JPH0194858A - Preparation of implanting material - Google Patents

Preparation of implanting material

Info

Publication number
JPH0194858A
JPH0194858A JP62253418A JP25341887A JPH0194858A JP H0194858 A JPH0194858 A JP H0194858A JP 62253418 A JP62253418 A JP 62253418A JP 25341887 A JP25341887 A JP 25341887A JP H0194858 A JPH0194858 A JP H0194858A
Authority
JP
Japan
Prior art keywords
substances
implanting
granules
examples
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62253418A
Other languages
Japanese (ja)
Inventor
Yasuo Manabe
康夫 真鍋
Yoshitomo Sato
佐藤 義智
Yoshio Masuda
喜男 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62253418A priority Critical patent/JPH0194858A/en
Publication of JPH0194858A publication Critical patent/JPH0194858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)

Abstract

PURPOSE:To make newly generated bone tissue united firmly with a implanting by flame spraying given granules on a matrix for the implanting. CONSTITUTION:Compacted granules consisting of substances which have excellent affinity to living body tissues and which easily undergo thermal decomposition are flame sprayed on implanting matrix. Here, substances which easily undergo thermal decomposition represent substances which are decomposed thermally when heated to melting state. Examples of these substances include apatite, beta-phosphoric tri-calcium, bioglass, cerabital, crystal glass, etc. For granulation of these materials, methods utilizing a spray dryer or a rubber press can be enumerated as examples.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複合インプラント部材の製造方法に関し、詳細
には新生骨組織の侵入・成長を促して骨との一体性を高
めるうえで重要である緻密な表面凹凸構造を有し、且つ
強度的にも優れた複合インプラント部材の製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a composite implant member, and in particular, it is important for promoting the invasion and growth of new bone tissue and improving its integration with bone. The present invention relates to a method for manufacturing a composite implant member that has a dense surface unevenness structure and is also excellent in strength.

[従来の技術] 損傷し或は欠損した人骨、関節、歯等を修復するに当た
っては、近年人工骨0人工間節1人工歯根等のインプラ
ント部材が使用されはじめている。この様なインプラン
ト部材に要求される特性としては強度及び生体との適合
性に優れていることは勿論であるが、新生骨が表層部内
へ容易に侵入・成長し新生骨組織とインプラント部材が
一体性を高め得る機構を備えていることも極めて大切で
ある。従って新生骨の侵入・成長を促進させる上で特に
有効な表面粗度、特にアンカー効果を発揮することがで
きる様な入り組んだ凹凸構造を表層部に形成した材料が
好まれる。インプラント部材の母材としては、機械的強
度が優れている点で金属材料が使用されることが多い。
[Prior Art] In recent years, implant members such as 0 artificial bones, 1 artificial interphallus, 1 artificial tooth root, etc. have begun to be used to repair damaged or missing human bones, joints, teeth, etc. Of course, the characteristics required for such implant components include excellent strength and compatibility with the living body, but it is also important that new bone easily invades and grows into the surface layer, and the new bone tissue and implant component become integrated. It is also extremely important to have a mechanism that can enhance sexual performance. Therefore, it is preferable to use a material that has a surface roughness that is particularly effective in promoting the invasion and growth of new bone, and in particular a material that has an intricate uneven structure on its surface that can exhibit an anchoring effect. Metal materials are often used as the base material of implant members because of their excellent mechanical strength.

しかし金属材料は生体組織に対する親和性に欠ける傾向
にあり、また金属材料自体に凹凸加工を行なうのも容易
でない。このためインプラント用母材の表面に、生体組
織との親和性に優れたアルミナやチタニア等の物質を溶
射して表面凹凸構造を有する溶射皮膜を形成する方法も
開発されている。
However, metal materials tend to lack affinity for living tissues, and it is also difficult to process the metal materials themselves into irregularities. For this reason, a method has also been developed in which a material such as alumina or titania, which has excellent affinity with living tissues, is thermally sprayed onto the surface of an implant base material to form a thermally sprayed coating having an uneven surface structure.

[発明が解決しようとする問題点] しかし上記の様な物質を用いて溶射を行なう場合、これ
らの物質を一旦溶融させてから粉砕し粒度調整を行なっ
て、新前組織の侵入・成長・一体化に適した緻密な表面
凹凸構造を形成している。
[Problems to be solved by the invention] However, when thermal spraying is performed using the above-mentioned materials, these materials are melted and then pulverized to adjust the particle size, thereby preventing the invasion, growth, and integration of new structures. It forms a dense surface roughness structure suitable for oxidation.

