気となる。この高温の過
熱蒸気は蒸気加減弁19を介しタービン4に送られ、タ
ービン4を回転させて発電機5を駆動し発電させる。タ
ービン4の回転に供せられた蒸気は復水器6において復
水せしめられ復水ポンプ7、低圧給水加熱器8、脱気器
9、給水ポンプ10、高圧給水加熱器11を介し蒸発器
1へ還流させられる。
During rated operation of the plant, the feed water exchanges heat with the secondary main cooling system (not shown) in the evaporator 1, becomes steam, and then the water is separated in the steam-water separator 2, and then returns to the secondary main cooling system in the superheater 3. It exchanges heat with the system and becomes high-temperature superheated steam. This high-temperature superheated steam is sent to the turbine 4 via the steam control valve 19, rotates the turbine 4, and drives the generator 5 to generate electricity. The steam supplied to rotate the turbine 4 is condensed in a condenser 6, and is then sent to the evaporator 1 via a condensate pump 7, a low pressure feed water heater 8, a deaerator 9, a feed water pump 10, and a high pressure feed water heater 11. It is refluxed to.

また、定格運転時は図示していないタービン油気のライ
ンからタービン抽気を低圧給水加熱器8、脱気器9、高
圧給水加熱器11に送りこみ熱回収を行う。
Further, during rated operation, turbine extracted air is sent from a turbine oil/air line (not shown) to the low-pressure feedwater heater 8, the deaerator 9, and the high-pressure feedwater heater 11 for heat recovery.

一方プラントの起動過程においては、蒸発器1からの発
生蒸気の1部を気水分離器2及び気水分離器ドレン弁1
2を介してフラッシュタンク13へ送り込みフラッシュ
させる。フラッシュタンク13でフラッシュされた蒸気
はフラッシュタンク発生蒸気止め弁14を開くことで、
低圧給水加熱器8、脱気器9、高圧給水加熱器11に送
り込まれ熱回収が行われる。起動過程では、タービン油
気を熱回収として使用できず、また、蒸発器1から蒸気
が発生するようになった時点では、所内ボイラーからの
補助蒸気による熱回収の必要もなくなるので、このよう
な熱回収の方法をとる。
On the other hand, in the process of starting up the plant, a part of the steam generated from the evaporator 1 is transferred to the steam separator 2 and the steam separator drain valve 1.
2 to the flash tank 13 for flushing. The steam flashed in the flash tank 13 is released by opening the flash tank generated steam stop valve 14.
The heat is sent to the low-pressure feed water heater 8, the deaerator 9, and the high-pressure feed water heater 11 for heat recovery. During the start-up process, turbine oil cannot be used for heat recovery, and once steam is generated from the evaporator 1, there is no longer any need for heat recovery using auxiliary steam from the in-house boiler. Use heat recovery methods.

また、FBRプラントでは特に2次主冷却系の冷却材で
あるナトリウムの過冷却防止のために常に給水温度をあ
る一定値以上に保持する必要があるため、負荷しゃ断等
で蒸気加減弁19が全閉しタービン4へ流入する蒸気が
遮断されてタービン油気が熱回収として使用できなくな
るような場合も気水分離器ドレン弁12とフラッシュタ
ンク発生蒸気止め弁14を開き・、蒸発器1から発生し
た蒸気をフラッシュタンク13に送りこみフラッシュさ
れた蒸気を熱回収のために使用する。一方、フラッシュ
タンク13へ蒸気が送り込まれた際は、フラッシュタン
クの器内圧力を一定に保持するため、熱回収に使用され
ない余剰蒸気は、フラッシュタンク13の出口にとりつ
けられた圧力検出器20からの信号をフィードバックし
、フラッシュタンク圧力調節弁15を開閉操作すること
で減温器16を介し復水器へ送られる。この場合、フラ
ッシュタンクから発生する蒸気は高温であるためにこの
ままの状態で復水器6へ送り込むことは復水器に熱衝撃
をあたえることとなり、復水器保護の観点から好ましく
ない。
In addition, in FBR plants, it is necessary to always maintain the feed water temperature above a certain value to prevent overcooling of sodium, which is the coolant in the secondary main cooling system. Even when the steam flowing into the turbine 4 is shut off and the turbine oil cannot be used for heat recovery, the steam separator drain valve 12 and flash tank generation steam stop valve 14 are opened. The vapor is sent to a flash tank 13 and the flashed vapor is used for heat recovery. On the other hand, when steam is sent to the flash tank 13, in order to maintain the internal pressure of the flash tank constant, excess steam that is not used for heat recovery is collected from the pressure detector 20 attached to the outlet of the flash tank 13. The signal is fed back and sent to the condenser via the desuperheater 16 by opening and closing the flash tank pressure control valve 15. In this case, since the steam generated from the flash tank is at a high temperature, sending it as it is to the condenser 6 will give a thermal shock to the condenser, which is not preferable from the viewpoint of protecting the condenser.

よって、復水ポンプ7の出口の給水ラインから分岐した
ラインをダンプ蒸気温度調節弁18を介し減温器16に
接続し、フラッシュタンク13から復水器6へ流入する
蒸気の温度を温度検出器17により検出しダンプ蒸気温
度調節弁18を開閉操作することで、給水ラインからの
給水によりフラッシュタンク13の発生蒸気を減温し、
復水器6へ流入する蒸気を一定温度に保持している。
Therefore, a line branched from the water supply line at the outlet of the condensate pump 7 is connected to the attenuator 16 via the dump steam temperature control valve 18, and the temperature of the steam flowing from the flash tank 13 to the condenser 6 is measured using a temperature detector. 17, and by opening and closing the dump steam temperature control valve 18, the temperature of the generated steam in the flash tank 13 is reduced by water supplied from the water supply line,
The steam flowing into the condenser 6 is maintained at a constant temperature.

さて、ここで復水器へ流入する蒸気に関する温度制御装
置の従来の制御方法の詳細を第3図に従って説明する。
Now, details of a conventional control method of a temperature control device regarding steam flowing into a condenser will be explained with reference to FIG.

ダンプ蒸気温度調節弁18は、減温器16の出口に設置
された温度検出器17からの温度信号より、温度設定器
21から出力される温度目標値を減算器22により減算
し、PI演算器23によりPI演算した信号と、操作出
力設定器24からの設定値を切換器25を介し出力する
ことで開閉操作が行われる制御回路がふくまれている。
The dump steam temperature control valve 18 subtracts the temperature target value output from the temperature setting device 21 from the temperature signal from the temperature detector 17 installed at the outlet of the desuperheater 16 using the subtractor 22, 23 and a set value from an operation output setting device 24 are outputted via a switch 25 to perform an opening/closing operation.

但し、切換器25はフランシュタンク圧力調節弁15の
リミットスイッチが全閉でないという信号を検出してか
らβ秒間は設定器24からの設定値信号に切換えてダン
プ蒸気温度調節弁18を操作t、それ以外の場合はPI
演算器23からの出力に切換えてダンプ蒸気温度調節弁
18を開閉操作するようにしている。このような回路構
成とすることで、フラッシュタンク圧力調節弁、へ 15が全閉状態から開多始めるとβ秒間は先行的にダン
プ蒸気温皮調1憧弁18を一定開度に保持し、減温器1
6へ給水ラインからの給水を一定量供給し。
However, the switch 25 switches to the set value signal from the setting device 24 and operates the dump steam temperature control valve 18 for β seconds after detecting a signal that the limit switch of the Franchise tank pressure control valve 15 is not fully closed. Otherwise PI
The dump steam temperature control valve 18 is opened and closed by switching to the output from the computing unit 23. With such a circuit configuration, when the flash tank pressure control valve 15 starts to open from the fully closed state, the dump steam temperature control valve 1 is held at a constant opening for β seconds in advance, Desuperheater 1
A certain amount of water is supplied from the water supply line to 6.

β秒後からは温度検出器17からの信号をフィードバッ
クした温度制御をダンプ蒸気調節弁18を開閉操作する
ことで行わせ、復水器へ流入する蒸気温度を一定に保持
している。
After β seconds, temperature control based on feedback of the signal from the temperature detector 17 is performed by opening and closing the dump steam control valve 18 to maintain a constant temperature of the steam flowing into the condenser.