ところでアパタイトやバイオガラス等は生体組織に対し
て極めて優れた親和性を有することが知られているが、
溶融状態まで加熱すると熱分解してしまうという問題が
あり、生体組織への親和性が優れているにもかかわらず
インプラント材の素材とすることが困難で、この様な物
質をそのまま溶謝してもインプラント部材として好適な
緻密さをもつ表面凹凸構造を得ることができなかった。
By the way, apatite, bioglass, etc. are known to have extremely good affinity for living tissues.
There is a problem with thermal decomposition when heated to a molten state, and although it has excellent affinity for living tissue, it is difficult to use it as a material for implant materials. However, it was not possible to obtain a surface uneven structure with a density suitable for use as an implant member.

本発明はこの様な事情に鑑みてなされたものであって、
その目的は生体組織に対して優れた親和性を有し、しか
も熱分解しやすい物質からなる緻密な溶射皮膜を、イン
プラント用母材表面に形成することによって新生骨組織
が強固に一体化することができるインプラント部材の製
造方法を提供することである。
The present invention was made in view of these circumstances, and
The purpose is to form a dense thermal sprayed coating on the surface of the implant base material, which is made of a substance that has excellent affinity for living tissue and is easily thermally decomposed, so that new bone tissue can be firmly integrated. An object of the present invention is to provide a method for manufacturing an implant member that can perform the following steps.

[問題点を解決する為の手段] 本発明は生体組織に対して優れた親和性を有し且つ熱分
解し易い物質からなる緻密化した造粒体を、インプラン
ト用母材に溶射することを要旨とするものである。
[Means for Solving the Problems] The present invention involves thermally spraying a densified granule made of a substance that has excellent affinity for living tissue and is easily thermally decomposed onto a base material for implants. This is a summary.

[作用] 本発明において熱分解し易い物質とは溶融状態まで加熱
したときには熱分解してしまう様な物質をいう。
[Function] In the present invention, a substance that is easily thermally decomposed refers to a substance that is thermally decomposed when heated to a molten state.

本発明はこの様な熱分解しやすい物質であって生体組織
に対して優れた親和性を発揮する物質を緻密な造粒体と
し、これをインプラント用母材に溶射して緻密な溶射皮
膜を形成するものである。
The present invention involves forming dense granules from such substances that are easily thermally decomposed and exhibiting excellent affinity for living tissue, and spraying them onto a base material for implants to form a dense thermal spray coating. It is something that forms.

本発明に使用される上記の様な熱分解しやすい物質とし
てはアパタイト、β−燐酸三石灰(以下β−TCPと略
称する)、バイオガラス、セラビタール、結晶化ガラス
等が例示される。これらの物質を造粒する方法としては
スプレードライヤー装置やラバープレスを用いる方法等
が例示される。
Examples of the above-mentioned easily thermally decomposable substances used in the present invention include apatite, β-tricalcium phosphate (hereinafter abbreviated as β-TCP), bioglass, ceravital, and crystallized glass. Examples of methods for granulating these substances include methods using a spray dryer or a rubber press.

スプレードライヤー装置によって造粒を行なう場合、粉
末スラリーを噴霧し熱風と接触させて造粒するが、この
方法で得られる造粒体は嵩密度が小さい。ところが新生
骨組織が侵入・成長しインプラント用母材と強固に一体
化する為には、造粒体の溶射によりインプラント用母材
表面に形成される溶射皮膜の凹凸構造が緻密なものであ
ることが必要であり、この様な緻密な溶射皮膜を形成す
る為には、造粒体の直径は20〜100μm程度である
ことが必要である。従って本発明においては、スプレー
ドライヤー装置で造粒した造粒体を熱処理に付し、造粒
体の一次粒子同士を焼結させることによって造粒体の粒
径を更に小さくしてから溶射に供する。
When granulating with a spray dryer, a powder slurry is sprayed and brought into contact with hot air to form granules, but the granules obtained by this method have a low bulk density. However, in order for new bone tissue to invade and grow and become firmly integrated with the implant base material, the thermally sprayed coating formed on the surface of the implant base material by thermal spraying of granules must have a dense uneven structure. In order to form such a dense thermal spray coating, the diameter of the granules must be about 20 to 100 μm. Therefore, in the present invention, the granules granulated using a spray dryer are subjected to heat treatment to further reduce the particle size of the granules by sintering the primary particles of the granules, and then subjected to thermal spraying. .