(発明が解決しようとする問題点) 前述した温度制御装置の場合、フラッシュタンク圧力調
節弁15が全開状態から開動作を開始した場合は、先行
的にβ秒間は、ダンプ蒸気温度調節弁18が一定開度に
保持され一定量の給水が減温器16へ供給され、β秒後
に温度フィードバック制御に移行するので、フラッシュ
タンク圧力調節弁15が開き、復水器6へ高温蒸気が流
入してからはじめて温度検出器17からの信号のフィー
ドバックによりダンプ蒸気温度調節弁18が開き、減温
器16へ給水が供給されるという遅れを防止しているの
で問題はない。
(Problems to be Solved by the Invention) In the case of the temperature control device described above, when the flash tank pressure control valve 15 starts the opening operation from the fully open state, the dump steam temperature control valve 18 is activated for β seconds in advance. A constant opening is maintained and a constant amount of water is supplied to the desuperheater 16, and after β seconds the system shifts to temperature feedback control, so the flash tank pressure control valve 15 opens and high temperature steam flows into the condenser 6. There is no problem because the dump steam temperature control valve 18 is opened by the feedback of the signal from the temperature detector 17 for the first time, and the delay in supplying water to the attemperator 16 is prevented, so there is no problem.

但し、起動初期よりフラッシュタンク13を復水器6と
導通させるためにフラッシュタンク圧力調節弁15を微
開しておく必要がある場合は、フラッシュタンク13に
蒸気が流入しフラッシュタンク圧力調節弁15が開動作
を開始しても、ダンプ蒸気温度調節弁18が先行的に開
くことはなし、高温蒸気がそのまま復水器6へ流入して
しまい復水器保護上問題となる。
However, if it is necessary to open the flash tank pressure control valve 15 slightly in order to connect the flash tank 13 with the condenser 6 from the beginning of startup, steam will flow into the flash tank 13 and the flash tank pressure control valve 15 will open. Even if the dump steam temperature control valve 18 starts opening operation, the dump steam temperature control valve 18 does not open in advance, and high-temperature steam directly flows into the condenser 6, which poses a problem in protecting the condenser.

また、フラッシュタンク圧力調節弁15によりフラッシ
ュタンク13からの余剰蒸気が復水器6へ送られていて
、ダンプ蒸気温度調節弁18による温度検出器17から
の温度フィードバック制御が行われている際何らかの要
因でフラッシュタンク13の器内圧力が急上昇し、フラ
ッシュタンク圧力調節弁15がそれに伴い現状開度から
急開して、フラッシュタンク13から復水器6へ流入す
る余剰蒸気が急増しても、温度検出器17が温度上昇を
検出してダンプ蒸気温度調節弁18を操作するまで遅れ
が生じ。
In addition, when surplus steam from the flash tank 13 is sent to the condenser 6 by the flash tank pressure control valve 15 and temperature feedback control from the temperature detector 17 is performed by the dump steam temperature control valve 18, some Even if the internal pressure of the flash tank 13 suddenly increases due to a factor, the flash tank pressure control valve 15 suddenly opens from its current opening position, and the surplus steam flowing from the flash tank 13 into the condenser 6 suddenly increases. There is a delay until the temperature detector 17 detects a temperature rise and operates the dump steam temperature control valve 18.

充分減温されていない高温蒸気が復水器6へ流入してし
まう可能性がある。
There is a possibility that high temperature steam whose temperature has not been sufficiently reduced may flow into the condenser 6.

つまりフラッシュタンク圧力調節弁15が全閉していな
い状態から開動作を開始した場合、先行的にダンプ蒸気
温度調節弁18が開動作し、給水を減温器16に供給す
ることがないので、温度検出の遅れにより、ダンプ蒸気
温度調節弁18が開き、給水を減温器16に供給される
以前に高温蒸気が復水器6へ流入し復水IISを損傷さ
せる可能性があるの!し でる。
In other words, when the flash tank pressure control valve 15 starts its opening operation from a state where it is not fully closed, the dump steam temperature control valve 18 opens in advance, and feed water is not supplied to the desuperheater 16. Due to the delay in temperature detection, the dump steam temperature control valve 18 opens and high temperature steam flows into the condenser 6 before the feed water is supplied to the attemperator 16, potentially damaging the condensate IIS! Shideru.

本発明はこれらの点に鑑みてなされたものであり、フラ
ッシュタンクが全閉していない状態から開動作を開始し
、復水器へ流入する蒸気が増加した場合も温度検出の遅
れに起因して減温器へ充分な冷却水(給水ラインからの
給水の1部)が供給されずに高温蒸気が復水器へ流入す
ることを防止した温度制御装置を提供することを目的と
する。
The present invention has been made in view of these points, and even if the flash tank starts opening operation from a state where it is not fully closed and the steam flowing into the condenser increases, the temperature detection will be delayed. It is an object of the present invention to provide a temperature control device that prevents high-temperature steam from flowing into a condenser without sufficient cooling water (part of the water supply from the water supply line) being supplied to the desuperheater.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の温度制御装置は、フラッシュタンク圧力調節弁
の操作出力の変化率がある一定値以上になった場合に、
先行的にダンプ蒸気温度調節弁を一定時間、一定開度に
保持する回路を設けることを問題点を解決するための手
段とする。
(Means for Solving the Problems) The temperature control device of the present invention, when the rate of change of the operating output of the flash tank pressure control valve exceeds a certain value,
A means to solve this problem is to provide a circuit that holds the dump steam temperature control valve at a constant opening degree for a certain period of time in advance.

(作 用) 本発明の温度制御装置では、フラッシュタンク圧力調節
弁が圧力制御を開始し、操作出力の変化率がある一定値
以上になるとダンプ蒸気温度調節弁が一定時間強制的に
一定開度に保持されるため、フラッシュタンク圧力調節
弁の開動作により復水器へ流入する蒸気量が増加してそ
の結果温度上昇を検出してダンプ蒸気温度調節弁の開閉
操作して行われる温度一定制御に先行し一定量の給水が
減温器へ送り込まれる。
(Function) In the temperature control device of the present invention, the flash tank pressure control valve starts pressure control, and when the rate of change in the operating output exceeds a certain value, the dump steam temperature control valve is forced to open at a constant degree for a certain period of time. As a result, the amount of steam flowing into the condenser increases when the flash tank pressure control valve opens, and the resulting temperature rise is detected and the dump steam temperature control valve is opened and closed to maintain a constant temperature. Prior to this, a certain amount of feed water is sent to the attemperator.

(実施例) 以下本発明の実施例を第1図に従って説明する。(Example) Embodiments of the present invention will be described below with reference to FIG.

第1図はフラッシュタンク圧力調節弁15とダンプ蒸気
温度調節弁18の制御回路を表わしている。フラッシュ
タンク圧力調節弁15は、通常フラッシュタンク出口に
設けられた圧力検出器20からの信号と圧力設定器26
からの信号を減算器22により演算された偏差をPI演
算塁23を介した操作出力信号により操作されており、
フラッシュタンク出ロ圧カ一定制御を行っている。一方
ダンプ蒸気温度調節弁18Jよ減温器16の出口に設置
された温度検出器17からの信号と温度設定器21から
の信号を減算器22によって演算して得られた偏差をP
I演算器23により演算した信号と操作出力設定器24
がらの設定値を切換器25を介し開閉操作が行われる回
路をくんでいる。但し切換@25はフラッシュタンク圧
力調節弁15への操作出力が変化率検出器27によっで
ある一定の変化率以上になったことを検出してからβ秒
間は操作出力設定器24からの設定値信号に切換えてダ
ンプ蒸気温度調節弁18を一定開度に保持し、それ以外
の場合はPI演算器23からの出力信号に切換えてダン
プ蒸気温度調節弁を開閉操作するようにしている。
FIG. 1 shows a control circuit for the flash tank pressure control valve 15 and the dump steam temperature control valve 18. The flash tank pressure control valve 15 normally receives a signal from a pressure detector 20 provided at the outlet of the flash tank and a pressure setting device 26.
The deviation calculated by the subtractor 22 from the signal from is manipulated by the operation output signal via the PI calculation base 23,
The flush tank outlet pressure is controlled to be constant. On the other hand, the difference obtained by calculating the signal from the temperature detector 17 installed at the outlet of the dump steam temperature control valve 18J and the temperature setting device 21 by the subtractor 22 is P.
The signal calculated by the I calculator 23 and the operation output setting device 24
The setting value of the switch 25 is connected to a circuit in which opening/closing operations are performed. However, switching @25 is the setting from the manipulated output setter 24 for β seconds after the change rate detector 27 detects that the manipulated output to the flash tank pressure control valve 15 has exceeded a certain rate of change. The dump steam temperature control valve 18 is maintained at a constant opening degree by switching to the value signal, and in other cases, the dump steam temperature control valve is opened and closed by switching to the output signal from the PI calculator 23.