次にラバープレスによって造粒を行なう場合、アパタイ
トやβ−TCP等の粉末をゴム型に充填し、ラバープレ
スを用いて圧縮成形した後、成形物を粉砕することによ
り粒度を調整する。この場合粒径3〜200μm程度に
調整することは容易であるから、スプレードライヤー装
置を用いる場合と異なり熱処理に付さないままで溶射条
件に適した粒径の造粒体が得られるが、必要に応じて特
に緻密な溶射皮膜を形成することが要請される場合は熱
処理に付すことが好まし亀。
Next, when granulation is performed using a rubber press, a rubber mold is filled with powder such as apatite or β-TCP, compression molded using a rubber press, and the particle size is adjusted by crushing the molded product. In this case, it is easy to adjust the particle size to about 3 to 200 μm, so unlike when using a spray dryer, granules with a particle size suitable for thermal spraying conditions can be obtained without being subjected to heat treatment. When it is required to form a particularly dense thermal sprayed coating, it is preferable to subject it to heat treatment.

スプレードライヤー装置を用いた場合であれ、ラバープ
レスを用いた場合であれ、熱処理温度は造粒体の1次粒
子同士が焼結する温度であり、例えばアパタイトやβ−
TCPの場合は1000〜1300℃、バイオガラスや
結晶化ガラスの場合は800〜1200℃、セラビター
ルの場合は700〜1100℃である。尚溶射の火炎は
5000℃程度であるが、造粒体がその火炎に曝らされ
るのは瞬時であって火炎温度にまで昇温されない。
Whether using a spray dryer or a rubber press, the heat treatment temperature is the temperature at which the primary particles of the granule sinter, for example, apatite or β-
In the case of TCP, the temperature is 1000 to 1300°C, in the case of bioglass or crystallized glass, it is 800 to 1200°C, and in the case of Ceravital, it is 700 to 1100°C. Although the temperature of the flame during thermal spraying is approximately 5000°C, the granules are exposed to the flame for an instant and are not heated to the flame temperature.

本発明はインプラント用母材の材質については特に限定
するものではないが、機械的強度に優れしかも生体に悪
影響を及ぼすことがない材質として通常使用されている
Ti、Ti合金。
Although the present invention does not particularly limit the material of the base material for implants, Ti and Ti alloys are commonly used materials that have excellent mechanical strength and do not have any adverse effects on living organisms.

Zr、Zr合金、Co−Cr−Mo合金、C0−Cr−
W−Ni合金、Ta、ステンレス鋼等の金属材料が使用
できる他、アルミナ等も使用できる。
Zr, Zr alloy, Co-Cr-Mo alloy, C0-Cr-
In addition to metal materials such as W--Ni alloy, Ta, and stainless steel, alumina and the like can also be used.

以下実施例について説明するが、本発明は下記実施例に
限定されるものではなく、前・後記の趣旨に徴して適宜
設計変更することは本発明の技術的範囲に含まれる。
Examples will be described below, but the present invention is not limited to the following examples, and it is within the technical scope of the present invention to make appropriate design changes in accordance with the spirit of the above and below.

[実施例] 実施例1 湿式合成により製造した水酸化アパタイトCa+a(P
O4)a  (OH)2のスラリーをスプレードライヤ
ー装置で造粒を行ない平均粒径109μmの造粒粉末(
2次粒子)を得た。これを2つのグループに分け、1つ
のグループはこのままを、第2のグループは1200℃
の熱処理に付し平均粒径82μmの造粒体とした。これ
らの2種類の造粒体を用いてそれぞれプラズマ溶射を行
なった。得られた溶射皮膜の断面を研磨した後で、SE
M像観察を行なった。熱処理に付した造粒体の溶射皮膜
は緻密な凹凸構造が形成されていることがわかった。従
フて生体組織が侵入・成長しインプラント部材と強固に
一体化することが期待される。一方熱処理に付されてい
ないものは研磨時に溶射皮膜の脱落が著しく緻密な溶射
皮膜が得られていないことがわかった。
[Example] Example 1 Hydroxylated apatite Ca+a (P
The slurry of O4)a (OH)2 was granulated using a spray dryer to obtain granulated powder with an average particle size of 109 μm (
secondary particles) were obtained. Divide this into two groups, one group will be left as is, and the second group will be heated to 1200℃.
A granule having an average particle size of 82 μm was obtained by heat treatment. Plasma spraying was performed using these two types of granules. After polishing the cross section of the obtained thermal spray coating, SE
M-image observation was performed. It was found that the thermal spray coating of the heat-treated granules had a dense uneven structure. It is expected that living tissue will subsequently invade and grow and become firmly integrated with the implant member. On the other hand, it was found that the thermal sprayed coating that was not subjected to heat treatment was not able to obtain a dense thermal sprayed coating because the thermal sprayed coating fell off during polishing.

実施例2 湿式合成により製造した水酸化アパタイトCa+o(P
O<)a  (OH)2のスラリーをスプレードライヤ
ー装置で造粒を行ない、平均粒径109μmの造粒粉末
(2次粒子)を得た。これを天然ゴム製のゴム型に入れ
、ラバープレスにて、1000 kgf/cm’の圧力
で加圧成形した。粉末圧粉体を乳ばちにて粉砕し、分級
機にて20〜100μmの粉末にふるい分けを行なった
。これを2つに分けて一方は熱処理せずそのままとし、
他方は1200℃の熱処理に付した。これらの2種類の
粉末を用いてそれぞれプラズマ溶射を行なった。得られ
た溶射皮膜の断面を研磨した後、SEM像観察を行なっ
た。その結果熱処理の有無に関係なく、1a密な凹凸構
造が形成されていることがわかった。
Example 2 Hydroxylated apatite Ca+o(P) produced by wet synthesis
The slurry of O<)a (OH)2 was granulated using a spray dryer to obtain granulated powder (secondary particles) with an average particle size of 109 μm. This was placed in a rubber mold made of natural rubber, and pressure molded using a rubber press at a pressure of 1000 kgf/cm'. The powder green compact was ground in a mortar and sieved into powders of 20 to 100 μm in size using a classifier. Divide this into two parts and leave one as is without heat treatment.
The other was subjected to heat treatment at 1200°C. Plasma spraying was performed using these two types of powder. After polishing the cross section of the obtained thermal sprayed coating, SEM image observation was performed. As a result, it was found that a 1a dense uneven structure was formed regardless of the presence or absence of heat treatment.

[発明の効果] 本発明は上記の様に構成されているから新生骨組織が侵
入・成長し強固に一体化することができる溶射皮膜を有
するインプラント部材を製造することができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to manufacture an implant member having a sprayed coating that allows new bone tissue to invade and grow and to be firmly integrated.

Claims (1)

【特許請求の範囲】[Claims] 生体組織に対して優れた親和性を有し且つ熱分解し易い
物質からなる緻密化した造粒体を、インプラント用母材
に溶射することを特徴とするインプラント部材の製造方
法。
A method for producing an implant member, comprising spraying a densified granule made of a substance that has excellent affinity for living tissue and is easily thermally decomposed onto a base material for an implant.
JP62253418A 1987-10-07 1987-10-07 Preparation of implanting material Pending JPH0194858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253418A JPH0194858A (en) 1987-10-07 1987-10-07 Preparation of implanting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253418A JPH0194858A (en) 1987-10-07 1987-10-07 Preparation of implanting material

Publications (1)

Publication Number Publication Date
JPH0194858A true JPH0194858A (en) 1989-04-13

Family

ID=17251116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253418A Pending JPH0194858A (en) 1987-10-07 1987-10-07 Preparation of implanting material

Country Status (1)

Country Link
JP (1) JPH0194858A (en)

Similar Documents

Publication Publication Date Title
Canillas et al. Calcium phosphates for biomedical applications
US4737411A (en) Controlled pore size ceramics particularly for orthopaedic and dental applications
US6846853B2 (en) Calcium phosphate bone graft material, process for making same and osteoimplant fabricated from same
US5034352A (en) Calcium phosphate materials
US5344456A (en) Materials for living hard tissue replacements
JPS5946911B2 (en) implant
JPS62501332A (en) Method for manufacturing implantable bone replacement materials
Lertcumfu et al. Properties of calcium phosphates ceramic composites derived from natural materials
JPH0588148B2 (en)
JPS5839533B2 (en) Implant noseizouhouhou
JP2004033772A (en) Method for preparing porous calcium phosphate chip and particle by gelatin treatment
JPH067425A (en) Manufacture of biological compatibility complex
Mani et al. Is there a future for additive manufactured titanium bioglass composites in biomedical application? A perspective
JPH0194858A (en) Preparation of implanting material
JPH06205794A (en) Composite implant to living body and its manufacture
JPH0362428B2 (en)
JPH06197947A (en) Composite organic implant and manufacture thereof
JPH0575427B2 (en)
JPH0449972A (en) Preparation of substitute and composite molded body of hard tissue of human body
JP2000072572A (en) Plastic ceramics and their production
JP2956318B2 (en) Implant made of Ti or Ti alloy coated with calcium phosphate-based ceramic layer and method for producing the same
JP2892092B2 (en) Calcium phosphate compound molded article and method for producing the same
KR100465984B1 (en) Bioactive Ceramics, Metallic Replacement Coated With Bioactive Ceramics And Method Thereof
JP2539501B2 (en) Calcium phosphate-based compound molded body and method for producing the same
Patil et al. Plasma sprayed hydroxy apatite coatings