このような回路構成とすることで、フラッシュタンク圧
力調節弁15が全開から開動作を開動した場合はもちろ
ん、起動初期よりフラッシュタンク圧力調節弁15が微
開しており、フラッシュタンク圧力調節弁15が圧力制
御を開始した場合も、また、フラッシュタンク圧力調節
弁15が既に圧力制御中であり何らかの要因でフラッシ
ュタンクの器内圧力が急上昇し、フラッシュタンク圧力
調節弁15が現状開度からさらに開動作を開始した場合
でも、フラッシュタンク圧力調節弁15の開動作を操作
出力の変化率から検出し、復水器へ流入する蒸気量の増
大に伴う温度上昇の検出に先立ち先行的にダンプ蒸気温
度調節弁18を一定開度に保持し、一定量の給水を減温
器へ供給できるので、温度検出の遅れに伴って減温器に
より充分減温されていない高温蒸気の復水器6への流出
を防止することが可能となる。
With such a circuit configuration, not only when the flash tank pressure regulating valve 15 is opened from fully open, but also slightly open from the initial stage of startup, the flash tank pressure regulating valve 15 Also, if the flash tank pressure control valve 15 is already under pressure control and the internal pressure of the flash tank suddenly increases due to some reason, the flash tank pressure control valve 15 may open further from the current opening level. Even when the operation has started, the opening operation of the flash tank pressure control valve 15 is detected from the rate of change in the operating output, and the dump steam temperature is adjusted in advance before detecting a temperature rise due to an increase in the amount of steam flowing into the condenser. Since the control valve 18 can be maintained at a constant opening and a constant amount of water can be supplied to the attemperator, high-temperature steam that has not been sufficiently cooled by the attemperator due to a delay in temperature detection can be sent to the condenser 6. It becomes possible to prevent leakage.

〔発明の効果〕〔Effect of the invention〕

このように本発明の温度制御装置は構成され作用するも
のであるから、フラッシュタンク圧力調節弁が全閉状態
から圧力制御により開動作を開始した場合はもちろん、
フラッシュタンク圧力調節弁が全閉していない状態から
圧力制御により開動作を開始した場合も復水器へ流入す
る蒸気の温度検出器の遅れに起因した減温器により充分
減温されていない高温蒸気の復水器への流出を防止でき
、復水器の機器保護、安全性等に大きく寄与する効果を
奏する。
Since the temperature control device of the present invention is constructed and operates in this manner, it goes without saying that when the flash tank pressure control valve starts opening operation by pressure control from a fully closed state,
Even if the flash tank pressure control valve starts opening operation by pressure control from a state where it is not fully closed, the temperature of the steam flowing into the condenser is not sufficiently reduced by the desuperheater due to a delay in the temperature sensor of the steam flowing into the condenser. It is possible to prevent steam from flowing into the condenser, which has the effect of greatly contributing to the protection of condenser equipment and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の温度制御装置の一実施例を示−二 した。フラッシュタンク圧力調節弁ダンプ蒸気温度調節
弁の制御ブロック図、第2図は本発明に関するプラント
構成の一実施例示したFBRプラントの系統構成図、第
3図は従来の温度制御装置を示したダンプ蒸気温度調節
弁の制御ブロック図である。 6・・・復水器 15・・・フラッシュタンク圧力調節弁16・・・減温
器 18・・・ダンプ蒸気温度調節弁 代理人 弁理士 則 近 憲 佑 同    第子丸   健 第1図
FIG. 1 shows an embodiment of the temperature control device of the present invention. A control block diagram of a flash tank pressure control valve and a dump steam temperature control valve. Fig. 2 is a system configuration diagram of an FBR plant showing an example of the plant structure related to the present invention. Fig. 3 is a control block diagram of a dump steam temperature control valve showing a conventional temperature control device. It is a control block diagram of a temperature control valve. 6...Condenser 15...Flash tank pressure control valve 16...Desuperheater 18...Dump steam temperature control valve Representative Patent attorney Yudo Noriyoshi Chika Ken Daishimaru Figure 1

Claims (1)

【特許請求の範囲】[Claims] 主蒸気ラインより分岐したラインから導びかれた主蒸気
の1部をフラッシュするフラッシュタンクと前記フラッ
シュタンクの圧力を一定に保持する際に発生する余剰蒸
気をフラッシュタンク圧力調節弁と減温器を介し復水器
へ導くラインと、前記減温度器へ給水ラインから分岐し
ダンプ蒸気温度調節弁を介して接続されたラインを有し
た系統構成をもつ発電プラントの、前記フラッシュタン
クから復水器へ流入する余剰蒸気の温度を前記ダンプ蒸
気温度調節弁を操作し、給水ラインからの給水の1部を
前記減温器へ流入させることで減温する温度制御装置に
おいて、前記フラッシュタンク圧力調節弁の開動度を操
作出力の変化率によって検知し温度フィードバックを行
った一定温度制御に先行して前記ダンプ蒸気温度調節弁
を一定時間一定開度に強制的に保持した後に温度フィー
ドバックを行った一定温度制御に移行させる回路を設け
たことを特徴とする温度制御装置。
A flash tank flushes a part of the main steam led from a line branched from the main steam line, and a flash tank pressure control valve and desuperheater are used to store excess steam generated when maintaining the pressure of the flash tank constant. From the flash tank to the condenser in a power generation plant having a system configuration including a line leading to the condenser through the tank, and a line branching from the water supply line to the attemperator and connected via a dump steam temperature control valve. In the temperature control device, the temperature of the inflowing surplus steam is reduced by operating the dump steam temperature control valve and causing a part of the water supply from the water supply line to flow into the attemperator. Constant temperature control in which the dump steam temperature control valve is forcibly held at a constant opening for a certain period of time and then temperature feedback is performed prior to constant temperature control in which the degree of opening is detected by the rate of change in the operating output and temperature feedback is performed. A temperature control device characterized by being provided with a circuit that causes the transition to occur.
JP62249843A 1987-10-05 1987-10-05 Temperature controller Pending JPH0195203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249843A JPH0195203A (en) 1987-10-05 1987-10-05 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249843A JPH0195203A (en) 1987-10-05 1987-10-05 Temperature controller

Publications (1)

Publication Number Publication Date
JPH0195203A true JPH0195203A (en) 1989-04-13

Family

ID=17199008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249843A Pending JPH0195203A (en) 1987-10-05 1987-10-05 Temperature controller

Country Status (1)

Country Link
JP (1) JPH0195203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157905A (en) * 2010-02-02 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for boiler in power generation facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157905A (en) * 2010-02-02 2011-08-18 Chugoku Electric Power Co Inc:The Heat recovery device and heat recovery method for boiler in power generation facility

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
US3953966A (en) Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation
JP5183305B2 (en) Startup bypass system in steam power plant
JP4982507B2 (en) Turbine ground seal steam temperature reduction control device and plant control method in steam turbine power generation facility
JPH0454802B2 (en)
US4638630A (en) Cooldown control system for a combined cycle electrical power generation plant
WO1998059158A1 (en) Steam cooling apparatus for gas turbine
JPH0195203A (en) Temperature controller
JP4162371B2 (en) Start-up control method for single-shaft combined power plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH02136502A (en) Temperature control device
JPS6217081B2 (en)
JPH0443996A (en) Steam flow rate controller for fast reactor plant
JP5409882B2 (en) Operation method of start-up bypass system in steam power plant
JPS6149487B2 (en)
JP3650277B2 (en) Thermal power plant control device and thermal power plant control method
RU35374U1 (en) DEVICE FOR STARTING POWER UNIT OF HEAT POWER PLANTS
Byeon et al. Designing a standard thermal power plant for daily startup/shutdown: the HP Bypass control and safety function
JPS5914615B2 (en) Gas turbine generator operation and stop equipment
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
JP2955383B2 (en) Water supply control device for combined cycle power plant
JPH0330687B2 (en)
JP2523493B2 (en) Turbin bypass system
JPH09195718A (en) Main steam temperature control device
JPS6334402A (en) Method of starting thermal power plant